Supplementary Materials for "Immune Correlates Analysis of a Single Ad26.COV2.S Dose in the

ENSEMBLE COVID-19 Vaccine Efficacy Clinical Trial" by Fong et al.

Immune Assays Team

Affiliation	Team Members
Biomedical Advanced Research and Development Authority (BARDA), Washington, DC	Oleg Borisov, Flora Castellino, Brett Chromy, Mark Delvecchio, Ruben O. Donis, Tremel Faison, Corey Hoffman, Christopher Houchens, Tom Hu, Pennie Hylton, Lakshmi Jayashankar, Aparna Kolhekar, James Little, Karen Martins, Jeanne Novak, Azhar Ravji, Carol Sabourin, Evan Sturtevant, Kimberly Taylor, Xiaomi Tong, John Treanor, Danielle Turley, Leah Watson, Daniel Wolfe
Boston Consulting Group, Boston, MA	Gian King, Andrew Li, Najaf Shah, Smruthi Suryaprakash, Jue Xiang Wang
Division of AIDS, NIAID, NIH, Bethesda, MD	Patricia D'Souza
Division of MID (Microbiology and Infectious Diseases), NIAID, NIH, Bethesda, MD	Janie Russell
Duke University, Durham, NC	David Beaumont, Kendall Bradley, Jiayu Chen, Xiaoju Daniell, Thomas Denny, Elizabeth Domin, Amanda Eaton, Kelsey Engel, Wenhong Feng, Juanfei Gao, Hongmei Gao, Kelli Greene, Sarah Hiles, Leihua Liu, Kristy Long, Kellen Lund, Charlene McDanal, David C. Montefiori, Marcella Sarzotti- Kelsoe, Francesca Suman, Haili Tang, Jin Tong, Olivia Widman
LabCorp-Monogram Biosciences, South San Francisco, CA, USA	Christos J. Petropoulos, Terri Wrin
The Tauri Group, an LMI company - Contract Support for U.S. Department of Defense (DOD) Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND) Joint Project Manager for Chemical, Biological, Radiological, and Nuclear Medical (JPM CBRN Medical), Fort Detrick, Maryland, USA	Christopher S. Badorrek, Gregory E. Rutkowski
Vaccine Research Center, NIAID, NIH, Bethesda, MD	Obrimpong Amoa-Awua, Manjula Basappa, Robin Carroll, Britta Flach, Suprabhath Gajjala, Nazaire Jean-Baptiste, Richard A. Koup, Bob C. Lin, Adrian McDermott, Christopher Moore, Mursal Naisan, Muhammed Naqvi, Sandeep Narpala, Sarah O'Connell, Clare Whittaker, Weiwei Wu, Allen Mueller, Martin Apgar, Tommy Bruington, Joe Stashick, Leo Serebryannyy, Mike Castro, Jennifer Wang

Janssen Team

Affiliation	Team Members
Janssen R&D, a division of Janssen	Sanne Roels, An Vandebosch, Carla Truyers, Frank Struyf
Pharmaceutica NV, Beerse, Belgium	
Janssen Vaccines and Prevention, Leiden, the	Daniel J. Stieh, Mathieu Le Gars, Griet A. Van Roey, Jerald
Netherlands	Sadoff, Jenny Hendriks, Hanneke Schuitemaker, Macaya
	Douoguih

Study Group Member	Affiliation	Location
Jerald Sadoff, M.D.	Janssen Vaccines and Prevention	Leiden, the Netherlands
Glenda Gray, M.B., B.Ch.	South African Research Council	Cape Town, South Africa
An Vandebosch, Ph.D.	Janssen Research and Development	Beerse, Belgium
Vicky Cárdenas, Ph.D.	Janssen Research and Development	Spring House, PA, USA
Georgi Shukarev, M.D.	Janssen Vaccines and Prevention	Leiden, the Netherlands
Beatriz Grinsztejn, M.D.	Evandro Chagas National Institute of Infectious Diseases–Fiocruz	Rio de Janeiro, Brazil
Paul A. Goepfert, M.D.	University of Alabama at Birmingham	Birmingham, AL, USA
Carla Truyers, Ph.D.	Janssen Research and Development	Beerse, Belgium
Hein Fennema, Ph.D.	Janssen Research and Development	Beerse, Belgium
Bart Spiessens, Ph.D.	Janssen Research and Development	Beerse, Belgium
Kim Offergeld, M.Sc.	Janssen Research and Development	Beerse, Belgium
Gert Scheper, Ph.D.	Janssen Vaccines and Prevention	Leiden, the Netherlands
Kimberly L. Taylor, Ph.D.	National Institute of Allergy and Infectious Diseases	Rockville, MD, USA
Merlin L. Robb, M.D.	Walter Reed Army Institute of Research	Silver Spring, MD, USA
John Treanor, M.D.	Biomedical Advanced Research and Development Authority	Washington, DC, USA
Dan H. Barouch, M.D.	Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center	Boston, MA, USA
Jeffrey Stoddard, M.D.	Janssen Research and Development	Raritan, NJ, USA
Martin F. Ryser, M.D.	Janssen Research and Development	Beerse, Belgium
Mary A. Marovich, M.D.	National Institute of Allergy and Infectious Diseases	Rockville, MD, USA
Kathleen M. Neuzil, M.D.	Center for Vaccine Development and Global Health, University of Maryland School of Medicine	Baltimore, MD, USA
Lawrence Corey, M.D.	Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center	Seattle, WA, USA
Nancy Cauwenberghs, Ph.D.	Janssen Research and Development	Beerse, Belgium
Tamzin Tanner, Ph.D.	Janssen Research and Development	Beerse, Belgium
Karin Hardt, Ph.D.	Janssen Research and Development	Beerse, Belgium

Coronavirus Vaccine Prevention Network (CoVPN)/ENSEMBLE Team

Javier Ruiz-Guiñazú, M.D.	Janssen Research and Development	Beerse, Belgium
Mathieu Le Gars, Ph.D.	Janssen Vaccines and Prevention	Leiden, the Netherlands
Hanneke Schuitemaker, Ph.D.	Janssen Vaccines and Prevention	Leiden, the Netherlands
Johan Van Hoof, M.D.	Janssen Vaccines and Prevention	Leiden, the Netherlands
Frank Struyf, M.D.	Janssen Research and Development	Beerse, Belgium
Macaya Douoguih, M.D.	Janssen Vaccines and Prevention	Leiden, the Netherlands
Richard Gorman, MD	Biomedical Advanced Research and Development Authority (BARDA)	Washington, DC, USA
Carmen A. Paez, MD, MBA	Fred Hutchinson Cancer Research Center	Seattle, WA, USA
Edith Swann, PhD	National Institute of Allergy and Infectious Diseases (NIAID)	Rockville, MD, USA
James Kublin, MD, MPH	Fred Hutchinson Cancer Research Center	Seattle, WA, USA
Simbarashe G. Takuva, MBChB, MSc	Fred Hutchinson Cancer Research Center; University of the Witwatersrand; University of Pretoria	Seattle, WA, USA; Johannesburg, South Africa; Pretoria, South Africa
Alex Greninger, MD, PhD, MS, MPhil	University of Washington; Fred Hutchinson Cancer Research Center	Seattle, WA, USA
Pavitra Roychoudhury, PhD	University of Washington; Fred Hutchinson Cancer Research Center	Seattle, WA, USA
Robert W. Coombs, MD, PhD	University of Washington	Seattle, WA, USA
Keith R. Jerome, MD, PhD	University of Washington; Fred Hutchinson Cancer Research Center	Seattle, WA, USA
Flora Castellino, MD	Biomedical Advanced Research and Development Authority (BARDA)	Washington, DC, USA
Xiaomi Tong, PhD	Biomedical Advanced Research and Development Authority (BARDA)	Washington, DC, USA
Corrina Pavetto, MS, RAC	Biomedical Advanced Research and Development Authority (BARDA)	Washington, DC, USA
Teletha Gipson, PhD, MS	Biomedical Advanced Research and Development Authority (BARDA)	Washington, DC, USA
Tina Tong, DrPH(c), MS, RAC(US)	National Institute of Allergy and Infectious Diseases (NIH/NIAID)	Rockville, MD, USA
Marina Lee, PhD	National Institute of Allergy and Infectious Diseases (NIH/NIAID)	Rockville, MD, USA
James Zhou, PhD, MS	Biomedical Advanced Research and Development Authority (BARDA)	Washington, DC, USA
Michael Fay, PhD	National Institute of Allergy and Infectious Diseases (NIH/NIAID)	Rockville, MD, USA

Kelly McQuarrie, BSN	Janssen Research & Development	Horsham, PA, USA
Chimeremma Nnadi, MD, PhD	Janssen Pharmaceuticals	Titusville, NJ, USA
Obiageli Sogbetun, MD, MPH	Janssen Infectious Disease and Vaccines	Titusville, NJ, USA
Nina Ahmad, MD	Janssen Pharmaceuticals	Titusville, NJ, USA
Ian De Proost, PhD	Johnson & Johnson	Beerse, Belgium
Cyrus Hoseyni, PhD	Janssen Research & Development	Spring House, PA, USA
Paul Coplan, ScD, MS, MBA	Johnson & Johnson Epidemiology	New Brunswick, NJ, USA
Najat Khan, PhD	Janssen Research & Development	New Brunswick, NJ, USA
Peter Ronco, BA	Janssen Research & Development	Raritan, NJ, USA
Dawn Furey, BA	Janssen Research & Development	Titusville, NJ, USA
Jodi Meck, MHA	Janssen Research & Development	Titusville, NJ, USA
Johan Vingerhoets, PhD	Janssen Pharmaceutica NV	Beerse, Belgium
Boerries Brandenburg, PhD	Janssen Vaccines & Prevention B.V.	Leiden, The Netherlands
Jerome Custers, PhD	Janssen Vaccines & Prevention B.V.	Leiden, The Netherlands
Jenny Hendriks, PhD	Janssen Vaccines & Prevention B.V.	Leiden, The Netherlands
Jarek Juraszek, PhD	Janssen Vaccines & Prevention B.V.	Leiden, The Netherlands
Anne Marit de Groot, PhD	Janssen Vaccines & Prevention B.V.	Leiden, The Netherlands
Griet Van Roey, PhD	Janssen Vaccines & Prevention B.V.	Leiden, The Netherlands
Dirk Heerwegh, PhD	Janssen Research & Development; Janssen	Beerse, Belgium
Ilse Van Dromme, PhD	Johnson & Johnson	Beerse, Belgium

