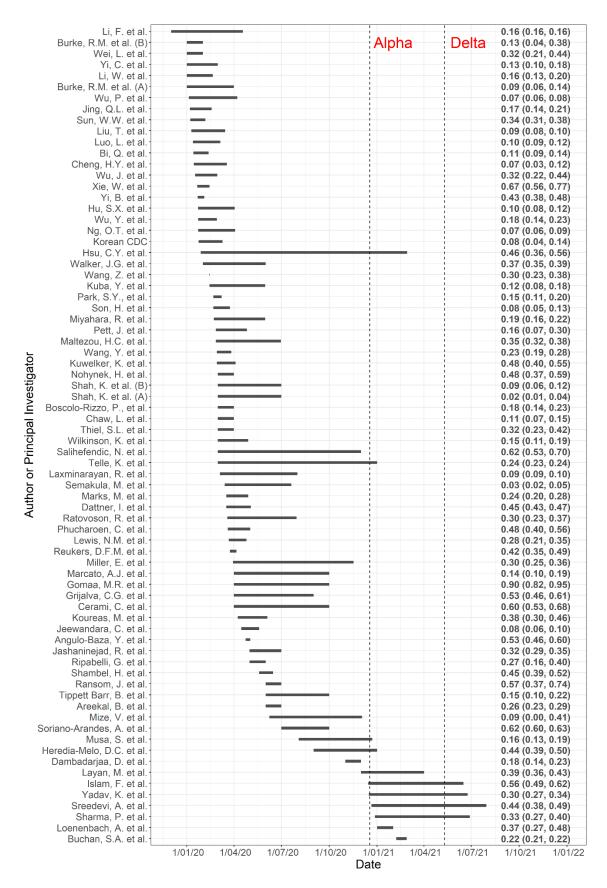
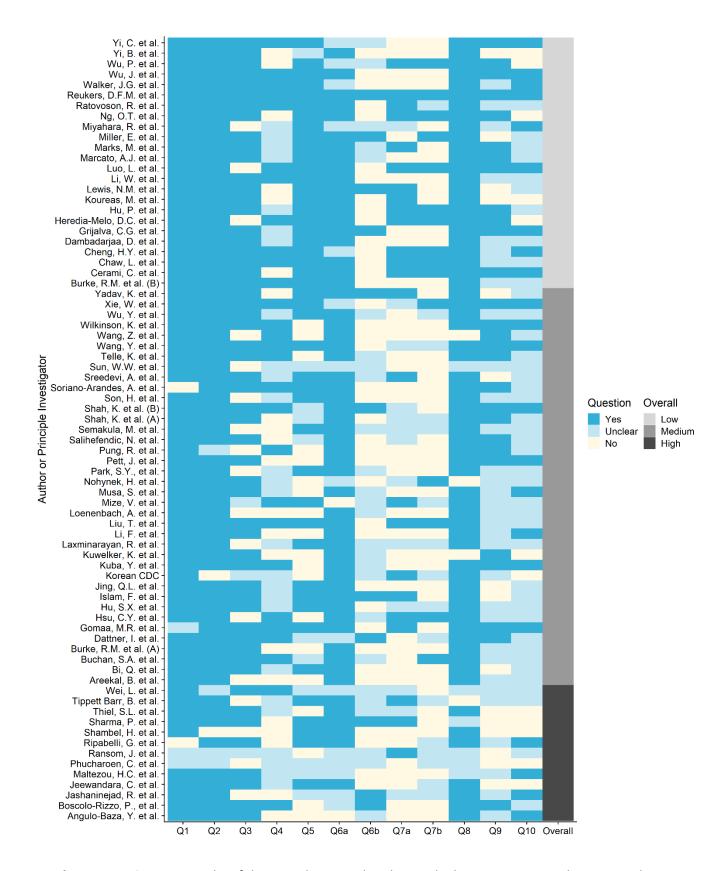
Supplementary Material

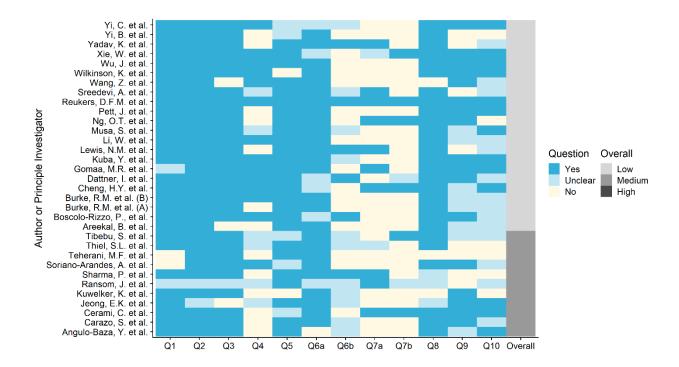
Supplementary Table 1. Detailed descriptions and characteristics of investigations included in the systematic review.

