1 Admissions to a large tertiary care hospital and Omicron

2 BA.1 and BA.2 SARS-CoV-2 PCR positivity: primary,

3 contributing, or incidental COVID-19

- 4 Anne F. Voor in 't holt^{1#*}, Cynthia P. Haanappel^{1#}, Janette Rahamat Langendoen², Richard
- 5 Molenkamp², Els van Nood¹, Leon M. van den Toorn³, Robin P. Peeters⁴, Annemarie M.C. van
- 6 Rossum^{1,5}, Juliëtte A. Severin¹
- 7 ¹Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical
- 8 Center Rotterdam, The Netherlands.
- ²Department of Viroscience, Unit Clinical Virology, Erasmus MC University Medical Center
- 10 Rotterdam, The Netherlands.
- ³Department of Pulmonology, Erasmus MC University Medical Center Rotterdam, The Netherlands.
- 12 ⁴Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, The
- 13 Netherlands.
- ⁵Department of Pediatrics, Division of Infectious Diseases and Immunology, Erasmus MC-Sophia
- 15 Children's Hospital University Medical Center Rotterdam, The Netherlands.
- 16 *Anne F. Voor in 't holt and Cynthia P. Haanappel contributed equally to this manuscript.
- 17 *Corresponding author: Dr. Anne F. Voor in 't holt, Department of Medical Microbiology and
- 18 Infectious Diseases, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015
- 19 GD, Rotterdam, The Netherlands. Email: a.voorintholt@erasmusmc.nl
- 21 Running title: COVID-19 Omicron hospital admissions
- 22 **Conflict of interest:** The authors report no conflicts of interest relevant to this article.
- 23 Funding: None

20

24

25

31

Abstract

- 26 SARS-CoV-2 Omicron variants BA.1 and BA.2 seem to show reduced clinical severity. We classified
- 27 172 COVID-19 Omicron patient admissions. 66.2% of patients were admitted with primary or
- 28 admission-contributing COVID-19. We therefore must be careful to base healthcare and public
- 29 health decisions on the total number of hospitalized COVID-19 patients alone.
- 30 **Keywords:** COVID-19, patient admission, SARS-CoV-2, epidemiology, Omicron.

Introduction

32

- 33 Monitoring national hospitalization rates for COVID-19 has been essential throughout the pandemic
- to guide public health decision-making, to evaluate vaccine efficacy, and to implement a wide range
- 35 of other medical interventions. However, with the rapid worldwide spread of the SARS-CoV-2
- 36 Omicron variant of concern and increasing immunity against SARS-CoV-2, interpreting the true
- impact of these hospitalization rates has been complicated (1, 2).
- 38 Signs of reduced clinical severity of Omicron compared to previous variants appeared quickly (3-8),
- 39 with unvaccinated patients still at the highest risk of substantial morbidity and mortality (9).
- 40 Omicron variants have been divided into four distinct sublineages: BA.1, BA.1.1, BA.2, and BA.3.
- 41 Within the Netherlands, BA2 is currently identified as the predominant strain Given the different
- 42 backgrounds (e.g., seroprevalence, vaccination rates) of countries reporting reduced clinical severity
- 43 of the Omicron variant, the monitoring of national hospitalization rates is essential to predict the
- overload of healthcare and leads the way for measures in the community.
- 45 Because of the rapid spread of Omicron and the subsequent high incidence of infection in the
- 46 population, not all SARS-CoV-2 positive patients admitted to the hospital have been admitted solely
- 47 because of COVID-19. It is important to distinguish between admissions that are due to primary
- 48 COVID-19, admissions where COVID-19 contributes but is not the only reason (admission-
- 49 contributing COVID-19), or admissions where COVID-19 is not contributing to the reason of
- 50 admission (incidental COVID-19). Therefore, we aimed to assess and classify the cause of
- 51 hospitalization for COVID-19 patients identified with the Omicron variant within our hospital in order
- 52 to provide more insight into the clinical severity of Omicron and the COVID-19 hospital burden.