CoVPN/ENSEMBLE Team, Cont'd: Participating Investigators

The following Principal Investigators participated in the ENSEMBLE study:

Name	Institute	Location
Aberg, Judith	Icahn School of Medicine at Mount Sinai	New York, NY, USA
Adams, Mark	Central Kentucky Research Associates, Inc.	Lexington, KY, USA
Adams, Michael	Synexus Clinical Research US, Inc.	Murray, UT, USA
Aguayo, Samuel	VA Medical Center	Phoenix, AZ, USA
Ahsan, Habibul	The University of Chicago Medicine	Chicago, IL, USA
Aizenberg, Diego	Centro Médico Viamonte SRL	Buenos Aires, Argentina
Alonto, Augusto	Jesse Brown VAMC Department of Surgery	Chicago, IL, USA
Alzogaray, Maria Fernanda	Instituto Médico Platense	Buenos Aires, Argentina
Anderson, Evan	Emory University School of Medicine	Atlanta, GA, USA
Andrade Pinto, Jorge	Hospital das Clínicas da Universidade Federal de Minas Gerais	Belo Horizonte, Brazil
Arns da Cunha, Clóvis	Hospital Nossa Senhora das Graças	Paraná, Brazil
Avelino Silva, Vivian	Hospital das Clínicas da Faculdade de Medicina da USP	São Paulo, Brazil
Badal-Faesen, Sharlaa	University of Witwatersrand – Helen Joseph Hospital – Themba Lethu HIV Research Centre	Johannesburg, South Africa
Baden, Lindsey	Brigham and Women's Hospital, Inc.	Boston, MA, USA
Barnabas, Shaun	Family Clinical Research Unit FAM-CRU	Western Cape, South Africa
Bedimo, Roger	AIDS Arms Incorporated Trinity Health and Wellness Center	Dallas, TX, USA
Bekker, Linda-Gail	Desmond Tutu HIV Centre, University of Cape Town	Cape Town, South Africa
Berhe, Mezgebe	North Texas Infectious Diseases Consultants	Dallas, TX, USA
Bessesen, Mary	Rocky Mountain Regional VA Medical Center	Aurora, CO, USA
Blaser, Martin J	Rutgers Robert Wood Johnson Medical School	New Brunswick, NJ, USA
Bonvehi, Pablo Eduardo	CEMIC Saavedra	Buenos Aires, Argentina
Borger, Judith	Carolina Institute for Clinical Research	Fayetteville, NC, USA

Brites Alves, Carlos Roberto	Fundação Bahiana de Infectologia	Bahia, Brazil
Brown, Sheldon	Bronx Veterans Affairs Medical Center	Bronx, NY, USA
Brumskine, William	The Aurum Institute Rustenburg Clinical Research Centre	Rustenburg, South Africa
Brune, Daniel	Optimal Research, LLC	Peoria, IL, USA
Buynak, Robert	Buynak Clinical Research	Valparaiso, IN, USA
Cabrera May, Carlos Antonio	Unidad de Atención Médica e Investigación en Salud (UNAMIS)	Yucatán, Mexico
Cadena Bonfanti, Andres Angelo	Clínica de la Costa	Barranquilla, Colombia
Cahn, Pedro	Fundación Huésped	Buenos Aires, Argentina
Carson, Jeffrey L.	Rutgers Robert Wood Johnson Medical School	New Brunswick, NJ, USA
Casapia Morales, Wilfredo Martin	Asociación Civil Selva Amazónica (ACSA)	Loreto, Peru
Cassetti, Lidia Isabel	Helios Salud S.A.	Buenos Aires, Argentina
Castex, Julie	Ochsner Medical Center	New Orleans, LA, USA
Chu, Laurence	Benchmark Research	Austin, TX, USA
Cotugno, Michael	Benchmark Research	Metairie, LA, USA
Creech, Clarence	Vanderbilt University Medical Center	Nashville, TN, USA
Crofoot, Gordon	CrofootMD Clinic and Research Center	Houston, TX, USA
Curtis, Brian	Corvallis Clinic PC	Corvallis, OR USA
da Silva Pilotto, José Henrique	Hospital Geral de Nova Igauçu	Rio de Janeiro, Brazil
Dal Ben Corradi, Mirian de Freitas	Hospital Sírio-Libanês	São Paulo, Brazil
Dal Pizzol, Felipe	Hospital São José	Santa Catarina, Brazil
Davis, Matthew	Rochester Clinical Research, Inc.	Rochester, NY, USA
De Carvalho Santana, Rodrigo	Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto daUSP	São Paulo, Brazil
de Faria Freire, Antônio Tarcísio	Santa Casa de Misericórdia de Belo Horizonte	Belo Horizonte, Brazil
DeJesus, Edwin	Orlando Immunology Center	Orlando, FL, USA
Delafontaine, Patrice	New Orleans Adolescent Trials Unit CRS	New Orleans, LA, USA
Delano Bronstein, Marcello	CPQuali Pesquisa Clínica LTDA ME	São Paulo, Brazil
Dell'Italia, Louis	University of Alabama at Birmingham	Birmingham, AL, USA

Deluca, Mercedes	Clinical Trials Division – Stamboulian Servicios de Salud	Buenos Aires, Argentina
Denham, Douglas	Clinical Trials of Texas, Inc.	San Antonio, TX, USA
Diacon, Andreas	TASK Central	Western Cape, South Africa
Dubula, Thozama	Nelson Mandela Academic Clinical Research Unit (NeMACRU)	Mthatha, South Africa
Eder, Frank	Meridian Clinical Research, LLC	Endwell, NY, USA
Edupuganti, Srilatha	The Hope Clinic at Emory University	Decatur, GA, USA
Ervin, John	The Center for Pharmaceutical Research	Kansas City, MO, USA
Esteves Coelho, Lara	FIO CRUZ – Fundação Oswaldo Cruz – Inst de Pesquisa Clínica Evandro Chagas	Rio de Janeiro, Brazil
Eudes Leal, Fabio	Universidade Municipal de São Caetano do Sul	São Paulo, Brazil
Fairlie, Lee	Shandukani Research Centre	Gauteng, South Africa
Fierro, Carlos	Johnson County Clin-Trials	Lenexa, KS, USA
Fogarty, Charles	Spartanburg Medical Research	Spartanburg, SC, USA
Fragoso, Veronica	Texas Center for Drug Development, Inc.	Houston, TX, USA
Frank, Ian	University of Pennsylvania	Philadelphia, PA, USA
Frey, Sharon	Saint Louis University	St Louis, MO, USA
Gallardo Cartagena, Jorge	Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales (CITBM)	Lima, Peru
Gamarra Ayarza, Cesar Augusto	Centro de Investigaciones Médicas	Callao, Peru
Garcia Diaz, Julia	Ochsner Medical Center	New Orleans, LA, USA
Gaur, Aditya	St Jude Children's Research Hospital	Memphis, TN, USA
Gentile, Nina	Temple University Hospital	Philadelphia, PA, USA
Gill, Katherine	Masiphumelele Research Centre	Cape Town, South Africa
Gonzalez, Alexander	MedPlus Medicina Prepagadá S.A.	Bogotá, Colombia
Gottlieb, Robert	Baylor Scott & White Research Institute	Dallas, TX, USA
Grant, Philip	Stanford University Medical Center	Palo Alto, CA, USA
Greenberg, Richard	University of Kentucky	Lexington, KY, USA
Greiwe, Cathy	Synexus Clinical Research US, Inc.	Columbus, OH, USA

Guedes Barbosa, Luiz Sergio	Oncovida – Centro de Onco-Hematologia de Mato Grosso	Mato Grosso, Brazil
Han-Conrad, Laurie	WR-MCCR, LCC	San Diego, CA, USA
Hidalgo Vidal, Jose Alfredo	Asociación Civil Vía Libre	Lima, Peru
Higuera Cobos, Juan Diego	Fundación Oftalmológica de Santander – FOSCAL	Santander, Colombia
Hong, Matthew	Wake Research Associates	Raleigh, NJ, USA
Innes, James Craig	The Aurum Institute Klerksdorp Clinical Research Centre	Klerksdorp, South Africa
Jackson, Lisa	Kaiser Permanente Washington Health Research Institute	Seattle, WA, USA
Jackson-Booth, Peta-Gay	Optimal Research, LLC	Rockville, MD, USA
Jaller Raad, Juan Jose	Centro de Reumatología y Ortopedia	Barranquilla, Colombia
Jayaweera, Dushyantha	University of Miami – Miller School of Medicine	Miami, FL, USA
Jennings, William	Synexus Clinical Research US, Inc.	San Antonio, TX, USA
João Filho, Esaú Custódio	Hospital Federal dos Servidores do Estado	Rio de Janeiro, Brazil
Kassim, Sheetal	Desmond Tutu HIV Foundation – University of Cape Town	Cape Town, South Africa
Kennelly, Christina	Tryon Medical Partners	Charlotte, NC, USA
Khetan, Shishir	Meridian Clinical Research, LLC	Rockville, MD, USA
Kilgore, Paul E.	Henry Ford Health System	Detroit, MI, USA
Kim, Kenneth	Ark Clinical Research	Long Beach, CA, USA
Kirby, William	Synexus Clinical Research US, Inc.	Birmingham, AL, USA
Kopp, James	Synexus Clinical Research US, Inc.	Anderson, SC, USA
Kotze, Philip	Qhakaza Mbokodo Research Clinic	KwaZulu-Natal, South Africa
Kotze, Sheena	Stanza Clinical Research Centre: Mamelodi	Gauteng, South Africa
Kriesel, John	University of Utah	Salt Lake City, UT, USA
Kutner, Mark	Suncoast Research Group	Miami, FL, USA
Lacerda Nogueira, Maurício	Fundação Faculdade Regional de Medicina de São José do Rio Preto	São Paulo, Brazil
Laher, Fatima	Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital	Gauteng, South Africa
Lama Valdivia, Javier Ricardo	Asociación Civil Impacta Salud y Educación – Barranco	Lima, Peru
Lazarus, Erica	Perinatal HIV Research Unit (PHRU), Kliptown	Soweto, South Africa