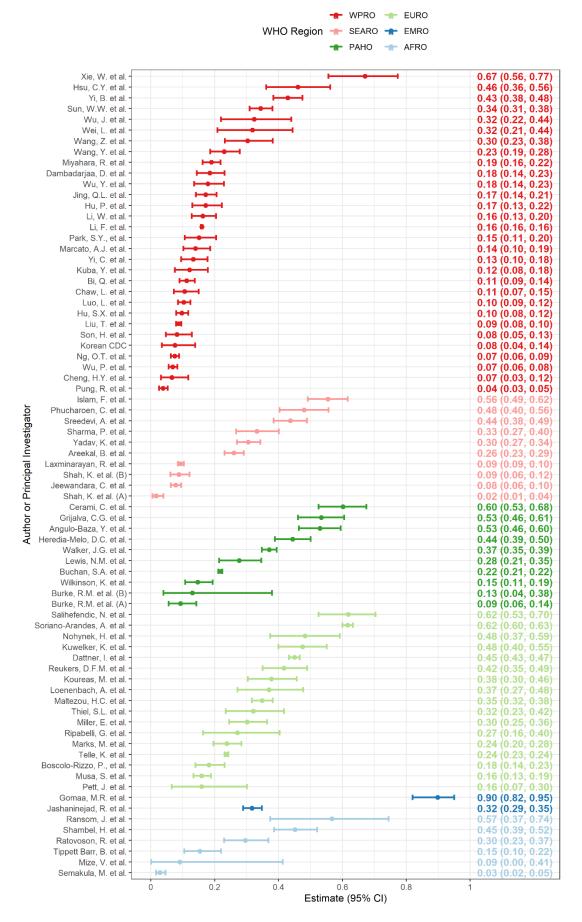

Author (ref)	Country	WHO Region	Income Status	HRP Status	No. Index Cases	No. Households	No. Household Contacts, Included/Total	No. Secondary Cases	Timing of Recruitment	Household Study Design	Secondary Case Ascertainment Methods(s)	Data Collection Method	Duration of Follow Up
Angulo-Bazan, Y. et al.¹	Peru	AMR	Upper- Middle	Yes	52	52	236	125 [serology]; 162 [symptoms]	23 April 2020 - 2 May 2020	Yes	Serology [hSAR]; symptoms only [hSCAR]	Retrospective	Unclear
Areekal, B. et al. ²	India	SEAR	Lower- Middle	No	212	212	849	221 [lab diagnosis]; 132 [symptoms]	June 2020 - July 2020	No	Unclear [hSAR]; symptoms only [hSCAR]	Prospective	14 days or less
Bi, Q. et al. ³	China	WPR	Upper- Middle	No	244	Unknown	686	77	14 January 2020 - 12 February 2020	No	RT-PCR	Retrospective	14 days or less
Boscolo-Rizzo, P. et al. ⁴	Italy	EUR	High	No	179	179	121 [hSAR]; 296 [hSCAR]	54 [RT-PCR]; 233 [symptoms]	March 2020 - April 2020	Yes	RT-PCR [hSAR]; symptoms only [hSCAR]	Retrospective	Unclear
Buchan, S.A. et al. ⁵	Canada	AMR	High	No	5617	5617	15597	3397	7 February 2021 - 27 February 2021	Yes	Unclear	Prospective	14 days or less
Burke, R.M. et al. (A) ⁶	United States of America	AMR	High	No	69	69	193/201	18 [RT-PCR]; 62 [symptoms]	January 2020 - April 2020	Yes	RT-PCR [hSAR]; symptoms only [hSCAR]	Prospective	14 days or less
Burke, R.M. et al. (B) ⁷	United States of America	AMR	High	No	9	9	15	2 [RT-PCR]; 8 [symptoms]	January 2020	No	RT-PCR [hSAR]; symptoms only [hSCAR]	Prospective	14 days or less
Carazo, S. et al. ⁸	Canada	AMR	High	No	3823	3823	9096	2718	1 March 2020 - 14 June 2020	No	Symptoms	Retrospective	14 days or less
Cerami, C. et al. ⁹	United States of America	AMR	High	No	100	100	176/182	106 [RT-PCR or serology]; 91 [symptoms]	April 2020 - October 2020	Yes	RT-PCR or serology [hSAR]; symptoms only [hSCAR]	Prospective	Greater than 14 days
Chaw, L. et al. ¹⁰	Brunei Darussalam	WPR	High	No	19	19	123	16	March 2020	No	RT-PCR	Prospective	14 days or less
Cheng, H.Y. et al. ¹¹	Taiwan, China	WPR	High	No	100	100	151	10 [RT-PCR]; 7 [symptoms]	15 January 2020 - 18 March 2020	No	RT-PCR [hSAR]; symptoms only [hSCAR]	Prospective	14 days or less
Dambadarjaa, D. et al. ¹²	Mongolia	WPR	Lower- Middle	No	97	97	325	60	November 2020	No	RT-PCR	Prospective	14 days or less
Dattner, I. et al. ¹³	Israel	EUR	High	No	637	637	3353	1510 [RT-PCR]; 1243 [symptoms]	17 March 2020 - 3 May 2020	Yes	RT-PCR [hSAR]; symptoms only [hSCAR]	Retrospective	Unclear
Gomaa, M.R. et al. ¹⁴	Egypt	EMR	Lower- Middle	Yes	23	23	98	88 [RT-PCR or serology]; 52 [symptoms]	April 2020 - October 2020	Yes	RT-PCR or serology [hSAR]; symptoms only [hSCAR]	Prospective	14 days or less
Grijalva, C.G. et al. ¹⁵	United States of America	AMR	High	No	101	101	137/191	48	April 2020 - September 2020	Yes	RT-PCR	Prospective	14 days or less
Heredia-Melo, D.C. et al. ¹⁶	Colombia	AMR	Upper- Middle	Yes	99	99	315/334	140	September 2020 - January 2021	No	RT-PCR and symptoms	Prospective	14 days or less
Hsu, C.Y. et al. ¹⁷	Taiwan, China	WPR	High	No	18	26	102	47	28 January 2020 - 28 February 2021	Yes	RT-PCR	Retrospective	14 days or less
Hu, P. et al. ¹⁸	China	WPR	Upper- Middle	No	82	82	267	46	Before 5 March 2020	No	RT-PCR	Retrospective	14 days or less
Hu, S.X. et al. ¹⁹	China	WPR	Upper- Middle	No	284	115	1021	99	23 January 2020 - 2 April 2020	No	RT-PCR	Prospective	14 days or less
Islam, F. et al. ²⁰	India	SEAR	Lower- Middle	No	99	99	254/318	141	15 December 2020 - 16 June 2021	Yes	RT-PCR	Prospective	Greater than 14 days
Jashaninejad, R. et al. ²¹	Iran (Islamic Republic of)	EMR	Lower- Middle	Yes	323	323	989	314	May 2020 - July 2020	No	RT-PCR	Prospective	14 days or less
Jeewandara, C. et al. ²²	Sri Lanka	SEAR	Lower- Middle	No	39	39	1093	85	15 April 2020 - 19 May 2020	No	RT-PCR	Prospective	14 days or less

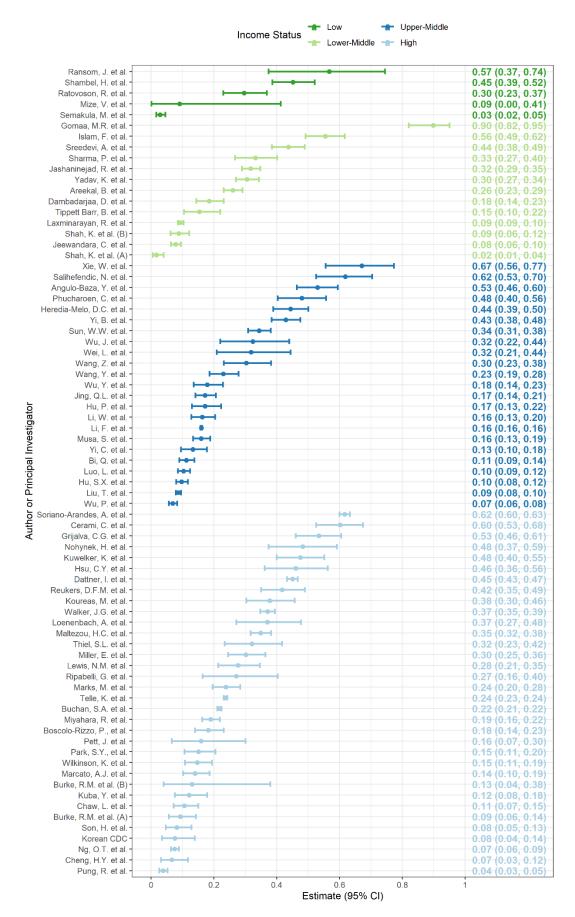
Author (ref)	Country	WHO Region	Income Status	HRP Status	No. Index Cases	No. Households	No. Household Contacts, Included/Total	No. Secondary Cases	Timing of Recruitment	Household Study Design	Secondary Case Ascertainment Methods(s)	Data Collection Method	Duration of Follow Up
Jeong, E.K. et al. ²³	Republic of Korea	WPR	High	No	30	30	119	9	24 January 2020 - 10 March 2020	No	Symptoms	Retrospective	14 days or less
Jing, Q.L. et al. ²⁴	China	WPR	Upper- Middle	No	159	159	529	93	7 January 2020 - 18 February 2020	Yes	RT-PCR	Retrospective	14 days or less
Korean CDC ²⁵	Republic of Korea	WPR	High	No	9	9	119	9	24 January 2020 - 10 March 2020	No	Unclear	Prospective	14 days or less
Koureas, M. et al. ²⁶	Greece	EUR	High	No	30	30	164	62	8 April 2020 - 4 June 2020	No	RT-PCR	Prospective	14 days or less
Kuba, Y. et al. ²⁷	Japan	WPR	High	No	78	78	174	21 [RT-PCR]; 21 [symptoms]	14 February 2020 - 31 May 2020	Yes	RT-PCR and symptoms [hSAR]; symptoms only [hSCAR]	Prospective	14 days or less
Kuwelker, K. et al. ²⁸	Norway	EUR	High	No	112	112	179/245	85 [RT-PCR or serology], 130 [symptoms]	28 February 2020 - 4 April 2020	Yes	RT-PCR or serology [hSAR]; symptoms only [hSCAR]	Prospective	Greater than 14 days
Laxminarayan, R. et al. ²⁹	India	SEAR	Lower- Middle	No	998	998	4065	380	5 March 2020 - 1 August 2020	No	RT-PCR	Retrospective	14 days or less
Layan, M. et al. ³⁰	Israel	EUR	High	No	215	210	687	269	December 2020 - April 2021	Yes	RT-PCR	Prospective	14 days or less
Lewis, N.M. et al. ³¹	United States of America	AMR	High	No	58	58	188/197	52 [RT-PCR or serology]; 136 [symptoms]	22 March 2020 - 25 April 2020	Yes	RT-PCR or serology [hSAR]; symptoms only [hSCAR]	Prospective	14 days or less
Li, F. et al. ³²	China	WPR	Upper- Middle	No	24985	24985	52822	8447	2 December 2019 - 18 April 2020	Yes	Unclear	Retrospective	14 days or less
Li, W. et al. ³³	China	WPR	Upper- Middle	No	105	105	392	64 [RT-PCR]; 55 [symptoms]	1 January 2020 - 20 February 2020	Yes	RT-PCR [hSAR]; symptoms only [hSCAR]	Prospective	14 days or less
Liu, T. et al. ³⁴	China	WPR	Upper- Middle	No	1206	1206	4707	410	10 January 2020 - 15 March 2020	No	RT-PCR	Retrospective	14 days or less
Loenenbach, A. et al. ³⁵	Germany	EUR	High	No	38	38	92	34	January 2021 - February 2021	No	RT-PCR and symptoms	Prospective	14 days or less
Luo, L. et al. ³⁶	China	WPR	Upper- Middle	No	197	197	1015	105	13 January 2020 - 6 March 2020	No	RT-PCR	Prospective	14 days or less
Maltezou, H.C. et al. ³⁷	Greece	EUR	High	No	133	133	846	295	26 February 2020 - 30 June 2020	No	RT-PCR and symptoms	Retrospective	14 days or less
Marcato, A.J. et al. ³⁸	Australia	WPR	High	No	101	96	286/300	40	April 2020 - October 2020	Yes	RT-PCR	Prospective	14 days or less
Marks, M. et al. ³⁹	Spain	EUR	High	No	282	282	382	91	17 March 2020 - 28 April 2020	No	RT-PCR	Prospective	14 days or less
Miller, E. et al. ⁴⁰	United Kingdom	EUR	High	No	117	117	248	75	30 March 2020 - 17 November 2020	Yes	RT-PCR or serology	Prospective	14 days or less
Miyahara, R. et al. ⁴¹	Japan	WPR	High	No	306	306	775	147	22 February 2020 - 31 May 2020	Yes	RT-PCR	Retrospective	Greater than 14 days
Mize, V. et al. ⁴²	South Sudan	AFR	Low	Yes	29	29	13089	1	8 June 2020 - 3 December 2020	No	RT-PCR or serology	Prospective	Greater than 14 days
Musa, S. et al. ⁴³	Bosnia and Herzegovina	EUR	Upper- Middle	No	383	360	747	119 [RT-PCR and symptoms]; 103 [symptoms]	3 August 2020 - 23 December 2020	Yes	RT-PCR and symptoms [hSAR]; symptoms only [hSCAR]	Prospective	14 days or less
Ng, O.T. et al. ⁴⁴	Singapore	WPR	High	No	581	578	1779/1863	134 [RT-PCR or serology]; 468 [symptoms]	23 January 2020 - 3 April 2020	Yes	RT-PCR or serology [hSAR]; symptoms only [hSCAR]	Retrospective	14 days or less
Nohynek, H. et al. ⁴⁵	Finland	EUR	High	No	37	37	87/90	42	Mar-20	Yes	RT-PCR or serology	Prospective	Unclear
Park, S.Y., et al. ⁴⁶	Republic of Korea	WPR	High	No	97	Unknown	225	34	21 February 2020 - 8 March 2020	No	RT-PCR	Prospective	14 days or less
Pett, J. et al. ⁴⁷	United Kingdom	EUR	High	No	27	27	44	7 [RT-PCR]; 7 [symptoms]	26 February 2020 - 26 April 2020	No	RT-PCR and symptoms [hSAR]; symptoms only [hSCAR]	Prospective	14 days or less