Methods

53

54

- 55 This study was performed in the Erasmus MC University Medical Center in Rotterdam, The
- 56 Netherlands (Erasmus MC). The Erasmus MC is a large tertiary care hospital with 1125 beds, with a
- 57 total of 121 beds at the intensive care unit (ICU). A retrospective analysis was performed on all
- 58 patients identified with the SARS-CoV-2 Omicron variant between 23 December 2021 and 27
- 59 February 2022. In this period, the testing strategy of the hospital was based on symptoms. SARS-
- 60 CoV-2 infection was identified by real-time transcription-mediated amplification with the Aptima®
- 61 SARS-CoV-2 assay using the Panther system (Hologic, Malborough, USA), or by the Xpert® Xpress
- 62 SARS-CoV2 assay on a GeneXpert® system (Cepheid®, Sunnyvale, USA). SARS-CoV2 positive samples
- 63 were further characterized by variant-specific PCR using VirSNiP (TIBmolbiol, Berlin, Germany) assays
- targeting S371-S373 and K417 as proxy for the Omicron variant. While detection of K417N was
- 65 considered indicative for Omicron, S371L-S373P was considered indicative for BA.1 and S371F-S373P
- 66 for BA.2.
- 67 SARS-CoV-2 Omicron variant positive patients at admission were divided in the following categories:
- 1) patients who were hospitalized for more than 24 hours within 7 days of their first positive SARS-
- 69 CoV-2 PCR, 2) patients who were hospitalized for less than 24 hours within 7 days of their first
- 70 positive SARS-CoV-2 PCR, and 3) patients with visits only to the Erasmus MC outpatient clinic. Data
- 71 was collected from electronic health records (EHR) and included basic patient characteristics such as
- age and sex, and information about country of birth, vaccination status, admission information

- 73 (reason of admission, wards of admission, admission date and discharge date), and oxygen therapy
- 74 during admission.
- 75 Patients with a positive SARS-CoV-2 PCR upon clinical admission or during clinical admission were
- 76 classified based on modified definitions developed by the National Intensive Care Evaluation (NICE)
- 77 Foundation (10). Classification 1) primary COVID-19; COVID-19 is the main cause for hospitalization;
- 78 1A) the patient is hospitalized due to COVID-19 symptoms and is receiving medical treatment for
- 79 these symptoms, 1B) the patient is hospitalized due to COVID-19 symptoms, does not receive
- 80 medical treatment, but is admitted for observation due to the underlying disease. Classification 2)
- admission-contributing COVID-19; COVID-19 is one of the causes for hospitalization; 2A) the patient
- 82 is admitted for another medical cause but also has COVID-19 symptoms and is receiving medical
- treatment for these symptoms, 2B) dysregulation of underlying disease due to COVID-19 (e.g., sickle
- 84 cell crisis provoked by SARS-CoV-2 without respiratory involvement). Classification 3) incidental
- 85 COVID-19; COVID-19 is not the cause for hospitalization, the patient does not have any or only mild
- 86 COVID-19 symptoms, and does not receive any medical treatment for these symptoms. Classification
- 4) Indeterminate; it is unknown whether the cause of hospitalization is related to COVID-19
- 88 symptoms. Classifications were performed by two epidemiologists through evaluation of the
- 89 patient's history in the EHR. If the classification was unclear patients were assessed separately by
- 90 two independent epidemiologists before reaching agreement of classification.
- 91 This study was approved by the medical ethical research committee of the Erasmus MC (MEC-2021-
- 92 0845-A-0002), and was not subject to the Medical Research Involving Human Subjects Act.