Lazcano Ponce, Eduardo Cesar	Instituto Nacional de Salud Pública	Morelos, Mexico
Leibman, Daniel	VA Medical Center	Columbia, SC, USA
Levin, Michael	Clinical Research Center of Nevada	Las Vegas, NV, USA
Levin, Myron	Children's Hospital Colorado	Aurora, CO, USA
Little, Susan	UCSD AntiViral Research Center (AVRC)	San Diego, CA, USA
Lombaard, Johannes	Josha Research	Bloemfontein, South Africa
Lopez Medina, Eduardo	Centro de Investigaciones Clínicas S.A.S.	Cali, Colombia
Losso, Marcelo	Hospital J.M. Ramos Mejía	Buenos Aires, Argentina
Luabeya, Angelique	SATVI, Brewelskloof Hospital	Western Cape, South Africa
Lucksinger, Gregg	Clinical Research Institute of Southern Oregon, P.C.	Medford, OR, USA
Lugogo, Njira	University of Michigan Neurosurgery A. Alfred Taubman Health CareCenter	Ann Arbor, MI, USA
Luz, Kleber Giovanni	Centro de Estudos e Pesquisas em Moléstias Infecciosas	Rio Grande do Norte, Brazil
Maboa, Rebone	Ndlovu Elandsdoorn Site	Limpopo, Dennilton, South Africa
Macareno Arroyo, Hugo Andres	Hospital Universidad del Norte	Barranquilla, Colombia
Makhaza, Disebo	CAPRISA Vulindlela Clinic	KwaZulu-Natal, South Africa
Malahleha, Mookho	Setshaba Research Centre	Soshanguve, South Africa
Malan, Daniel	PHOENIX Pharma (Pty) Ltd.	Eastern Cape, South Africa
Mamba, Musawenkosi	CRISMO Bertha Gxowa Research Centre	Gauteng, South Africa
Manning, Mary Beth	Rapid Medical Research	Cleveland, OH, USA
Martin, Judith	University of Pittsburgh	Pittsburgh, PA, USA
Mauricio da Silva, Cesar	Faculdade de Medicina Barretos – FACISB	Barretos, SP, Brazil
McGettigan, John	Quality of Life Medical & Research Center, LLC	Tucson, AZ, USA
Medrano Allende, Juan	Clínica y Maternidad Suizo Argentina	Buenos Aires, Argentina
Mena, Leandro	University of Mississippi Medical Center	Jackson, MS, USA
Messer, William	Oregon Health & Science University	Portland, OR, USA
Middleton, Randle	Optimal Research, LLC	Huntsville, AL, USA

Mills, Anthony	Anthony Mills Medical, Inc.	Los Angeles, CA, USA
Mills, Richard	PMG Research of Charleston, LLC	Mount Pleasant, SC, USA
Mngadi, Kathryn	The Aurum Institute: Tembisa – Clinic 4	Tembisa, South Africa
Moanna, Abeer	VA Medical Center – Atlanta	Decatur, GA, USA
Mofsen, Ricky	Massachusetts General Hospital	Boston, MA, USA
Moncada Vilela, Zandra	Hospital Nacional Arzobispo Loayza	Lima, Peru
Montaña, Oscar Romano	DIM Clínica Privada	Buenos Aires, Argentina
Moreno Hoyos Abril, Juan	Hospital Universitario de Nuevo León 'Dr. José Eleuterio González'	Nuevo León, Mexico
Morse, Caryn	Wake Forest Baptist Medical Center	Winston-Salem, NC, USA
Muñoz Reyes, Manuel	Hospital Dr. Hernán Henríquez Aravena	Araucanía, Chile
Murray, Linda	Synexus Clinical Research US, Inc.	Pinellas Park, FL, USA
Naicker, Nivashnee	Centre for the AIDS Programme of Research in South Africa	KwaZulu-Natal, South Africa
Naicker, Vimla	South Africa Medical Research Council	KwaZulu-Natal, South Africa
Naidoo, Logashvari	South African Medical Research Council Chatsworth Clinical ResearchSite	KwaZulu-Natal, South Africa
Nchabeleng, Maphoshane	MeCRU Clinical Research Unit	Gauteng, South Africa
Newman Lobato Souza, Tamara	Instituto de Infectologia Emilio Ribas	São Paulo, Brazil
Novak, Richard	University of Illinois at Chicago	Chicago, IL, USA
Nugent, Paul	Synexus Clinical Research US, Inc.	Cincinnati, OH, USA
O'Ryan Gallardo, Miguel Luis	Facultad de Medicina, Universidad de Chile	Santiago, Chile
Oyanguren Miranda, Martin	Hospital Nacional Edgardo Rebagliati Martins	Lima, Peru
Padala, Kalpana	Central Arkansas Veterans Healthcare System	Little Rock, AR, USA
Panettieri, Jr., Reynold A.	Rutgers Robert Wood Johnson Medical School	New Brunswick, NJ, USA
Panjwani, Sameer G.	Rush University Medical Center	Chicago, IL, USA
Patelli Juliani Souza Lima, Maria	Hospital e Maternidade Celso Pierro	São Paulo, Brazil
Pelkey, Leslie	Cherry Street Services, Inc.	Grand Rapids, MI, USA
Petrick, Friedrich	Mzansi Ethical Research Centre	Middelburg, South Africa
Pounds, Kevin	Synexus Clinical Research US, Inc.	Tucson, AZ, USA

Powell, Richard	New Horizons Clinical Research	Cincinnati, OH, USA
Pragalos, Antoinette	CTI Clinical Trial and Consulting Services	Cincinnati, OH, USA
Pratley, Richard E.	AdventHealth Orlando	Orlando, FL, USA
Presti, Rachel	Washington University School of Medicine	St Louis, MO, USA
Ramalho Madruga, José Valdez	Centro de Referência e Treinamento DST/AIDS	São Paulo, Brazil
Ramesh, Mayur	Henry Ford Health System	Detroit, MI, USA
Ramirez Sanchez, Isabel Cristina	Hospital Pablo Tobón Uribe	Antioquia, Colombia
Ramirez, Julio	University of Louisville	Louisville, KY, USA
Rankin, Bruce	Avail Clinical Research, LLC	DeLand, FL, USA
Restrepo, Jaime	Fundación Centro de Investigación Cliníca (CIC)	Medellín, Colombia
Reynales Londono, Humberto	Centro de Atención e Investigación Médica S.A. – CAIMED	Bogotá, Colombia
Reynolds, Michele	Synexus Clinical Research US, Inc.	Dallas, TX, USA
Rhame, Frank	Abbott Northwestern Hospital Clinic	Minneapolis, MN, USA
Rhee, Margaret	Synexus Clinical Research US, Inc.	Akron, OH, USA
Riddle, Mark	VA Sierra Nevada Health Care System	Reno, NV, USA
Riegel Santos, Breno	Hospital Nossa Senhora da Conceição (HNSC)	Rio Grande do Sul, Brazil
Riffer, Ernie	Central Phoenix Medical Clinic	Phoenix, AZ, USA
Rizzardi, Barbara	Advanced Clinical Research	West Jordan, UT, USA
Rosso, Fernando	Fundación Valle del Lili	Valle del Cauca, Colombia
Saavedra, Carla	Bioclinica Santiago Bulnes	Santiago, Chile
Safirstein, Beth	MD Clinical	Hallandale Beach, FL, USA
Scapellato, Pablo	CEMEDIC	Buenos Aires, Argentina
Scheinberg, Phillip	Real e Benemérita Associação Portuguesa de Beneficência	São Paulo, Brazil
Schwartz, Howard	Research Centers of America, LLC	Hollywood, FL, USA
Sedillo, David J.	Rush University Medical Center	Chicago, IL, USA
Servilla, Karen	Raymond G. Murphy VA Medical Center	Albuquerque, NM, USA
Shah, Raj	Rush University Medical Center	Chicago, IL, USA