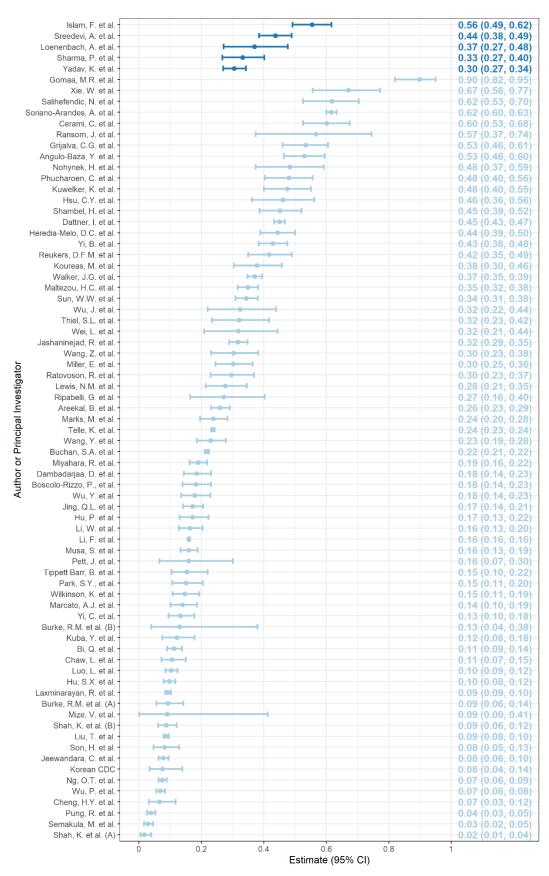

Author (ref)	Country	WHO Region	Income Status	HRP Status	No. Index Cases	No. Households	No. Household Contacts, Included/Total	No. Secondary Cases	Timing of Recruitment	Household Study Design	Secondary Case Ascertainment Methods(s)	Data Collection Method	Duration of Follow Up
Phucharoen, C. et al. ⁴⁸	Thailand	SEAR	Upper- Middle	No	77	63	171	82	20 March 2020 - 2 May 2020	No	RT-PCR	Prospective	Unclear
Pung, R. et al. ⁴⁹	Singapore	WPR	High	No	265	265	875	33	Before 21 March 2020	Yes	RT-PCR and symptoms	Prospective	14 days or less
Ransom, J. et al. ⁵⁰	South Sudan	AFR	Low	Yes	26	26	30 [hSAR]; 42 [hSCAR]	17 [serology]; 2 [symptoms]	Jun-20	Yes	Serology [hSAR]; symptoms only [hSCAR]	Prospective	Unclear
Ratovoson, R. et al. ⁵¹	Madagascar	AFR	Low	No	33	33	179/192	53	19 March 2020 - 30 July 2020	Yes	RT-PCR or serology	Prospective	Greater th 14 days
Reukers, D.F.M. et al. ⁵²	Netherlands	EUR	High	No	55	55	187	78 [RT-PCR or serology]; 79 [symptoms]	24 March 2020 - 6 April 2020	Yes	RT-PCR or serology [hSAR]; symptoms only [hSCAR]	Prospective	Greater th 14 days
Ripabelli, G. et al. ⁵³	Italy	EUR	High	No	Unknown	34	59	16	May-20	No	RT-PCR	Retrospective	Greater th 14 days
Salihefendic, N. et al. ⁵⁴	Bosnia and Herzegovina	EUR	Upper- Middle	No	25	25	123	76	March 2020 - December 2020	Yes	RT-PCR or serology	Prospective	Unclear
Semakula, M. et al. ⁵⁵	Rwanda	AFR	Low	Yes	528	153	615	18	14 March 2020 - 20 July 2020	No	RT-PCR	Retrospective	14 days or less
Shah, K. et al. (A) ⁵⁶	India	SEAR	Lower- Middle	No	72	72	287	5	March 2020 - July 2020	Yes	Unclear	Prospective	14 days or less
Shah, K. et al. (B) ⁵⁷	India	SEAR	Lower- Middle	No	74	74	386	34	March 2020 - July 2020	Yes	Unclear	Unclear	Greater th 14 days
Shambel, H. et al. ⁵⁸	Ethiopia	AFR	Low	Yes	100	100	221/300	100	19 May 2020 - 15 June 2020	No	RT-PCR	Prospective	14 days or less
Sharma, P. et al. ⁵⁹	India	SEAR	Lower- Middle	No	146	146	202/270	67 [RT-PCR]; 28 [symptoms]	28 December 2020 - 28 June 2021	Yes	RT-PCR [hSAR]; symptoms only [hSCAR]	Prospective	Greater th 14 days
Son, H. et al. ⁶⁰	Republic of Korea	WPR	High	No	108	Unknown	196	16	21 February 2020 - 24 March 2020	No	RT-PCR	Prospective	14 days or less
Soriano- Arandes, A. et al. ⁶¹	Spain	EUR	High	No	270	341	3392	2091 [RT-PCR]; 1386 [symptoms]	1 July 2020 - October 2020	Yes	RT-PCR [hSAR]; symptoms only [hSCAR]	Prospective	Unclear
Sreedevi, A. et al. ⁶²	India	SEAR	Lower- Middle	No	147	147	364	159 [RT-PCR]; 94 [symptoms]	21 December 2020 - 30 July 2021	Yes	RT-PCR [hSAR]; symptoms only [hSCAR]	Prospective	Greater th 14 days
Sun, W.W. et al. ⁶³	China	WPR	Upper- Middle	No	149	149	697	240	8 January 2020 - 6 February 2020	No	RT-PCR	Retrospective	14 days or less
Teherani, M.F. et al. ⁶⁴	United States of America	AMR	High	No	32	32	144	67	16 March 2020 - 14 June 2020	Yes	Symptoms	Prospective	14 days or less
Telle, K. et al. ⁶⁵	Norway	EUR	High	No	7548	7548	19443	4613	1 March 2020 - 1 January 2021	No	RT-PCR	Retrospective	14 days or less
Thiel, S.L. et al. ⁶⁶	Liechtenstein	EUR	High	No	81	81	109/127	35 [serology]; 49 [symptoms]	March 2020 - April 2020	No	Serology [hSAR]; symptoms only [hSCAR]	Prospective	14 days or less
Tibebu, S. et al. ⁶⁷	Canada	AMR	High	No	29352	29352	84125	16404	July 2020 - November 2020	Yes	Symptoms	Prospective	Greater th 14 days
Tippett Barr, B. et al. ⁶⁸	Kenya	AFR	Lower- Middle	Yes	125	51	156	24	June 2020 - October 2020	No	RT-PCR	Prospective	14 days or less
Walker, J.G. et al. ⁶⁹	United States of America	AMR	High	No	917	917	1766	655	February 2020 - June 2020	No	RT-PCR	Prospective	14 days or less
Wang, Y. et al. ⁷⁰	China	WPR	Upper- Middle	No	124	41	335	77	28 February 2020 - 27 March 2020	Yes	Unclear	Prospective	14 days or less
Wang, Z. et al. ⁷¹	China	WPR	Upper- Middle	No	78	78	155	47 [RT-PCR]; 104 [symptoms]	13 February 2020 - 14 February 2020	Yes	RT-PCR [hSAR]; symptoms only [hSCAR]	Retrospective	14 days or less
Wei, L. et al. ⁷²	China	WPR	Upper- Middle	No	39	23	66	21	January 2020 - February 2020	Yes	Unclear	Unclear	14 days or less
Wilkinson, K. et al. ⁷³	Canada	AMR	High	No	102	102	279	41 [RT-PCR]; 41 [symptoms]	March 2020 - 28 April 2020	Yes	RT-PCR and symptoms [hSAR]; symptoms only [hSCAR]	Prospective	14 days or less
Wu, J. et al. ⁷⁴	China	WPR	Upper- Middle	No	35	35	148 [hSAR]; 143 [hSCAR]	48 [RT-PCR]; 51 [symptoms]	17 January 2020 - 29 February 2020	Yes	RT-PCR [hSAR]; symptoms only [hSCAR]	Prospective	Greater th