Results

93

94

- 95 A total of 402 patients were identified with the Omicron variant of SARS-CoV-2 within the Erasmus
- 96 MC. A total of 333 adult patients were identified with the Omicron variant, of whom 287 patients
- 97 with variant BA.1 (86.1%), 28 patients with variant BA.2 (8.4%), and 18 patients with Omicron variant
- 98 for which further distinction in BA.1 or BA.2 could not be made due to low viral load in the sample
- 99 (5.4%). Of patients with BA.1, 39.4% had a clinical admission of more than 24 hours, 9.8% had a
- 100 clinical admission of fewer than 24 hours, and 50.9% had an outpatient visit only. For adult patients
- with BA.2, 50% were clinically admitted to the hospital and 50% had an outpatient visit. Ninety-six
- 102 pediatric patients were identified with the Omicron variant. BA.1 was identified in 57 children
- 103 (82.6%), BA.2 in 16 children (15.9%), and Omicron without further distinction in BA.1 or BA.2 in 1
- 104 child (1.4%). Of children identified with BA.1, 26.3% were clinically admitted for more than 24 hours,
- while 1.8% had a clinical admission of fewer than 24 hours, and 71.9% had an outpatient visit only.
- 106 For children with BA.2, 36.4% had a clinical admission of more than 24 hours and 63.6% only had an
- 107 outpatient visit.
- One hundred seventy-two patients were hospitalized for more than 24 hours at the Erasmus MC and
- were identified with the Omicron variant of SARS-CoV-2 at admission or during admission (Table 1).
- Out of these 172 patients, 143 patients were identified with Omicron variant BA.1 (83.1%), 19
- patients with BA.2 (11.0%), and 10 patients with Omicron without further distinction in BA.1 or BA.2
- 112 (5.8%) (Table 1).

Table 1. Characteristics of included hospitalized adult and pediatric COVID-19 patients for each classification.

	Total	Clas1: Primary COVID-19	Clas2: Contributing COVID-19	Clas3: Incidental COVID-19	Clas4: Indeterminate COVID-19
Adult patients (%)	151 (100)	68 (45.0)	32 (21.2)	46 (30.5)	5 (3.3)
Median age (range)	56 (18-90)	61 (18-90)	51 (18-82)	55 (22- 90)	23 (22-49)
Male gender (%)	82 (54.3)	35 (51.5)	20 (62.5)	25 (54.3)	2 (40)
Country of birth The Netherlands	00 (00 4)?	44/05 713	10 /50 2)	26 (57.0)3	2 (40)
Other	90 (60.4) ² 59 (39.6) ²	44 (65.7) ³	18 (56.3)	26 (57.8) ³	2 (40)
	• •	23 (34.3) ³	14 (43.8)	19 (42.2) ³	3 (60)
Solid organ recipient (%)	23 (15.2)	16 (23.5)	6 (18.8)	1 (2.2)	na
Lung (%)	9 (6.0)	8 (11.8)	1 (3.1)	0 (0)	na
Kidney (%)	13 (8.6)	8 (11.8)	4 (12.5)	1 (2.2)	na o (o)
28-day in-hospital mortality (%)	12 (7.9)	7 (10.3)	1 (3.1)	4 (8.7)	0 (0)
Vaccinated ¹	55 (53.9) ⁴	37 (61.7) ⁵	7 (30.4) ⁶	11 (57.9) ¹¹	na
Received booster vaccination	33 (34.7) ⁷	25 (43.1) ⁸	3 (14.3) ⁹	5 (31.3) ¹²	na
BA.1 lineage (%)	127 (84.1)	52 (76.5)	27 (84.4)	43 (93.5)	5 (100)
BA.2 lineage (%)	14 (9.3)	9 (13.2)	2 (6.3)	3 (6.5)	0 (0)
Oxygen therapy during admission	74 (50.7)10	56 (82.4)	13 (40.6)	5 (10.9)	na
ICU during admission (%)	13 (8.6)	6 (8.8)	1 (3.1)	6 (13.0)	0 (0)
ICU as admission	10 (6.6)	5 (7.4)	0 (0)	5 (10.9)	0 (0)
department (%)	- (/	- (- (-)	- (/	- (-)
Pediatric patients (%)	21 (100)	4 (19.0)	6 (28.6)	8 (38.1)	3 (14.3)
Median age (range)	3 (0-17)	4 (0-8)	3 (0-13)	2 (0-7)	15 (12-17)
Male gender (%)	12 (57.1)	2 (50)	5 (83.3)	4 (50)	1 (33.3)
Country of birth					
The Netherlands	19	4 (100)	5 (83.3)	7 (87.5)	3 (100)
Other	2	0 (0)	1 (16.7)	1 (12.5)	0 (0)
28-day in-hospital mortality	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
(%)					
BA.1 lineage (%)	16 (76.2)	2 (50)	5 (83.3)	7 (87.5)	2 (66.7)
BA.2 lineage (%)	5 (23.8)	2 (50)	1 (16.7)	1 (12.5)	1 (33.3)
Oxygen therapy during	8 (38.1)	4 (100)	3 (50)	1 (12.5)	na
admission (%)	. ,	, ,	, ,	· ,	
ICU during admission (%)	6 (28.6)	1 (25)	3 (50)	2 (25)	0 (0)
ICU as admission	6 (28.6)	1 (25)	3 (50)	2 (25)	0 (0)
department (%)	. ,	• •	, ,	. ,	