Siegel, Amy	MediSync Clinical Research	Petal, MS, USA
Silva Orellana, Rafael	Clínica del Maule	Talca, Chile
Silva, Federico	Fundación Cardiovascular de Colombia – Instituto del Corazón Floridablanca	Floridablanca, Colombia
Smith, Steven R.	AdventHealth Orlando	Orlando, FL, USA
Spooner, Elizabeth	South Africa Medical Research Council	KwaZulu-Natal, South Africa
Sprinz, Eduardo	Hospital de Clínicas de Porto Alegre	Porto Alegre, Brazil
Sriram, Peruvemba	North Florida/South Georgia Veterans Health System	Gainesville, FL, USA
Strout, Cynthia	Coastal Carolina Research Center, Inc.	Mount Pleasant, SC, USA
Swiatlo, Edwin	Southeast Louisiana Veterans Health Care System	New Orleans, LA, USA
Taiwo, Babafemi	Northwestern University	Evanston, IL, USA
Talwani, Rohit	Baltimore VA Medical Center	Baltimore, MD, USA
Tavares Russo, Luís Augusto	Instituto Brasil de Pesquisa Clínica	Rio de Janeiro, Brazil
Terront Lozano, Monica Alexandra	Solano y Terront Servicios Médicos Ltda	Bogotá, Colombia
Tharenos, Leslie	Synexus Clinical Research US, Inc.	St Louis, MO, USA
Tien, Phyllis	VA Medical Center	San Francisco, CA, USA
Tieu, Hong Van	New York Blood Center	New York, NY, USA
Toney, John	James A. Haley VA Hospital GNS	Tampa, FL, USA
Urbach, Dorothea	Synexus Helderberg Clinical Research Centre	Western Cape, South Africa
Vachris, Timothy	Optimal Research, LLC	Austin, TX, USA
Valencia, Javier	Asociación Civil Impacta Salud y Educación – San Miguel CRS	Lima, Peru
van Nieuwenhuizen, Elane	Synexus Watermeyer	Gauteng, South Africa
Vannucci Lomonte, Andrea	CEPIC – Centro Paulista de Investigação Clínica	São Paulo, Brazil
Vasconcellos, Eduardo	Instituto de Pesquisas Clínicas	Distrito Federal, Brazil
Velez, Ivan Dario	Programa de Estudio y Control de Enfermedades Tropicales	Medellín, Colombia
Ward, Amy	University of Cape Town IDM/CIDRI Research Site	Cape Town, South Africa
Wells, Cassia	Harlem Hospital Center	New York, NY, USA

White, Judith	Synexus Clinical Research US, Inc.	Orlando, FL, USA
Winkle, Peter	Anaheim Clinical Trials, LLC	Anaheim, CA, USA
Woods, Christopher	Durham VAMC	Raleigh, NC, USA
Zaidman, Cesar Javier	CIPREC	Buenos Aires, Argentina

Affiliation	Team Members
Biomedical Advanced Research and	Di Lu, James Zhou
Development Authority (BARDA),	
Washington, DC	
Department of Biostatistics and	David Benkeser, Sohail Nizam
Bioinformatics, Rollins School of	
Public Health, Emory University	
Vaccine and Infectious Disease	Jessica Andriesen, Bhavesh Borate, Lindsay N. Carpp, Andrew Fiore-
Division, Fred Hutchinson Cancer	Gartland, Youyi Fong*, Peter B. Gilbert*, Ying Huang*, Yunda Huang*,
Center, Seattle, WA	Ellis Hughes, Ollivier Hyrien, Holly E. Janes*, Michal Juraska, Yiwen Lu,
	April K. Randhawa, Brian Simpkins, Brian D. Williamson*, Lars W.P.
	van der Laan, Chenchen Yu
Biostatistics Research Branch,	Michael P. Fay, Dean Follmann, Martha Nason
NIAID, NIH, Bethesda, MD	
Department of Biostatistics,	Marco Carone, Avi Kenny, Kendrick Li, Wenbo Zhang
University of Washington, Seattle,	
WA	
Department of Statistics, University	Alex Luedtke
of Washington, Seattle, WA	
Division of Biostatistics, School of	Nima S. Hejazi
Public Health, Department of	
Population Health Sciences, Weill	
Cornell Medicine, New York, New	
York	
Department of Population Health	Iván Díaz
Sciences, Weill Cornell Medical	
College, New York, New York	

United States Government (USG)/Coronavirus Prevention Network (CoVPN) Biostatistics Team

*YF, PBG, YiH, and HEJ are also affiliated with the Department of Biostatistics, University of Washington, Seattle, WA. PBG and YuH are also affiliated with the Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA. YuH is also affiliated with the Department of Global Health, University of Washington, Seattle, WA. Brian D. Williamson is also affiliated with Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA. **Extended Data Figure 1. Case-cohort set and trial timeline. A)** Case-cohort set. **B-D)** Distribution of participants in the case-cohort set by geographic region: **B)** Latin America, **C)** South Africa, **D)** US. **E)** Phases of the ENSEMBLE trial, timing of Ad26.COV2.S dose and serum sampling, and time period for diagnosis of the COVID-19 endpoint.

E. For baseline SARS-CoV-2 seronegative per-protocol recipients of a single dose of Ad26.COV2.S vaccine:

*Two primary COVID-19 endpoints beyond 54 days post D29 study visit (one in Latin America at 58 days post D29 visit and one in the United States at 66 days post D29 visit) were excluded due to small numbers of subcohort participants at-risk in this right tail of follow-up time

Extended Data Figure 2. Flowchart of study participants from enrollment to the case-cohort set of baseline SARS-CoV-2 seronegative per-protocol participants.

1 Participants could have been excluded for more than one reason

2 Other reasons for exclusion included RT-PCR positive at baseline, violated inclusion or exclusion criteria, received wrong vaccine or incorrect dose, received disallowed concomitant medication, or other. 3 See the SAP for details.

4 Minority is defined as the complement of being known to be White Non-Hispanic. White Non-Hispanic is defined as Race=White and Ethnicity=Not Hispanic or Latino. All other Race subgroups are defined as Black, Asian, American Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, Multiracial, Other, Not reported, or Unknown. (In Latin America, the American Indian or Alaska Native category was labeled as "Indigenous South American".) Minority status was only reported in the U.S.

5 Co-morbidities are listed in Table S4 of Sadoff et al. 2021, NEJM and consisted of conditions that have been associated with increased risk of severe COVID-19.

6 Placebo recipient ptids are used in the correlate of protection analyses. However, antibody data from the placebo arm are not used in correlates analyses, given no variability in values; they were only used to verify low false positive rates of the immunoassays.

Extended Data Figure 3. D29 antibody marker level in participants in Latin America by COVID-19 outcome status. (A) Anti-spike IgG concentration, (B) anti-receptor binding domain (RBD) IgG concentration, and (C) pseudovirus (PsV) neutralization ID50 titer. Data points are from the Latin America subgroup of baseline SARS-CoV-2 seronegative per-protocol vaccine recipients in the set. The violin plots contain interior box plots with upper and lower horizontal edges the 25th and 75th percentiles of antibody level and middle line the 50th percentile, and vertical bars the distance from the 25th (or 75th) percentile of antibody level and the minimum (or maximum) antibody level within the 25th (or 75th) percentile of antibody level minus (or plus) 1.5 times the interquartile range. Each side shows a rotated probability density (estimated by a kernel density estimator with a default Gaussian kernel) of the data. Positive response rates were computed with inverse probability of sampling weighting. Pos.Cut, Positivity cut-off. Positive response for spike IgG was defined by IgG > 10.8424 BAU/ml and for RBD IgG was defined by IgG > 14.0858 BAU/ml. ULoO, upper limit of quantitation. ULoO = 238.1165 BAU/ml for spike IgG and 172.5755 BAU/ml for RBD IgG. LLoQ, lower limit of quantitation. Positive response for ID50 was defined by value > LLoO (2.7426 IU50/ml). ULoO = 619.3052 IU50/ml for ID50. Cases are baseline SARS-CoV-2 seronegative per-protocol vaccine recipients with the primary COVID-19 endpoint (moderate to severe-critical COVID-19 with onset both > 1 day post D29 and > 28 days post-vaccination) up to 54 days post D29 but no later than January 22, 2021.

Extended Data Figure 4. D29 antibody marker level in participants in South Africa by COVID-19 outcome status. (A) Anti-spike IgG concentration, (B) anti-receptor binding domain (RBD) IgG concentration, and (C) pseudovirus (PsV) neutralization ID50 titer. Data points are from the South Africa subgroup of baseline SARS-CoV-2 seronegative per-protocol vaccine recipients in the set. The violin plots contain interior box plots with upper and lower horizontal edges the 25th and 75th percentiles of antibody level and middle line the 50th percentile, and vertical bars the distance from the 25th (or 75th) percentile of antibody level and the minimum (or maximum) antibody level within the 25th (or 75th) percentile of antibody level minus (or plus) 1.5 times the interquartile range. Each side shows a rotated probability density (estimated by a kernel density estimator with a default Gaussian kernel) of the data. Positive response rates were computed with inverse probability of sampling weighting. Pos.Cut, Positivity cut-off. Positive response for spike IgG was defined by IgG > 10.8424 BAU/ml and for RBD IgG was defined by IgG > 14.0858 BAU/ml. ULoO, upper limit of quantitation. ULoO = 238.1165 BAU/ml for spike IgG and 172.5755 BAU/ml for RBD IgG. LLoQ, lower limit of quantitation. Positive response for ID50 was defined by value > LLoQ (2.7426 IU50/ml). ULoQ = 619.3052 IU50/ml for ID50. Cases are baseline SARS-CoV-2 seronegative per-protocol vaccine recipients with the primary COVID-19 endpoint (moderate to severe-critical COVID-19 with onset both > 1 day post D29 and > 28 days post-vaccination) up to 54 days post D29 but no later than January 22, 2021.