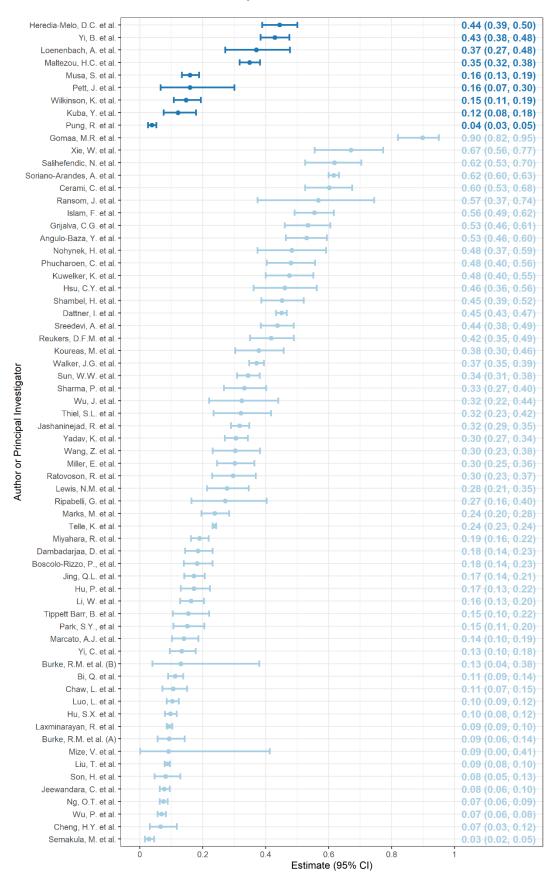
Author (ref)	Country	WHO Region	Income Status	HRP Status	No. Index Cases	No. Households	No. Household Contacts, Included/Total	No. Secondary Cases	Timing of Recruitment	Household Study Design	Secondary Case Ascertainment Methods(s)	Data Collection Method	Duration of Follow Up
Wu, P. et al. ⁷⁵	China	WPR	Upper- Middle	No	393	393	1516	104	5 January 2020 - 7 April 2020	No	RT-PCR	Retrospective	14 days or less
Wu, Y. et al. ⁷⁶	China	WPR	Upper- Middle	No	144	Unknown	280	50	23 January 2020 - 28 February 2020	No	Unclear	Retrospective	14 days or less
Xie, W. et al. ⁷⁷	China	WPR	Upper- Middle	No	20	20	79	53 [RT-PCR]; 49 [symptoms]	21 January 2020 - 14 February 2020	Yes	RT-PCR [hSAR]; symptoms only [hSCAR]	Prospective	14 days or less
Yadav, K. et al. ⁷⁸	India	SEAR	Lower- Middle	No	148	148	645	197 [RT-PCR or serology]; 60 [symptoms]	16 December 2020 - 24 June 2021	Yes	RT-PCR or serology [hSAR]; symptoms only [hSCAR]	Prospective	Greater than 14 days
Yi, B. et al. ⁷⁹	China	WPR	Upper- Middle	No	214	214	475	204 [RT-PCR and symptoms]; 224 [symptoms]	22 January 2020 - 4 February 2020	Yes	RT-PCR and symptoms [hSAR]; symptoms only [hSCAR]	Retrospective	14 days or less
Yi, C. et al. ⁸⁰	China	WPR	Upper- Middle	No	157	157	279	37 [RT-PCR]; 27 [symptoms]	January 2020 - March 2020	No	RT-PCR [hSAR]; symptoms only [hSCAR]	Prospective	14 days or less

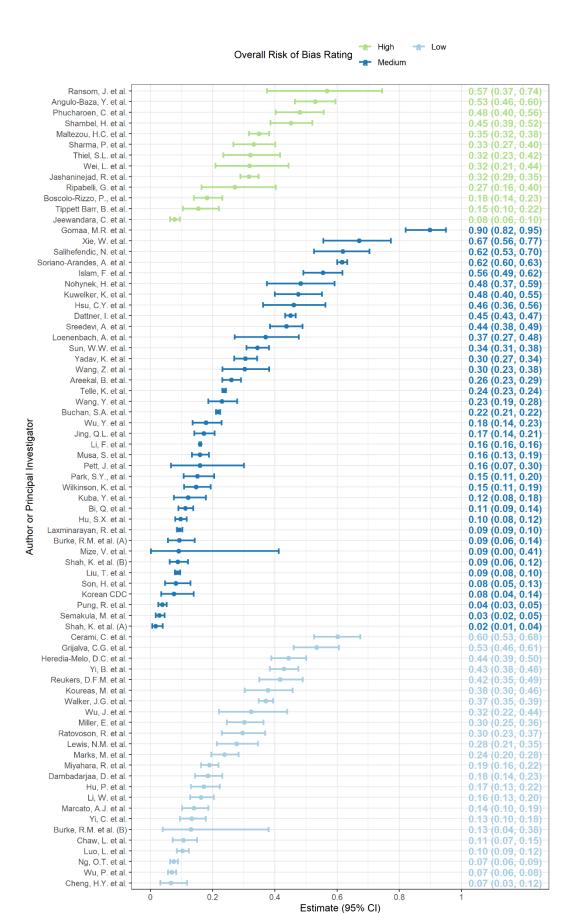

Abbreviations: ref, Reference; WHO, World Health Organization; HRP, Humanitarian Response Plan; AFR, Africa; AMR, Americas; EMR, Eastern Mediterranean; EUR, Europe; SEAR, South East Asia; WPR, Western Pacific; hSAR, household secondary infection attack rate; hSCAR, household secondary clinical attack rate; RT-PCR, reverse transcription polymerase chain reaction.

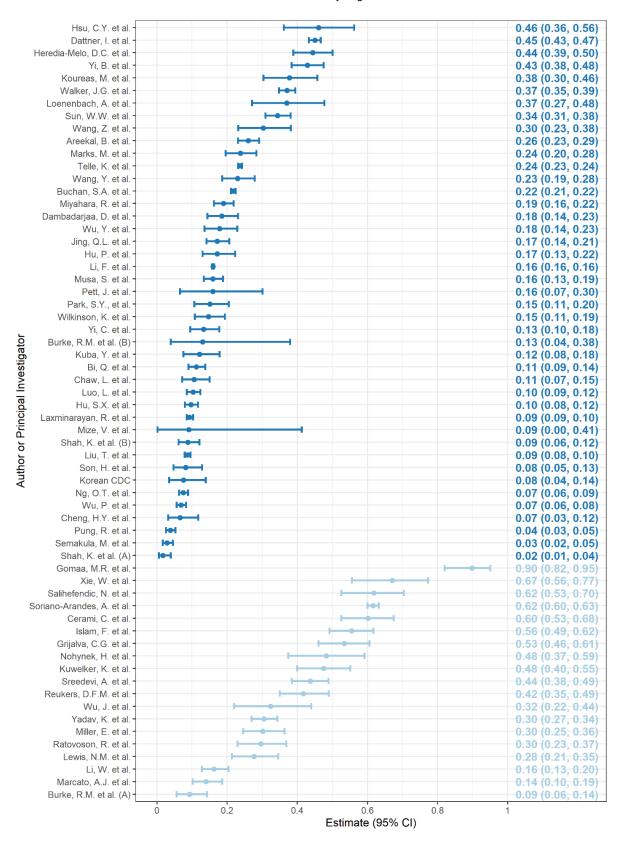

Supplementary Figure 1: Horizontal lines showing the approximate timing of investigations reporting a household secondary infection attack rate (hSAR) by month and year. Two of the 76 investigations reporting a hSAR are not plotted as the start date was not reported. Vertical lines represent the time at which variants Alpha and Delta were designated as Variants of Concern (VoC) by the WHO (18 December 2020, and 5 May 2021, respectively). Investigations are ordered by start dates. The hSAR and 95% confidence intervals are provided on the right-hand side.