Abbreviations: ICU; intensive care unit, na; not available, clas; classification.

¹Received 2 COVID-19 vaccinations (Pfizer/BioNTech, Moderna or AstraZeneca) or 1 vaccination (Johnson & Johnson's Janssen), ² for 2 patients this was unknown, ³ for 1 patient this was unknown, ⁴ for 49 patients this was unknown, ⁵ for 8 patients this was unknown, ⁶ for 9 patients this was unknown, ⁷ for 56 patients this was unknown, ⁸ for 10 patients this was unknown, ⁹ for 11 patients this was unknown, ¹⁰ for 5 patients this was unknown, ¹¹ for 27 patients this was unknown, ¹² for 30 patients this was unknown.

Discussion

121

- This study assessed and classified the cause of hospitalization of 172 SARS-CoV-2 positive patients.
- 123 We observed that less than 50% of adult Erasmus MC patients identified with the Omicron variant
- were clinically admitted for more than 24 hours. Of these, 45% were primary COVID-19 cases, 21%
- were contributing, and 31% were incidental. Primary COVID-19 patients were older, had a higher 28-
- day in-hospital mortality rate, and showed more BA.2. However, they had higher COVID-19
- vaccination and booster rates compared to incidental COVID-19 cases. Additionally, primary COVID-
- 128 19 and admission-contributing COVID-19 were more frequently observed among transplant
- recipients. These groups differ thereby from patients with incidental COVID-19 Omicron patients.
- 130 This is in line with the study conducted by Sun *et al.* (11).
- 131 Studies in pediatric patients show that the number of admitted pediatric patients with the Omicron
- variant is higher compared to previous variants (12). In this study, we did not register any in-hospital
- 133 mortality among pediatric patients and small numbers of ICU admissions suggesting no increased
- clinical severity, even though incidence among children was high in the community.
- 135 Initial studies on patients with the Omicron variant mainly assessed the change in clinical severity of
- hospitalized COVID-19 patients. However, these studies did not differentiate between primary and
- incidental COVID-19, hereby providing a general conclusion for all patients, while inherent
- differences are to be expected between patient populations (3, 4)Studies have reported between
- 139 17.6% and 19.7% of hospitalized COVID-19 patients with the Omicron variant receiving oxygen
- therapy and an in-hospital mortality between 2.7 and 5.8%, while we registered over 80% of primary
- 141 COVID-19 patients receiving oxygen therapy and a mortality of 10.3%(4, 6) This could be attributed
- to the larger proportion of immunocompromised patients among primary COVID-19 admissions.
- 143 We suggest assessing the risk of severe disease caused by SARS-CoV-2 differently for primary COVID-
- 19 compared to incidental COVID-19 patients. These data are of interest to clinicians but also to
- stakeholders such as hospital managers, infection prevention and control (IPC) practitioners, public
- health professionals, and the general public. Weighing these patient groups separately in terms of
- the attributed burden for healthcare could have implications for public health and healthcare
- decision-making. This could include maintaining non-pharmaceutical interventions such as masks for
- patients at risk of becoming a primary COVID-19 patient (11).
- 150 Although both primary and incidental COVID-19 hospitalizations have implications for workload and
- isolation capacity, incidental COVID-19 in patients generally interferes less with continuity of care.
- 152 Counting patients with incidental COVID-19 as COVID-19 admissions therefore gives a skewed image
- of hospital workload and the COVID-19 burden we are currently dealing with. Therefore, one should
- be careful to base healthcare and public health decisions, in the evolving landscape of COVID-19 on
- the total number of hospitalized COVID-19 patients alone.