10

100

COVID-19 Cases

Category

Cohort Event

COVID-19 Cases
. Non-Cases

Non-Cases

Extended Data Figure 5. D29 antibody marker level in participants in the United States by COVID-19 outcome status. (A) Anti-spike IgG concentration, (B) anti-receptor binding domain (RBD) IgG concentration, and (C) pseudovirus neutralization ID50 titer. Data points are from the United States subgroup of baseline SARS-CoV-2 seronegative per-protocol vaccine recipients in the set. The violin plots contain interior box plots with upper and lower horizontal edges the 25th and 75th percentiles of antibody level and middle line the 50th percentile, and vertical bars the distance from the 25th (or 75th) percentile of antibody level and the minimum (or maximum) antibody level within the 25th (or 75th) percentile of antibody level minus (or plus) 1.5 times the interquartile range. Each side shows a rotated probability density (estimated by a kernel density estimator with a default Gaussian kernel) of the data. Positive response rates were computed with inverse probability of sampling weighting. Pos.Cut, Positivity cut-off. Positive response for spike IgG was defined by IgG > 10.8424 BAU/ml and for RBD IgG was defined by IgG > 14.0858 BAU/ml. ULoO, upper limit of quantitation. ULoO = 238.1165 BAU/ml for spike IgG and 172.5755 BAU/ml for RBD IgG. LLoQ, lower limit of quantitation. Positive response for ID50 was defined by value > LLoQ (2.7426 IU50/ml). ULoQ = 619.3052 IU50/ml for ID50. Cases are baseline SARS-CoV-2 seronegative per-protocol vaccine recipients with the primary COVID-19 endpoint (moderate to severe-critical COVID-19 with onset both > 1 day post D29 and > 28 days post-vaccination) up to 54 days post D29 but no later than January 22, 2021.

10

Extended Data Figure 6. Correlations of D29 antibody markers in baseline SARS-CoV-2 seronegative per-protocol vaccine recipients in the immunogenicity subcohort. A) Scatterplot of receptor binding domain (RBD) IgG and spike IgG; **B)** Scatterplot of RBD IgG and PsV-nAb ID50; **C)** Scatterplot of spike IgG and PsV-nAb ID50. Cor = Spearman rank correlation.

Extended Data Figure 7. Antibody marker values [spike IgG, receptor binding domain (RBD) IgG, **ID50** by COVID-19 outcome status in placebo recipients. Data points are from baseline SARS-CoV-2 seronegative per-protocol placebo recipients in the case-cohort set. The violin plots contain interior box plots with upper and lower horizontal edges the 25th and 75th percentiles of antibody level and middle line the 50th percentile, and vertical bars the distance from the 25th (or 75th) percentile of antibody level and the minimum (or maximum) antibody level within the 25th (or 75th) percentile of antibody level minus (or plus) 1.5 times the interquartile range. Each side shows a rotated probability density (estimated by a kernel density estimator with a default Gaussian kernel) of the data. Positive response rates were computed with inverse probability of sampling weighting. Pos.Cut, Positivity cut-off. Positive response for spike IgG was defined by IgG > 10.8424 BAU/ml and for RBD IgG was defined by IgG > 14.0858BAU/ml. ULoQ, upper limit of quantitation. ULoQ = 238.1165 BAU/ml for spike IgG and 172.5755 for RBD IgG. LLoO, lower limit of quantification. Positive response for ID50 was defined by value > LLoO (2.7426 IU50/ml). ULoQ = 619.3052 IU50/ml for ID50. Cases are baseline SARS-CoV-2 seronegative per-protocol vaccine recipients with the primary COVID-19 endpoint (moderate to severe-critical COVID-19 with onset both \geq 1 day post D29 and \geq 28 days post-vaccination) up to 54 days post D29 but no later than January 22, 2021.

Category 🗈 COVID-19 Cases 🗉 Non-Cases

Extended Data Figure 8. Analyses of spike IgG and receptor binding domain (RBD) IgG as correlates of risk and as correlates of protection. Analyses were peformed in baseline SARS-CoV-2 seronegative per-protocol vaccine recipients. A, B) Covariate-adjusted cumulative incidence of COVID-19 by 54 days post D29 by vaccinated baseline SARS-CoV-2 seronegative per-protocol subgroups defined by D29 (A) anti-spike IgG or (B) anti-RBD IgG concentration above a threshold, with reverse cumulative distribution function (CDF) of D29 marker level overlaid in green. The blue dots are point estimates at each COVID-19 primary endpoint linearly interpolated by solid black lines; the gray shaded area is pointwise 95% confidence intervals (CIs). The estimates and CIs were adjusted using the assumption that the true threshold-response is nonincreasing. The upper boundary of the green shaded area is the estimate of the reverse cumulative distribution function (CDF) of D29 marker level in baseline SARS-CoV-2 seronegative per-protocol vaccine recipients. The vertical red dashed line is the D29 marker threshold above which no COVID-19 endpoints were observed (in the time frame of 1 through 54 days post D29). C, D) Covariate-adjusted cumulative incidence of COVID-19 by 54 days post D29 by D29 (C) anti-spike IgG or (D) anti-RBD IgG concentration, estimated using (solid purple line) a Cox model or (solid blue line) a nonparametric method. The dotted black lines indicate bootstrap point-wise 95% CIs. The upper and lower horizontal gray lines are the overall cumulative incidence of COVID-19 from 1 to 54 days post D29 in placebo and vaccine recipients, respectively. E, F) Vaccine efficacy (solid purple line) by D29 (E) anti-spike IgG or (F) anti-RBD IgG concentration, estimated using a Cox proportional hazards implementation of ¹. The dashed black lines indicate bootstrap point-wise 95% CIs. Vaccine efficacy (solid blue line) by D29 (E) anti-spike IgG concentration or (F) anti-RBD IgG concentration, estimated using a nonparametric implementation of Gilbert et al.¹ (see SAP). The blue shaded area represents the 95% CIs. In C-F, curves are plotted over the range from Positivity Cut-off/2 to the 97.5th percentile = (C, E) 238 BAU/ml for Spike IgG or (D, F) 173 BAU/ml for RBD IgG; In C-F, the green histogram is an estimate of the density of D29 marker and the horizontal gray line is the overall vaccine efficacy from 1 to 54 days post D29, with the dotted gray lines indicating the 95% CIs. Baseline covariates adjusted for were baseline risk score and geographic region.

Extended Data Figure 9. Vaccine efficacy with sensitivity analysis by D29 (A) anti-spike IgG concentration, (B) anti-receptor binding domain (RBD) IgG concentration, or (C) pseudovirus (PsV) neutralization ID50 titer. Vaccine efficacy estimates were obtained a Cox proportional hazards implementation of ref.¹. The upper boundary of the green shaded area is the estimate of the reverse cumulative distribution function of the marker in baseline SARS-CoV-2 seronegative per-protocol vaccine recipients. The pink solid line is point estimates assuming no unmeasured confounding; the dashed lines are bootstrap point-wise 95% CIs. The red solid line is point estimates assuming unmeasured confounding in a sensitivity analysis (dashed lines are bootstrap point-wise 95% CIs); see the SAP section 15.1 for details of the sensitivity analysis. The horizontal gray line is the overall vaccine efficacy from 1 to 54 days post D29, with the dotted gray lines indicating the 95% CIs. All curves are plotted over the range from (A, B) Positivity Cut-off/2 to the 97.5th percentile = 238 BAU/ml for Spike IgG or 173 BAU/ml for RBD IgG; (C) LLOQ/2 to the 97.5th percentile = 96.3 IU50/ml for PsV nAb ID50.

Extended Data Figure 10. Vaccine efficacy (solid lines) in baseline SARS-CoV-2 seronegative perprotocol vaccine recipients by A) D29 spike IgG or B) D29 receptor binding domain (RBD) IgG in ENSEMBLE by geographic region (US, United States; Lat Am, Latin America; S Afr, South Africa), estimated using the Cox proportional hazards implementation of Gilbert et al.¹ The dashed lines indicate bootstrap point-wise 95% CIs. The follow-up periods for the VE assessment were: A) ENSEMBLE-US, 1 to 53 days post D29; ENSEMBLE-Lat Am, 1 to 48 days post D29; ENSEMBLE-S Afr, 1 to 40 days post D29. The green histograms are an estimate of the density of D29 marker level by geographic region. Baseline covariates adjusted for were baseline risk score and geographic region. Curves are plotted over the range from Positivity Cut-off/2 to the 97.5th percentile = (**A**) 238 BAU/ml for Spike IgG; (**B**) 173 BAU/ml for RBD IgG.

Supplementary Table 1. Sample sizes of baseline SARS-CoV-2 seronegative per-protocol vaccine recipients included in immune correlates analyses, by baseline sampling strata and case/non-case strata.

Case-cohort set = Baseline SARS-CoV-2 seronegative per-protocol vaccine recipients included in D29 marker correlates analysis [in the immunogenicity subcohort (IS) and/or a breakthrough COVID-19 case)]*

	Base	eline Sa	ampling	g Strata	ı of Bas	seline S	SARS-0	CoV-2	Serone	gative	Per-Pr	otocol	Vaccin	e Parti	cipants	Incluc	led in C	orrelat	es Ana	ilyses
																		S	ubtota	ls
																			Lat	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Total	US	Am	S Afr
Breakthrough																				
COVID-19 cases																				
(both within and	3	3	0	0	12	5	4	2	30	8	3	7	6	7	1	1	92	29	48	15
outwith the IS) with																				
Ab marker data																				
Non-cases in the IS	40	52	4.4	56	50	52	47	55	52	52	52	52	47	10	40	56	021	400	212	200
with Ab marker data	49	33	44	30	32	33	4/	35	55	55	33	33	4/	48	49	30	021	409	212	200

Ab, antibody; IS, immunogenicity subcohort; Lat Am, Latin America; S Afr, South Africa; US, United States.