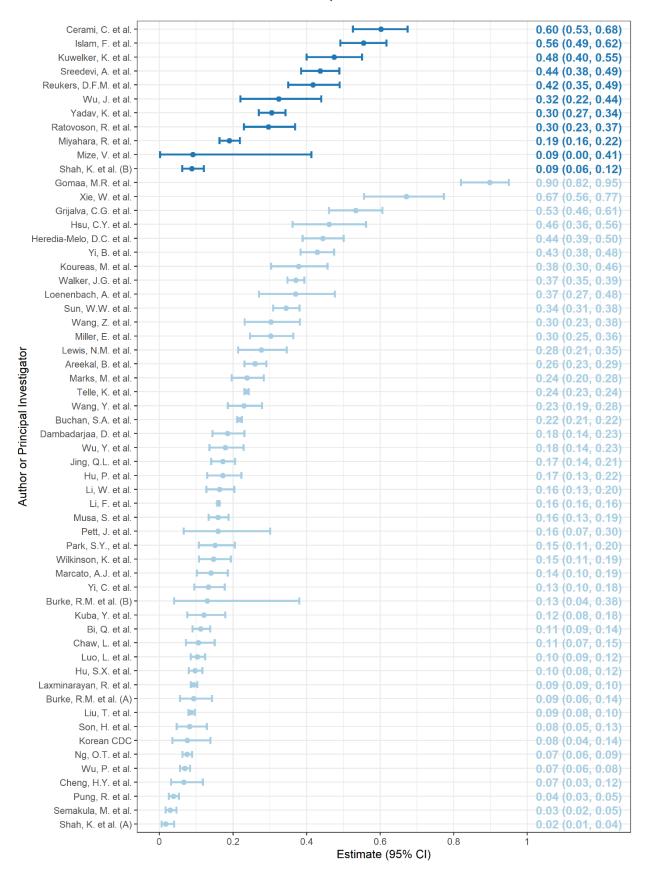

Supplementary Figure 2. Results of the critical appraisal tool as applied to investigations that reported household secondary infection attack rate (hSAR). Colours for Questions 1–10 indicate whether each was addressed in the investigation (dark blue) or not (cream), or instances where there was insufficient detail available to assess (light blue). An overall rating of the risk of bias is provided in the far-right column, with investigations rated Low (light grey), Medium (medium grey) or High (dark grey).

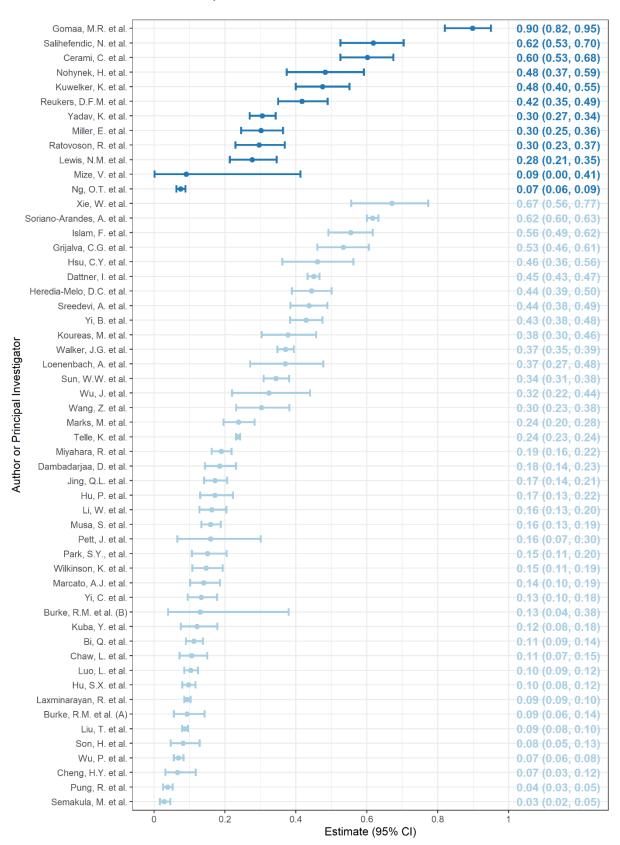

Supplementary Figure 3: Results of the critical appraisal tool as applied to investigations that reported household secondary clinical attack rate (hSCAR). Colours for Questions 1–10 indicate whether each was addressed in the investigation (dark blue) or not (cream), or instances where there was insufficient detail available to assess (light blue). An overall rating of the risk of bias is provided in the far-right column, with investigations rated Low (light grey), Medium (medium grey) or High (dark grey).


Supplementary Figure 4. Forest plot of estimated household secondary infection attack rates (hSAR) coloured by WHO Region. The estimated hSAR and 95% confidence interval are shown on the right margin.


Supplementary Figure 5. Forest plot of estimated household secondary infection attack rates (hSAR) coloured by income status as reported by the World Bank in 2021.⁸¹ The estimated hSAR and 95% confidence interval are shown on the right margin.

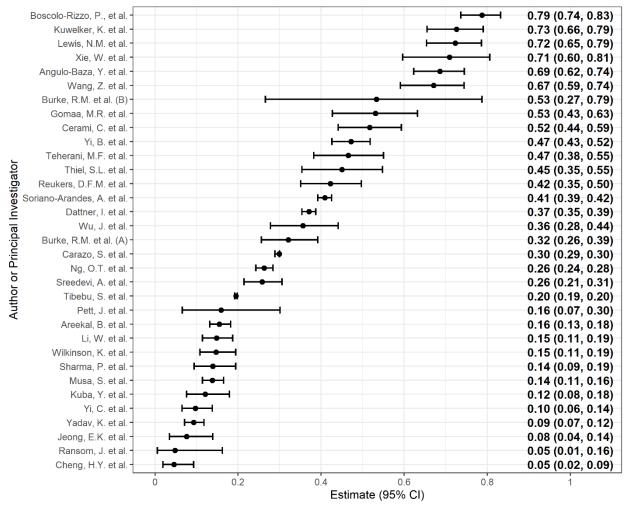

Supplementary Figure 6. Forest plot of estimated household secondary infection attack rates (hSAR) coloured by presumed dominant SARS-CoV-2 strain as determined by data available from CoVariants⁸² GISAID.⁸³ The estimated hSAR and 95% confidence interval are shown on the right margin.


Supplementary Figure 7. Forest plot of estimated household secondary infection attack rates (hSAR) coloured by household contact testing protocol implementation. The estimated hSAR and 95% confidence interval are shown on the right margin.

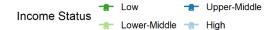

Supplementary Figure 8. Forest plot of estimated household secondary infection attack rates (hSAR) coloured by overall risk of bias assessment. The estimated hSAR and 95% confidence interval are shown on the right margin.

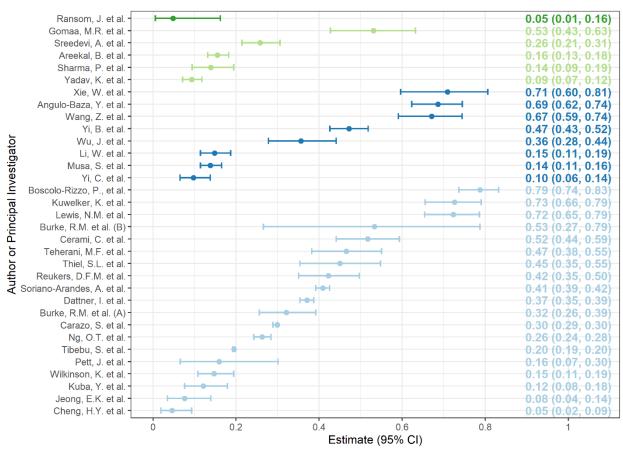
Supplementary Figure 9. Forest plot of estimated household secondary infection attack rates (hSAR) coloured by alignment to the UNITY protocol, as determined by household transmission study design, prospective data collection and routine testing of all household contacts. The estimated hSAR and 95% confidence interval are shown on the right margin.

Supplementary Figure 10. Forest plot of estimated household secondary infection attack rates (hSAR) coloured by duration of follow up of household contacts. The estimated hSAR and 95% confidence interval are shown on the right margin.