References

156

157

158

159

1. Viana R, Moyo S, Amoako DG, Tegally H, Scheepers C, Althaus CL, et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature. 2022.

- 160 2. Parkkali M. Classification of Omicron (B.1.1.529): SARS-CoV-2 Variant of Concern: World
- Health Organization; 2021 [updated 26 November 2021. Available from: https://www.who.int/news-
- room/statements/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern.
- 163 3. Wolter N, Jassat W, Walaza S, Welch R, Moultrie H, Groome M, et al. Early assessment of the
- 164 clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study. The Lancet.
- 165 2022;399(10323):437-46.
- 166 4. Maslo C, Friedland R, Toubkin M, Laubscher A, Akaloo T, Kama B. Characteristics and
- 167 Outcomes of Hospitalized Patients in South Africa During the COVID-19 Omicron Wave Compared
- 168 With Previous Waves. Jama. 2022;327(6):583-4.
- 169 5. Kahn F, Bonander C, Moghaddassi M, Rasmussen M, Malmqvist U, Inghammar M, et al. Risk
- of severe COVID-19 from the Delta and Omicron variants in relation to vaccination status, sex, age
- and comorbidities surveillance results from southern Sweden, July 2021 to January 2022.
- 172 Eurosurveillance. 2022;27(9):2200121.
- 173 6. Jassat W, Karim SA, Mudara C, Welch R, Ozougwu L, Groome M, et al. Clinical Severity of
- 174 COVID-19 Patients Admitted to Hospitals in Gauteng, South Africa During the Omicron-Dominant
- 175 Fourth Wave. Lancet (prepint). 2021.
- 176 7. Wang L, Berger NA, Kaelber DC, Davis PB, Volkow ND, Xu R. Comparison of outcomes from
- 177 COVID infection in pediatric and adult patients before and after the emergence of Omicron.
- 178 medRxiv. 2022.
- 179 8. Nyberg T, Ferguson NM, Nash SG, Webster HH, Flaxman S, Andrews N, et al. Comparative
- analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and
- delta (B.1.617.2) variants in England: a cohort study. The Lancet.
- 182 9. Lauring AS, Tenforde MW, Chappell JD, Gaglani M, Ginde AA, McNeal T, et al. Clinical
- severity of, and effectiveness of mRNA vaccines against, covid-19 from omicron, delta, and alpha
- SARS-CoV-2 variants in the United States: prospective observational study. Bmj. 2022;376:e069761.
- 185 10. The National Intensive Care Evaluation (NICE) Foundation. COVID-19 infecties op de IC's: de
- verdeling in 'COVID-19 reden van opname' voor alle patiënten met een SARS-CoV-2 infectie 2022
- 187 [Available from: https://www.stichting-nice.nl/covid-19-op-de-ic.jsp.
- 188 11. Sun J, Zheng Q, Madhira V, Olex AL, Anzalone AJ, Vinson A, et al. Association Between
- 189 Immune Dysfunction and COVID-19 Breakthrough Infection After SARS-CoV-2 Vaccination in the US.
- 190 JAMA Intern Med. 2022;182(2):153-62.
- 191 12. Belay ED, Godfred-Cato S. SARS-CoV-2 spread and hospitalisations in paediatric patients
- during the omicron surge. Lancet Child Adolesc Health. 2022.