Demographic covariate strata:

1. Minority U.S., age 18-59, comorbidities N 9. Latin America, age 18-59, comorbidities N 10. Latin America, age 18-59, comorbidities Y 2. Minority U.S., age 18-59, comorbidities Y 3. Minority U.S., age ≥ 60 , comorbidities N 11. Latin America, age ≥ 60 , comorbidities N 4. Minority U.S., age ≥ 60 , comorbidities Y 12. Latin America, age ≥ 60 , comorbidities Y 5. non-Minority U.S., age 18-59, comorbidities N 13. South Africa, age 18-59, comorbidities N 6. non-Minority U.S., age 18-59, comorbidities Y 14. South Africa, age 18-59, comorbidities Y 7. non-Minority U.S., age ≥ 60 , comorbidities N 15. South Africa, age ≥ 60 , comorbidities N 16. South Africa, age ≥ 60 , comorbidities Y 8. non-Minority U.S., age ≥ 60 , comorbidities Y

Minority is defined as the complement of being known to be White Non-Hispanic. Minority status was only reported in the U.S.

White Non-Hispanic is defined as Race=White and Ethnicity=Not Hispanic or Latino. All other Race subgroups are defined as Black, Asian, American Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, Multiracial, Other, Not reported, or Unknown. (In Latin America, the American Indian or Alaska Native category was labeled as "Indigenous South American".)

Cases are baseline SARS-CoV-2 seronegative per-protocol vaccine recipients with the primary COVID-19 endpoint (moderate to severe-critical COVID-19 with onset that was both \geq 28 days post-vaccination and ≥ 1 day post-D29) through to the data cut (January 22, 2021).

Non-cases/Controls are baseline seronegative per-protocol vaccine recipients sampled into the immunogenicity subcohort with no evidence of SARS-CoV-2 infection up to the end of the correlates study period, which is up to 54 days post D29 but no later than the data cut (January 22, 2021).

Characteristics	Vaccine (N = 826)	Placebo $(N = 90)$	Total (N = 916)
Age			
Age 18-59	412 (49.9%)	42 (46.7%)	454 (49.6%)
$Age \ge 60$	414 (50.1%)	48 (53.3%)	462 (50.4%)
Mean (Range)	49.4 (18.0, 80.0)	51.8 (18.0, 80.0)	49.7 (18.0, 80.0)
BMI			
Underweight BMI < 18.5	18 (2.2%)	2 (2.2%)	20 (2.2%)
Normal $18.5 \le BMI \le 25$	230 (27.8%)	20 (22.2%)	250 (27.3%)
Overweight $25 \le BMI < 30$	294 (35.6%)	34 (37.8%)	328 (35.8%)
Obese BMI \ge 30	284 (34.4%)	34 (37.8%)	318 (34.7%)
Risk for Severe COVID-19			
At-risk	429 (51.9%)	45 (50.0%)	474 (51.7%)
Not at-risk	397 (48.1%)	46 (50.0%)	442 (48.3%)
Age, Risk for Severe COVID-19			
Age 18-59 At-risk	208 (25.2%)	21 (23.3%)	229 (25.0%)
Age 18-59 Not at-risk	204 (24.7%)	21 (23.3%)	225 (24.6%)
$Age \ge 60$ At-risk	221 (26.8%)	24 (26.7%)	245 (26.7%)
$Age \ge 60$ Not at-risk	193 (23.4%)	24 (26.7%)	217 (23.7%)
Sex Assigned at Birth			
Female	373 (45.2%)	37 (41.1%)	410 (44.8%)
Male	453 (54.8%)	53 (58.9%)	506 (55.2%)
Hispanic or Latino Ethnicity			
Hispanic or Latino	307 (37.2%)	32 (35.6%)	339 (37.0%)
Not Hispanic or Latino	492 (59.6%)	54 (60.0%)	546 (59.6%)
Not reported and unknown	27 (3.3%)	4 (4.4%)	31 (3.4%)
Race			
White	434 (52.5%)	48 (53.3%)	482 (52.6%)
Black or African American	245 (29.7%)	26 (28.9%)	271 (29.6%)
Asian	15 (1.8%)		15 (1.6%)
American Indian or Alaska Native	58 (7.0%)	6 (6.7%)	64 (7.0%)
Native Hawaiian or Other Pacific Islander	3 (0.4%)		3 (0.3%)
Multiracial	40 (4.8%)	7 (7.8%)	47 (5.1%)
Not reported and unknown	31 (3.8%)	3 (3.3%)	34 (3.7%)
Underrepresented Minority Status in	the U.S.*		
White Non-Hispanic	208 (25.2%)	24 (26.7%)	232 (25.3%)
Communities of Color	203 (24.6%)	23 (25.6%)	226 (24.7%)
Country			
United States	411 (49.8%)	47 (52.2%)	458 (50.0%)
Argentina	33 (4.0%)	2 (2.2%)	35 (3.8%)

Supplementary Table 2. Demographics and clinical characteristics of baseline SARS-CoV-2 seronegative per-protocol trial participants in the immunogenicity subcohort and thus have D1, D29 antibody data.

Brazil	89 (10.8%)	12 (13.3%)	101 (11.0%)
Chile	11 (1.3%)	3 (3.3%)	14 (1.5%)
Colombia	53 (6.4%)	5 (5.6%)	58 (6.3%)
Mexico	7 (0.8%)	2 (2.2%)	9 (1.0%)
Peru	21 (2.5%)	1 (1.1%)	22 (2.4%)
South Africa	201 (24.3%)	18 (20.0%)	219 (23.9%)
HIV Status			
Negative	798 (96.6%)	88 (97.8%)	886 (96.7%)
Living with HIV	28 (3.4%)	2 (2.2%)	30 (3.3%)

*Data on minority status was only gathered in the U.S.

This table summarizes characteristics of per-protocol participants in the immunogenicity subcohort, which was randomly sampled from the study cohort. The sampling was stratified by strata defined by enrollment characteristics: Assigned randomization arm × Baseline SARS-CoV-2 seronegative vs. seropositive × Randomization strata. The U.S. subcohort includes 8 baseline demographic strata; the Latin America and South Africa subcohorts each include 4 baseline demographic strata.

Characteristics	Vaccine (N = 411)	Placebo (N = 47)	Total (N = 458)
Age			
Age 18-59	209 (50.9%)	24 (51.1%)	233 (50.9%)
$Age \ge 60$	202 (49.1%)	23 (48.9%)	225 (49.1%)
Mean (Range)	48.9 (18.0, 80.0)	52.0 (18.0, 80.0)	49.3 (18.0, 80.0)
BMI			
Underweight BMI < 18.5	1 (0.2%)	1 (2.1%)	2 (0.4%)
Normal $18.5 \le BMI \le 25$	106 (25.8%)	11 (23.4%)	117 (25.5%)
Overweight $25 \le BMI < 30$	153 (37.2%)	14 (29.8%)	167 (36.5%)
Obese BMI \geq 30	151 (36.7%)	21 (44.7%)	172 (37.6%)
Risk for Severe COVID-19			
At-risk	217 (52.8%)	26 (55.3%)	243 (53.1%)
Not at-risk	194 (47.2%)	21 (44.7%)	215 (46.9%)
Age, Risk for Severe COVID-19			
Age 18-59 At-risk	106 (25.8%)	13 (27.7%)	119 (26.0%)
Age 18-59 Not at-risk	103 (25.1%)	11 (23.4%)	114 (24.9%)
$Age \ge 60$ At-risk	111 (27.0%)	13 (27.7%)	124 (27.1%)
Age ≥ 60 Not at-risk	91 (22.1%)	10 (21.3%)	101 (22.1%)
Sex Assigned at Birth			
Female	191 (46.5%)	21 (44.7%)	212 (46.3%)
Male	220 (53.5%)	26 (55.3%)	246 (53.7%)
Hispanic or Latino Ethnicity			
Hispanic or Latino	104 (25.3%)	9 (19.1%)	113 (24.7%)
Not Hispanic or Latino	292 (71.0%)	36 (76.6%)	328 (71.6%)
Not reported and unknown	15 (3.6%)	2 (4.3%)	17 (3.7%)
Race			
White	268 (65.2%)	30 (63.8%)	298 (65.1%)
Black or African American	93 (22.6%)	13 (27.7%)	106 (23.1%)
Asian	13 (3.2%)		13 (2.8%)
American Indian or Alaska Native	11 (2.7%)	1 (2.1%)	12 (2.6%)
Native Hawaiian or Other Pacific Islander	2 (0.5%)		2 (0.4%)
Multiracial	7 (1.7%)	2 (4.3%)	9 (2.0%)
Not reported and unknown	17 (4.1%)	1 (2.1%)	18 (3.9%)
Underrepresented Minority Status in	n the U.S.		
White Non-Hispanic	208 (50.6%)	24 (51.1%)	232 (50.7%)
Communities of Color	203 (49.4%)	23 (48.9%)	226 (49.3%)
Country			
United States	411 (100.0%)	47 (100.0%)	458 (100.0%)
HIV Status			

Supplementary Table 3. Demographics and clinical characteristics of baseline SARS-CoV-2 seronegative per-protocol trial participants in the United States subset of the immunogenicity subcohort (strata 1-8) and thus have D1, D29 antibody data.

Negative	406 (98.8%)	46 (97.9%)	452 (98.7%)
Living with HIV	5 (1.2%)	1 (2.1%)	6 (1.3%)

This table summarizes characteristics of per-protocol participants in the United States subset of the immunogenicity subcohort (strata 1-8), which was randomly sampled from the study cohort. The sampling was stratified by strata defined by enrollment characteristics: Assigned randomization arm × Baseline SARS-CoV-2 seronegative vs. seropositive × Randomization strata.