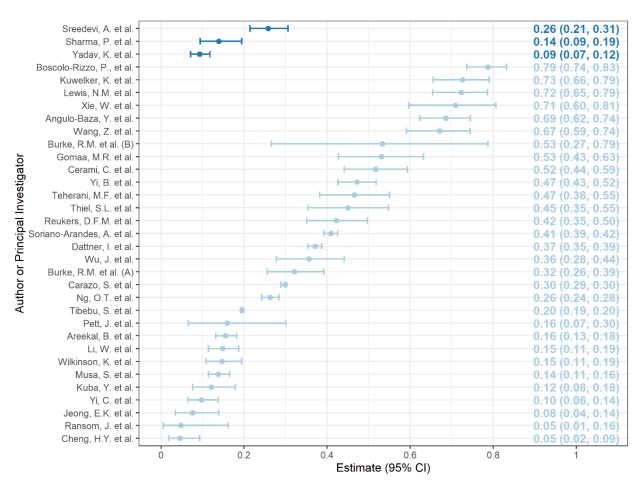

Supplementary Figure 11. Forest plot of estimated household secondary infection attack rates (hSAR) coloured by laboratory method of secondary case ascertainment. The estimated hSAR and 95% confidence interval are shown on the right margin.

Supplementary Table 2. Results comparing primary meta-analysis results to those from a risk of bias subgroup meta-analysis of household secondary infection attack rate (hSAR) after inclusion of studies at high risk of bias. I^2 and τ^2 are presented for each model to indicate the percentage of variation across studies attributable to heterogeneity and the estimated between-study variance, respectively. The p-value from the χ^2 test for heterogeneity is also presented.


	No. studies	l ²	$\widehat{\tau^2}$	P-value
Infection household secondary attack rate	62	99.7	1.190	<0.0001
Pre-Specified Subgroup Analyses				
Risk of bias assessment	75	99.6	1.069	<0.0001
Low or moderate risk of bias	62			
High risk of bias	13			


Supplementary Table 3. Results from meta-analyses of household secondary clinical attack rate (hSCAR). I^2 and τ^2 are presented for each model to indicate the percentage of variation across studies attributable to heterogeneity and the estimated between-study variance, respectively. The p-value from the χ^2 test for heterogeneity is also presented.

	No. studies	l ²	$\widehat{\tau^2}$	P-value
Clinical household secondary attack rate	33	99.7	1.344	<0.0001
Pre-Specified Subgroup Analyses				
Income Status	33	99.7	1.324	<0.0001
High income	19			
Low- and middle- income	14			
Predominant circulating strain	33	99.7	1.249	<0.0001
Other strain	30			
Variant of concern	3			



Supplementary Figure 12. Forest plot of the household secondary clinical attack rates (hSCAR) in included articles (n = 33), ordered from highest estimated hSCAR (top) to lowest estimated hSCAR (bottom). The hSAR and 95% confidence intervals (CI) are shown on the right margin.

Supplementary Figure 13. Forest plot of estimated household secondary clinical attack rates (hSCAR) coloured by income status as reported by the World Bank in 2021.⁸¹ The estimated hSCAR and 95% confidence interval are shown on the right margin.

Supplementary Figure 14. Forest plot of estimated household secondary clinical attack rates (hSCAR) coloured by presumed dominant SARS-CoV-2 strain as determined by data available from CoVariants⁸² and GISAID⁸³. The estimated hSCAR and 95% confidence interval are shown on the right margin.

References

- 1. Angulo-Bazan Y, Solis-Sanchez G, Cardenas F, Jorge A, Acosta J, Cabezas C. Household transmission of SARS-CoV-2 (COVID-19) in Lima, Peru. *Cadernos de saude publica*. 2021;37(3):e00238720. doi:https://dx.doi.org/10.1590/0102-311X00238720
- 2. Areekal B, Vijayan SM, Suseela MS, et al. Risk factors, epidemiological and clinical outcome of close contacts of covid-19 cases in a tertiary hospital in southern india. *Journal of Clinical and Diagnostic Research*. 2021;15(3):LC34-LC37. doi:http://dx.doi.org/10.7860/JCDR/2021/48059.14664
- 3. Bi Q, Wu Y, Mei S, et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. *The Lancet Infectious diseases*. 2020;20(8):911-919. doi:https://dx.doi.org/10.1016/S1473-3099(20)30287-5
- 4. Boscolo-Rizzo P, Borsetto D, Spinato G, et al. New onset of loss of smell or taste in household contacts of home-isolated SARS-CoV-2-positive subjects. *European Archives of Oto-Rhino-Laryngology*. 2020;277(9):2637-2640. doi:10.1007/s00405-020-06066-9
- 5. Buchan SA, Tibebu S, Daneman N, et al. Increased household secondary attacks rates with Variant of Concern SARS-CoV-2 index cases. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America*. 2021;(a4j, 9203213)doi:https://dx.doi.org/10.1093/cid/ciab496
- 6. Burke RM, Calderwood L, Killerby ME, et al. Patterns of Virus Exposure and Presumed Household Transmission among Persons with Coronavirus Disease, United States, January-April 2020. *Emerging infectious diseases*. 2021;27(9)doi:https://dx.doi.org/10.3201/eid2709.204577
- 7. Burke RM, Balter S, Barnes E, et al. Enhanced contact investigations for nine early travel-related cases of SARS-CoV-2 in the United States. *PloS one*. 2020;15(9):e0238342. doi:https://dx.doi.org/10.1371/journal.pone.0238342
- 8. Carazo S, Dionne M, Laliberte D, et al. Characterization and evolution of infection control practices among SARS-CoV-2 infected healthcare workers of acute care hospitals and long-Term care facilities in Quebec, Canada, Spring 2020. *Infection Control and Hospital Epidemiology*. 2021;((Carazo, Dionne, De Serres) CHU de Quebec-Universite Research Center, Quebec Laval, QC, Canada(Laliberte, De Serres) Department of Social and Preventive Medicine, Laval University, Quebec, Canada(Laliberte) CIUSSS de la Capitale-Nationale, Quebec, Canada()doi:http://dx.doi.org/10.1017/ice.2021.160
- 9. Cerami C, Rapp T, Lin F-C, et al. High household transmission of SARS-CoV-2 in the United States: living density, viral load, and disproportionate impact on communities of color. *medRxiv*: the preprint server for health sciences. 2021;(101767986)doi:https://dx.doi.org/10.1101/2021.03.10.21253173
- 10. Chaw L, Koh WC, Jamaludin SA, Naing L, Alikhan MF, Wong J. Analysis of SARS-CoV-2 Transmission in Different Settings, Brunei. *EMERGING INFECTIOUS DISEASES*. 2020;26(11):2598-2606. doi:10.3201/eid2611.202263
- 11. Cheng H-Y, Jian S-W, Liu D-P, et al. Contact Tracing Assessment of COVID-19 Transmission Dynamics in Taiwan and Risk at Different Exposure Periods Before and After Symptom Onset. *JAMA internal medicine*. 2020;180(9):1156-1163. doi:https://dx.doi.org/10.1001/jamainternmed.2020.2020
- 12. Dambadarjaa D, Mend T, Mandakh U. Mongolia Unity FFX study for COVID-19. Zenodo; 2022.
- 13. Dattner I, Goldberg Y, Katriel G, et al. The role of children in the spread of COVID-19: Using household data from Bnei Brak, Israel, to estimate the relative susceptibility and infectivity of children. *PLOS COMPUTATIONAL BIOLOGY*. 2021;17(2)doi:10.1371/journal.pcbi.1008559
- 14. Gomaa MR, El Rifay AS, Shehata M, et al. Incidence, household transmission, and neutralizing antibody seroprevalence of Coronavirus Disease 2019 in Egypt: Results of a community-based cohort. *PLoS pathogens*. 2021;17(3):e1009413. doi:https://dx.doi.org/10.1371/journal.ppat.1009413
- 15. Grijalva CG, Rolfes MA, Zhu Y, et al. Transmission of SARS-COV-2 Infections in Households Tennessee and Wisconsin, April-September 2020. *MMWR Morbidity and mortality weekly report*. 2020;69(44):1631-1634. doi:https://dx.doi.org/10.15585/mmwr. mm6944e1
- 16. Heredia-Melo DC, Osorio-Merchán MB, González-Duarte MA. Vigilancia Intensificada de 100 casos y contactos de Influenza y SARS CoV-2, en Meta, Tolima y Cundinamarca, Colombia, 2020. (Intensified public health surveillance for first 100 cases in Meta, Tolima, and Cundinamarca, Colombia, 2020). Zenodo; 2022.

- 17. Hsu C-Y, Wang J-T, Huang K-C, Fan AC-H, Yeh Y-P, Chen SL-S. Household transmission but without the community-acquired outbreak of COVID-19 in Taiwan. *Journal of the Formosan Medical Association = Taiwan yi zhi*. 2021;120 Suppl 1(9214933, blq):S38-S45. doi:https://dx.doi.org/10.1016/j.jfma.2021.04.021
- 18. Hu P, Ma M, Jing Q, et al. Retrospective study identifies infection related risk factors in close contacts during COVID-19 epidemic. *International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases*. 2021;103(c3r, 9610933):395-401. doi:https://dx.doi.org/10.1016/j.ijid.2020.12.011
- 19. Hu SX, Wang W, Wang Y, et al. Infectivity, susceptibility, and risk factors associated with SARS-CoV-2 transmission under intensive contact tracing in Hunan, China. *NATURE COMMUNICATIONS*. 2021;12(1)doi:10.1038/s41467-021-21710-6
- 20. Islam F, Alvi Y, Ahmad M, et al. An epidemiological Study to Assess Household Transmission & Associated Risk Factors for COVID-19 Disease amongst Residents of Delhi, India. Zenodo; 2022.
- 21. Jashaninejad R, Doosti-Irani A, Karami M, Keramat F, Mirzaei M. Transmission of COVID-19 and its Determinants among Close Contacts of COVID-19 Patients. *JOURNAL OF RESEARCH IN HEALTH SCIENCES*. 2021;21(2)doi:10.34172/jrhs.2021.48
- 22. Jeewandara C, Guruge D, Jayathilaka D, et al. Transmission dynamics, clinical characteristics and sero-surveillance in the COVID-19 outbreak in a population dense area of Colombo, Sri Lanka April- May 2020. *PLOS ONE*. 2021;16(11):e0257548. doi:10.1371/journal.pone.0257548
- 23. Jeong EK, Park O, Park YJ, et al. Coronavirus disease-19: Summary of 2,370 contact investigations of the first 30 cases in the Republic of Korea. *Osong Public Health and Research Perspectives*. 2020;11(2):81-84. doi:http://dx.doi.org/10.24171/j.phrp.2020.11.2.04
- 24. Jing Q-L, Liu M-J, Zhang Z-B, et al. Household secondary attack rate of COVID-19 and associated determinants in Guangzhou, China: a retrospective cohort study. *The Lancet Infectious diseases*. 2020;20(10):1141-1150. doi:https://dx.doi.org/10.1016/S1473-3099(20)30471-0
- 25. Choe YJ. Coronavirus disease-19: Summary of 2,370 Contact Investigations of the First 30 Cases in the Republic of Korea. 2020;
- 26. Koureas M, Speletas M, Bogogiannidou Z, et al. Transmission Dynamics of SARS-CoV-2 during an Outbreak in a Roma Community in Thessaly, Greece-Control Measures and Lessons Learned. *International journal of environmental research and public health*. 2021;18(6)doi:https://dx.doi.org/10.3390/ijerph18062878
- 27. Kuba Y, Shingaki A, Nidaira M, et al. The characteristics of household transmission during COVID-19 outbreak in Okinawa, Japan from February to May 2020. *Japanese journal of infectious diseases*. 2021;(dii, 100893704)doi:https://dx.doi.org/10.7883/yoken.JJID.2020.943
- 28. Kuwelker K, Zhou F, Blomberg B, et al. Attack rates amongst household members of outpatients with confirmed COVID-19 in Bergen, Norway: A case-ascertained study. *The Lancet regional health Europe*. 2021;3(101777707):100014. doi:https://dx.doi.org/10.1016/j.lanepe.2020.100014
- 29. Laxminarayan R, Wahl B, Dudala SR, et al. Epidemiology and transmission dynamics of COVID-19 in two Indian states. *SCIENCE*. 2020;370(6517):691-+. doi:10.1126/science.abd7672
- 30. Layan M, Gilboa M, Gonen T, et al. Impact of BNT162b2 vaccination and isolation on SARS-CoV-2 transmission in Israeli households: an observational study. *medRxiv*. 2021:2021.07.12.21260377. doi:10.1101/2021.07.12.21260377
- 31. Lewis NM, Chu VT, Ye D, et al. Household Transmission of SARS-CoV-2 in the United States. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America*. 2020;(a4j, 9203213)doi:https://dx.doi.org/10.1093/cid/ciaa1166
- 32. Li F, Li Y-Y, Liu M-J, et al. Household transmission of SARS-CoV-2 and risk factors for susceptibility and infectivity in Wuhan: a retrospective observational study. *The Lancet Infectious diseases*. 2021;21(5):617-628. doi:https://dx.doi.org/10.1016/S1473-3099(20)30981-6
- 33. Li W, Zhang B, Lu J, et al. Characteristics of Household Transmission of COVID-19. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America*. 2020;71(8):1943-1946. doi:https://dx.doi.org/10.1093/cid/ciaa450
- 34. Liu T, Liang WJ, Zhong HJ, et al. Risk factors associated with COVID-19 infection: a retrospective cohort study based on contacts tracing. *EMERGING MICROBES & INFECTIONS*. 2020;9(1):1546-1553. doi:10.1080/22221751.2020.1787799

- 35. Loenenbach A, Markus I, Lehfeld A-S, et al. SARS-CoV-2 variant B.1.1.7 susceptibility and infectiousness of children and adults deduced from investigations of childcare centre outbreaks, Germany, 2021. *Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin*. 2021;26(21)doi:https://dx.doi.org/10.2807/1560-7917.ES.2021.26.21.2100433
- 36. Luo L, Liu D, Liao X, et al. Contact Settings and Risk for Transmission in 3410 Close Contacts of Patients With COVID-19 in Guangzhou, China: A Prospective Cohort Study. *Annals of internal medicine*. 2020;173(11):879-887. doi:https://dx.doi.org/10.7326/M20-2671
- 37. Maltezou HC, Magaziotou I, Dedoukou X, et al. Children and Adolescents With SARS-CoV-2 Infection: Epidemiology, Clinical Course and Viral Loads. *The Pediatric infectious disease journal*. 2020;39(12):e388-e392. doi:https://dx.doi.org/10.1097/INF.000000000000002899
- 38. Marcato AJ, Black AJ, Walker J, et al. Learnings from the Australian First Few X Household Transmission Project for COVID-19. *medRxiv*. 2022;2022.01.23.22269031. doi:10.1101/2022.01.23.22269031
- 39. Marks M, Millat-Martinez P, Ouchi D, et al. Transmission of COVID-19 in 282 clusters in Catalonia, Spain: a cohort study. *The Lancet Infectious diseases*. 2021;21(5):629-636. doi:https://dx.doi.org/10.1016/S1473-3099(20)30985-3
- 40. Miller E, Waight PA, Andrews NJ, et al. Transmission of SARS-CoV-2 in the household setting: A prospective cohort study in children and adults in England. *J Infect*. Oct 2021;83(4):483-489. doi:10.1016/j.jinf.2021.07.037
- 41. Miyahara R, Tsuchiya N, Yasuda I, et al. Familial Clusters of Coronavirus Disease in 10 Prefectures, Japan, February-May 2020. *Emerging infectious diseases*. 2021;27(3):915-918. doi:https://dx.doi.org/10.3201/eid2703.203882
- 42. Mize V, Meagher N, Wamala J. South Sudan FFX Unity study for COVID-19. Zenodo; 2022.
- 43. Musa S, Kissling E, Valenciano M, et al. Household transmission of SARS-CoV-2: a prospective observational study in Bosnia and Herzegovina, August—December 2020. *International Journal of Infectious Diseases*. 2021/11/01/ 2021;112:352-361. doi:https://doi.org/10.1016/j.ijid.2021.09.063
- 44. Ng OT, Marimuthu K, Koh V, et al. SARS-CoV-2 seroprevalence and transmission risk factors among highrisk close contacts: a retrospective cohort study. *The Lancet Infectious diseases*. 2021;21(3):333-343. doi:https://dx.doi.org/10.1016/S1473-3099(20)30833-1
- 45. Nohynek H, Melin M, Solastie A, Dub T. Finland Household Unity study for COVID-19. Zenodo; 2022.
- 46. Park SY, Kim Y-M, Yi S, et al. Coronavirus Disease Outbreak in Call Center, South Korea. *Emerging infectious diseases*. 2020;26(8):1666-1670. doi:https://dx.doi.org/10.3201/eid2608.201274
- 47. Pett J, McAleavey P, McGurnaghan P, et al. Epidemiology of COVID-19 in Northern Ireland, 26 February 2020-26 April 2020. *Epidemiology and infection*. 2021;149(epi, 8703737):e36. doi:https://dx.doi.org/10.1017/S0950268821000224
- 48. Phucharoen C, Sangkaew N, Stosic K. The characteristics of COVID-19 transmission from case to high-risk contact, a statistical analysis from contact tracing data. *ECLINICALMEDICINE*. 2020;27doi:10.1016/j.eclinm.2020.100543
- 49. Pung R, Park M, Cook AR, Lee VJ. Age-related risk of household transmission of COVID-19 in Singapore. *Influenza and other respiratory viruses*. 2021;15(2):206-208. doi:https://dx.doi.org/10.1111/irv.12809
- 50. Ransom J, Lako R, Dulacha D, Joseph W, Olu OO. South Sudan Household Unity study for COVID-19. Zenodo; 2022.
- 51. Ratovoson R, Razafimahatratra R, Randriamanantsoa L, et al. Household transmission of COVID-19 among the earliest cases in Antananarivo, Madagascar. *Influenza Other Respir Viruses*. Jan 2022;16(1):48-55. doi:10.1111/irv.12896
- 52. Reukers DFM, van Boven M, Meijer A, et al. High infection secondary attack rates of SARS-CoV-2 in Dutch households revealed by dense sampling. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America*. 2021;(a4j, 9203213)doi:https://dx.doi.org/10.1093/cid/ciab237
- 53. Ripabelli G, Sammarco ML, Cannizzaro F, Montanaro C, Ponzio GV, Tamburro M. A Coronavirus Outbreak Linked to a Funeral Among a Romani Community in Central Italy. *Frontiers in medicine*. 2021;8(101648047):617264. doi:https://dx.doi.org/10.3389/fmed.2021.617264
- 54. Salihefendic N, Zildzic M, Huseinagic H, Ahmetagic S, Salihefendic D, Masic I. Intrafamilial Spread of COVID-19 Infection Within Population in Bosnia and Herzegovina. *Materia socio-medica*. 2021;33(1):4-9. doi:https://dx.doi.org/10.5455/msm.2021.33.4-9