Characteristics	Vaccine (N = 214)	Placebo (N = 25)	Total (N = 239)
Age			
Age 18-59	107 (50.0%)	12 (48.0%)	119 (49.8%)
$Age \ge 60$	107 (50.0%)	13 (52.0%)	120 (50.2%)
Mean (Range)	49.2 (18.0, 80.0)	50.4 (18.0, 80.0)	49.3 (18.0, 80.0)
BMI			
Underweight BMI < 18.5	1 (0.5%)		1 (0.4%)
Normal $18.5 \le BMI \le 25$	53 (24.8%)	6 (24.0%)	59 (24.7%)
Overweight $25 \le BMI \le 30$	92 (43.0%)	12 (48.0%)	104 (43.5%)
Obese BMI \geq 30	68 (31.8%)	7 (28.0%)	75 (31.4%)
Risk for Severe COVID-19			
At-risk	108 (50.5%)	11 (44.0%)	119 (49.8%)
Not at-risk	106 (49.5%)	14 (56.0%)	120 (50.2%)
Age, Risk for Severe COVID-19			
Age 18-59 At-risk	54 (25.2%)	5 (20.0%)	59 (24.7%)
Age 18-59 Not at-risk	53 (24.8%)	7 (28.0%)	60 (25.1%)
$Age \ge 60$ At-risk	54 (25.2%)	6 (24.0%)	60 (25.1%)
$Age \ge 60$ Not at-risk	53 (24.8%)	7 (28.0%)	60 (25.1%)
Sex Assigned at Birth			
Female	82 (38.3%)	8 (32.0%)	90 (37.7%)
Male	132 (61.7%)	17 (68.0%)	149 (62.3%)
Hispanic or Latino Ethnicity			
Hispanic or Latino	203 (94.9%)	23 (92.0%)	226 (94.6%)
Not Hispanic or Latino	7 (3.3%)		7 (2.9%)
Not reported and unknown	4 (1.9%)	2 (8.0%)	6 (2.5%)
Race			
White	128 (59.8%)	14 (56.0%)	142 (59.4%)
Black or African American	8 (3.7%)	1 (4.0%)	9 (3.8%)
Asian	1 (0.5%)		1 (0.4%)
Multiracial	21 (9.8%)	3 (12.0%)	24 (10.0%)
Not reported and unknown	9 (4.2%)	2 (8.0%)	11 (4.6%)
Country			
Argentina	33 (15.4%)	2 (8.0%)	35 (14.6%)
Brazil	89 (41.6%)	12 (48.0%)	101 (42.3%)
Chile	11 (5.1%)	3 (12.0%)	14 (5.9%)
Colombia	53 (24.8%)	5 (20.0%)	58 (24.3%)
Mexico	7 (3.3%)	2 (8.0%)	9 (3.8%)
Peru	21 (9.8%)	1 (4.0%)	22 (9.2%)
HIV Status			
Negative	207 (96.7%)	25 (100.0%)	232 (97.1%)

Supplementary Table 4. Demographics and clinical characteristics of baseline SARS-CoV-2 seronegative per-protocol trial participants in the Latin America subset of the immunogenicity subcohort (strata 9-12) and thus have D1, D29 antibody data.

π.	•	•		TTTT 7
Т	.13	ving	with	HIV
_	•••	· · · · · · · · · · · · · · · · · · ·		'

This table summarizes characteristics of per-protocol participants in the Latin America subset of the immunogenicity subcohort (strata 9-12), which was randomly sampled from the study cohort. The sampling was stratified by strata defined by enrollment characteristics: Assigned randomization arm × Baseline SARS-CoV-2 seronegative vs. seropositive × Randomization strata.

Characteristics	Vaccine (N = 201)	Placebo (N = 18)	Total (N = 219)
Age			
Age 18-59	96 (47.8%)	6 (33.3%)	102 (46.6%)
$Age \ge 60$	105 (52.2%)	12 (66.7%)	117 (53.4%)
Mean (Range)	50.6 (18.0, 80.0)	53.3 (18.0, 80.0)	50.8 (18.0, 80.0)
BMI			
Underweight BMI < 18.5	16 (8.0%)	1 (5.6%)	17 (7.8%)
Normal $18.5 \le BMI \le 25$	71 (35.3%)	3 (16.7%)	74 (33.8%)
Overweight $25 \le BMI < 30$	49 (24.4%)	8 (44.4%)	57 (26.0%)
Obese BMI ≥ 30	65 (32.3%)	6 (33.3%)	71 (32.4%)
Risk for Severe COVID-19			
At-risk	104 (51.7%)	8 (44.4%)	112 (51.1%)
Not at-risk	97 (48.3%)	10 (55.6%)	107 (48.9%)
Age, Risk for Severe COVID-19			
Age 18-59 At-risk	48 (23.9%)	3 (16.7%)	51 (23.3%)
Age 18-59 Not at-risk	48 (23.9%)	3 (16.7%)	51 (23.3%)
Age≥ 60 At-risk	56 (27.9%)	5 (27.8%)	61 (27.9%)
Age ≥ 60 Not at-risk	49 (24.4%)	7 (38.9%)	56 (25.6%)
Sex Assigned at Birth			
Female	100 (49.8%)	8 (44.4%)	108 (49.3%)
Male	101 (50.2%)	10 (55.6%)	111 (50.7%)
Hispanic or Latino Ethnicity			
Not Hispanic or Latino	193 (96.0%)	18 (100.0%)	211 (96.3%)
Not reported and unknown	8 (4.0%)		8 (3.7%)
Race			
White	38 (18.9%)	4 (22.2%)	42 (19.2%)
Black or African American	144 (71.6%)	12 (66.7%)	156 (71.2%)
Asian	1 (0.5%)		1 (0.5%)
Native Hawaiian or Other Pacific Islander	1 (0.5%)		1 (0.5%)
Multiracial	12 (6.0%)	2 (11.1%)	14 (6.4%)
Not reported and unknown	5 (2.5%)		5 (2.3%)
Country			
South Africa	201 (100.0%)	18 (100.0%)	219 (100.0%)
HIV Status			
Negative	185 (92.0%)	17 (94.4%)	202 (92.2%)
Living with HIV	16 (8.0%)	1 (5.6%)	17 (7.8%)

Supplementary Table 5. Demographics and clinical characteristics of baseline SARS-CoV-2 seronegative per-protocol trial participants in the South Africa subset of the immunogenicity subcohort (strata 13-16) and thus have D1, D29 antibody data.

This table summarizes characteristics of per-protocol participants in the South Africa subset of the immunogenicity subcohort (strata 13-16), which was randomly sampled from the study cohort. The sampling was stratified by strata defined by enrollment characteristics: Assigned randomization arm × Baseline SARS-CoV-2 seronegative vs. seropositive × Randomization strata.

Supplementary Table 6. D29 antibody marker response rates and geometric means (GMs) by COVID-19 outcome status, presented by ENSEMBLE geographic region. Analysis based on baseline SARS-CoV-2 seronegative per-protocol vaccine recipients in the case-cohort set. Median (interquartile range) days from vaccination to D29 was 29 (3) for Latin America, 29 (2) for South Africa, and 29 (2) for the United States. RBD, receptor-binding domain.

		COVID-19 C	ases ¹	No	Non-Cases in Immunogenicity Subcohort ²		Comparison	
D29 Marker	N	Positive Response Rate (95% CI)	GM (95% CI)	Ν	Positive Response Rate (95% CI)	GM (95 % CI)	Response Rate Difference (Cases – Non-Cases)	Ratio of GM (Cases/Non-Cases)
Latin America								
Anti Spike IgG (BAU/ml)	48	79.2% (65.0%, 88.6%)	29.90 (21.37, 41.83)	212	84.1% (78.1%, 88.7%)	32.62 (27.88, 38.16)	-4.9% (-19.9, 6.3%)	0.92 (0.69, 1.22)
Anti RBD IgG (BAU/ml)	48	75.0% (60.5%, 85.5%)	27.98 (20.74, 37.75)	212	81.4% (75.0%, 86.5%)	31.73 (27.54, 36.57)	-6.4% (-21.8, 5.9%)	0.88 (0.68, 1.14)
Pseudovirus-nAb ID50 (IU50/ml)	48	43.8% (30.2%, 58.3%)	3.91 (2.66, 5.73)	212	60.0% (52.3%, 67.3%)	5.62 (4.56, 6.93)	-16.3% (-31.7%, 0.2%)	0.70 (0.49, 0.98)
South Africa								
Anti Spike IgG (BAU/ml)	15	80.0% (49.8%, 94.2%)	32.70 (18.51, 57.78)	200	87.3% (81.2%, 91.7%)	37.90 (31.72, 45.28)	-7.3% (-37.8, 8.1%)	0.86 (0.59, 1.26)
Anti RBD IgG (BAU/ml)	15	73.3% (43.8%, 90.6%)	34.12 (19.30, 60.33)	200	84.3% (77.6%, 89.3%)	35.30 (30.12, 41.36)	-11% (-40.9, 7.6%)	0.97 (0.67, 1.40)
Pseudovirus-nAb ID50 (IU50/ml)	15	33.3% (13.3%, 62.0%)	3.05 (1.63, 5.70)	200	51.5% (43.3%, 59.7%)	4.99 (3.91, 6.37)	-18.2% (-39.9, 11.6%)	0.61 (0.37, 1.00)
United States								
Anti Spike IgG (BAU/ml)	29	79.3% (59.8%, 90.8%)	25.86 (18.15, 36.84)	409	85.8% (81.3%, 89.4%)	34.24 (30.35, 38.63)	-6.5% (-26.3, 5.8%)	0.76 (0.58, 0.99)
Anti RBD IgG (BAU/ml)	29	72.4% (52.7%, 86.1%)	24.00 (17.25, 33.38)	409	80.2% (75.2%, 84.4%)	32.49 (29.08, 36.30)	-7.7% (-27.9, 6.8%)	0.74 (0.57, 0.96)
Pseudovirus-nAb ID50 (IU50/ml)	29	27.6% (13.9%, 47.3%)	2.40 (1.68, 3.44)	409	54.4% (48.6%, 60.1%)	4.40 (3.83, 5.06)	-26.8% (-41.6, -6.3%)	0.55 (0.41, 0.72)

¹Cases are baseline SARS-CoV-2 seronegative per-protocol vaccine recipients with the primary COVID-19 endpoint (moderate to severe-critical COVID-19 with onset that was both \geq 28 days post-vaccination and \geq 1 day post-D29) and before the end of the correlates study period, which is up to 54 days post D29 but no later than the data cut (January 22, 2021).