- 55. Semakula M, Niragire F, Umutoni A, et al. The secondary transmission pattern of COVID-19 based on contact tracing in Rwanda. *BMJ global health*. 2021;6(6)doi:https://dx.doi.org/10.1136/bmjgh-2020-004885
- 56. Shah K, Kandre Y, Mavalankar D. Secondary attack rate in household contacts of COVID-19 Paediatric index cases: a study from Western India. *Journal of public health (Oxford, England)*. 2021;43(2):243-245. doi:https://dx.doi.org/10.1093/pubmed/fdaa269
- 57. Shah K, Desai N, Saxena D, Mavalankar D, Mishra U, Patel GC. Household Secondary Attack Rate in Gandhinagar district of Gujarat state from Western India. *medRxiv*. 2020:2020.09.03.20187336. doi:10.1101/2020.09.03.20187336
- 58. Shambel H, Alayu M, Tayachew A, et al. Ethiopia FFX Unity study for COVID-19. Zenodo; 2022.
- 59. Sharma DP, Singh DMM, Rao DS, et al. India MAMC Delhi FFX Unity study. Zenodo; 2022.
- 60. Son H, Lee H, Lee M, et al. Epidemiological characteristics of and containment measures for COVID-19 in Busan, Korea. *Epidemiology and health*. 2020;42(101519472):e2020035. doi:https://dx.doi.org/10.4178/epih.e2020035
- 61. Soriano-Arandes A, Gatell A, Serrano P, et al. Household SARS-CoV-2 transmission and children: a network prospective study. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America*. 2021;(a4i, 9203213)doi:https://dx.doi.org/10.1093/cid/ciab228
- 62. Sreedevi A, Satheesh M, Usha A. India AIIMS Kochi FFX Unity study. Zenodo; 2022.
- 63. Sun WW, Ling F, Pan JR, et al. [Epidemiological characteristics of COVID-19 family clustering in Zhejiang Province]. *Zhonghua yu fang yi xue za zhi* [Chinese journal of preventive medicine]. 2020;54(6):625-629. doi:https://dx.doi.org/10.3760/cma.j.cn112150-20200227-00199
- 64. Teherani MF, Kao CM, Camacho-Gonzalez A, et al. Burden of Illness in Households With Severe Acute Respiratory Syndrome Coronavirus 2-Infected Children. *JOURNAL OF THE PEDIATRIC INFECTIOUS DISEASES SOCIETY*. 2020;9(5):613-616. doi:10.1093/jpids/piaa097
- 65. Telle K, Jorgensen SB, Hart R, Greve-Isdahl M, Kacelnik O. Secondary attack rates of COVID-19 in Norwegian families: a nation-wide register-based study. *European journal of epidemiology*. 2021;(ere, 8508062)doi:https://dx.doi.org/10.1007/s10654-021-00760-6
- 66. Thiel SL, Weber MC, Risch L, et al. Flattening the curve in 52 days: characterisation of the COVID-19 pandemic in the Principality of Liechtenstein an observational study. *Swiss medical weekly*. 2020;150(d10, 100970884):w20361. doi:https://dx.doi.org/10.4414/smw.2020.20361
- 67. Tibebu S, A. Brown K, Daneman N, Paul LA, Buchan SA. Household secondary attack rate of COVID-19 by household size and index case characteristics. *medRxiv*. 2021:2021.02.23.21252287. doi:10.1101/2021.02.23.21252287
- 68. Tippett Barr BA, Herman-Roloff A. Kenya Table Unity Studies FFX. Zenodo; 2022.
- 69. Walker JG, Tskhomelidze I, Trickey A, et al. Epidemiology and transmission of COVID-19 in cases and close contacts in Georgia in the first four months of the epidemic. *medRxiv*. 2021:2021.03.22.21254082. doi:10.1101/2021.03.22.21254082
- 70. Wang Y, Tian HY, Zhang L, et al. Reduction of secondary transmission of SARS-CoV-2 in households by face mask use, disinfection and social distancing: a cohort study in Beijing, China. *BMJ GLOBAL HEALTH*. 2020;5(5)doi:10.1136/bmjgh-2020-002794
- 71. Wang Z, Ma W, Zheng X, Wu G, Zhang R. Household transmission of SARS-CoV-2. *The Journal of infection*. 2020;81(1):179-182. doi:https://dx.doi.org/10.1016/j.jinf.2020.03.040
- 72. Wei L, Lv Q, Wen Y, et al. Household transmission of COVID-19, Shenzhen, January-February 2020. *medRxiv*. 2020:2020.05.11.20092692. doi:10.1101/2020.05.11.20092692
- 73. Wilkinson K, Chen X, Shaw S. Secondary attack rate of COVID-19 in household contacts in the Winnipeg Health Region, Canada. *Canadian journal of public health = Revue canadienne de sante publique*. 2021;112(1):12-16. doi:https://dx.doi.org/10.17269/s41997-020-00451-x
- 74. Wu J, Huang Y, Tu C, et al. Household Transmission of SARS-CoV-2, Zhuhai, China, 2020. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America*. 2020;71(16):2099-2108. doi:https://dx.doi.org/10.1093/cid/ciaa557
- 75. Wu P, Liu F, Chang Z, et al. Assessing asymptomatic, pre-symptomatic and symptomatic transmission risk of SARS-CoV-2. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America*. 2021;(a4j, 9203213)doi:https://dx.doi.org/10.1093/cid/ciab271

- 76. Wu Y, Song S, Kao Q, Kong Q, Sun Z, Wang B. Risk of SARS-CoV-2 infection among contacts of individuals with COVID-19 in Hangzhou, China. *Public health*. 2020;185(qi7, 0376507):57-59. doi:https://dx.doi.org/10.1016/j.puhe.2020.05.016
- 77. Xie W, Chen ZH, Wang Q, et al. Infection and disease spectrum in individuals with household exposure to SARS-CoV-2: A family cluster cohort study. *JOURNAL OF MEDICAL VIROLOGY*. 2021;93(5):3033-3046. doi:10.1002/jmv.26847
- 78. Yadav DK, Subhashini D, Kant DS. India AIIMS Delhi FFX Unity study. Zenodo; 2022.
- 79. Yi B, Fen G, Cao D, et al. Epidemiological and clinical characteristics of 214 families with COVID-19 in Wuhan, China. *International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases*. 2021;105(c3r, 9610933):113-119. doi:https://dx.doi.org/10.1016/j.ijid.2021.02.021
- 80. Yi C, Aihong W, Bo Y, et al. Epidemiological characteristics of infection in COVIU-19 close contacts in Ningbo city. *Chinese Journal of Endemiology*. 2020;41(5):667-671. doi:10.3760/cma.j.cn112338-20200304-00251
- 81. The World Bank. World Bank Country and Lending Groups

6th December, 2021. Accessed 6th December, 2021.

https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups

82. CoVariants. Overview of Variants in Countries

23rd February 2022. https://covariants.org/per-country

83. GISAID. https://www.gisaid.org/