²Non-cases/Controls are baseline seronegative per-protocol vaccine recipients sampled into the immunogenicity subcohort with no evidence of SARS-CoV-2 infection up to the end of the correlates study period, which is up to 54 days post D29 but no later than the data cut (January 22, 2021). See Extended Data Figure 2. CI, confidence interval; GM, geometric mean.

Supplementary Table 7. Covariate-adjusted hazard ratios of COVID-19 per standard deviation (SD) increment in each D29 antibody marker in baseline SARS-CoV-2 seronegative per-protocol vaccine recipients.

D29 Immunologic Marker	No. cases/ No. at-risk*	HR per S Pt. Est.	SD increment 95% CI	P-value (2-sided)	FDR- adjusted p-value**	FWER- adjusted p-value
Anti Spike IgG (BAU/ml)	140/18,395	0.84	(0.66, 1.07)	0.162	0.189	0.255
Anti RBD IgG (BAU/ml)	140/18,395	0.80	(0.62, 1.03)	0.079	0.150	0.144
Pseudovirus-nAb ID50 (IU50/ml)	140/18,395	0.65	(0.48, 0.88)	0.006	0.015	0.016

Baseline covariates adjusted for: baseline risk score, geographic region. RBD, receptor-binding domain.

*No. at-risk = estimated number in the population for analysis: baseline negative per-protocol vaccine recipients not experiencing the COVID-19 endpoint and with no evidence of SARS-CoV-2 infection through D29; no. cases = estimated number of this cohort with an observed COVID-19 endpoint starting ≥ 1 day post D29 and ≥ 28 days post-vaccination. The count 140 differs from the number 92 (Figure 1, Table 1), because the 140 includes all vaccine breakthrough cases including those without D1, 29 antibody marker data.

**FDR (false discovery rate)-adjusted p-values and FWER (family-wise error rate)-adjusted p-values are computed over the set of p-values both for quantitative markers and categorical markers (Low, Medium, High) using the Westfall and Young permutation method (10000 replicates).

Supplementary Table 8. Sensitivity analysis to assess D29 antibody markers categorized as upper vs. lower tertiles as controlled vaccine efficacy correlates of protection against COVID-19.

	Marginaliz RR _M	ed Risk Ratio $M(0,1)^1$	Controlled (1-CVE(1))	Risk Ratio = /(1-CVE(0)) ²	E-val	lues ³
D29 Antibody Marker	Point Estimate	95% CI	Point Estimate	95% CI	For Point Estimate	For 95% CI Upper Limit
Anti-spike IgG (BAU/ml)	0.75	0.40, 1.31	1.00	0.53, 1.75	2.0	1.0
Anti-RBD IgG (BAU/ml)	0.61	0.33, 1.08	0.82	0.43, 1.43	2.6	1.0
ID50 (IU50/ml)	0.41	0.21, 0.69	0.55	0.28, 0.92	4.3	2.2

¹This analysis estimates the Controlled Risk Ratio under the no-unmeasured confounding and positivity assumptions.

Conservative (upper bound) estimate assuming unmeasured confounding at level $RR_{UD}(0, 1) = RR_{EU}(0, 1) = 2$ and thus B(0, 1) = 4/3 (notation as in Ding and vanderWeele (2016)).

E-values are computed for upper tertile (s = 1) vs. lower tertile (s = 0) biomarker subgroups after controlling for baseline risk score and geographic region; UL = upper limit.

Supplementary Table 9. Assay limits of the three antibody markers evaluated as immune

correlates. BAU = binding antibody units; IU = International Units; LLOQ, lower limit of quantification; RBD, receptor binding domain; ULOQ, upper limit of quantification.

MSD Binding Assay (VRC)					
Reported units	BAU/ml				
	Spike	RBD			
Positivity Cutoff	10.8424	14.0858			
LOD	0.3076	1.5936			
LLOQ	1.8429	5.0243			
ULOQ	238.1165	172.5755			
All values < Positivity Cutoff were set to Positivity Cutoff/2 All values > ULOQ were set to ULOQ (for immune correlates analyses)					
Pseudovirus neutralization ID50 titer (Monogram)					
Reported units	IU	50/ml			
LOD	2	.612			
LLOQ	2.	7426			
ULOQ	619	9.3052			
All values < LLOQ were set to LLOQ/2					
All values > ULOQ were set to ULOQ (for immune correlates analyses)					

Supplementary Table 10. Individual baseline variables input into the Superlearner model for predicting occurrence of the COVID-19 primary endpoint in baseline SARS-CoV-2 seronegative per-protocol placebo recipients.

Variable Name	Definition	Total missing values
EthnicityHispanic	Indicator ethnicity = Hispanic (1 = Hispanic, 0 =complement)	0/18116 (0.0%)
EthnicityNotreported	Indicator ethnicity = Not reported (1 = Not reported, 0 =complement)	0/18116 (0.0%)
Black	Indicator race = Black (1=Black, 0=complement)	0/18116 (0.0%)
Asian	Indicator race = Asian (1=Asian, 0=complement)	0/18116 (0.0%)
NatAmer	Indicator race = American Indian or Alaska Native (1=NatAmer, 0=complement)	0/18116 (0.0%)
Multiracial	Indicator race = Multiracial (1=Multiracial, 0=complement)	0/18116 (0.0%)
Notreported	Indicator race = Not reported (1=Notreported, 0=complement)	0/18116 (0.0%)
Unknown	Indicator race = unknown (1=Unknown, 0=complement)	0/18116 (0.0%)
URMforsubcohortsampling	Indicator of under-represented minority (1=Yes, 0=No)	0/18116 (0.0%)
HighRiskInd	Baseline covariate indicating >= 1 Co-existing conditions	0/18116 (0.0%)
HIVinfection	(1=yes, 0=no, NA=missing) Indicator living with HIV at enrollment (1=living with HIV, 0=not living with HIV)	0/18116 (0.0%)
Sex	Sex assigned at birth (1=female, 0=male/undifferentiated/unknown)	0/18116 (0.0%)
Age	Age at enrollment in years (integer >= 18, NA=missing). Note that the randomization strata included Age 18-59 vs. Age >=60.	0/18116 (0.0%)
BMI	BMI at enrollment (Ordered categorical 1,2, 3, 4,	15/18116 (0.1%)
	NA=missing); 1 = Underweight BMI < 18.5; 2 = Normal	
	BMI 18.5 to < 25; 3 = Overweight BMI 25 to < 30; 4 =	
	Obese BMI >= 30	
Country.X1	Indicator country = Argentina (1 = Argentina, 0 =	0/18116 (0.0%)
	complement)	
Country.X2	Indicator country = Brazil ($1 = Brazil, 0 = complement$)	0/18116 (0.0%)
Country.X4	Indicator country = Colombia (1 = Colombia, 0 =	0/18116 (0.0%)
	complement)	
Country.X6	Indicator country = Peru (1 = Peru, $0 = $ complement)	0/18116 (0.0%)
Country.X7	Indicator country = South Africa (1 = South Africa, 0 =	0/18116 (0.0%)
	complement)	
Region.X1	Indicator region = Latin America (1 = Latin America, 0 =	0/18116 (0.0%)
	complement)	

Region.X2	Indicator country = Southern Africa (1 = Southern Africa, 0	0/18116 (0.0%)
	= complement)	
CalDtEnrollIND.X1	Indicator variable representing enrollment occurring between	0/18116 (0.0%)
	4-8 weeks periods of first subject enrolled (1 = Enrollment	
	between 4-8 weeks, $0 =$ complement).	
CalDtEnrollIND.X2	Indicator variable representing enrollment occurring between	0/18116 (0.0%)
	8-12 weeks periods of first subject enrolled $(1 = \text{Enrollment})$	
	between 8-12 weeks, $0 =$ complement).	
CalDtEnrollIND.X3	Indicator variable representing enrollment occurring between	0/18116 (0.0%)
	12-16 weeks periods of first subject enrolled (1 = Enrollment	
	between 12-16 weeks, $0 =$ complement).	

Note:

1. Binary input variable/s EthnicityUnknown, PacIsl, Country.X3, Country.X5 had <= 3 cases in the variable = 1 or 0 subgroup and were dropped from analysis.

No input variable had more than 5% missing values.
 BMI had less than 5% missing values. The missing values were imputed using the mice package in R.

Supplementary Text 1.

In addition to adjusting for geographic region, all correlates analyses adjust for a baseline COVID-19 risk score that was developed through machine learning of the baseline SARS-CoV-2 seronegative per-protocol placebo arm.

Supplementary Table 10 lists the input variables that were included in the machine learning to build a model predicting the COVID-19 endpoint, where cases are COVID-19 endpoints occurring at least 1 day post D29 and non-cases are participants with follow-up beyond 7 days post D29 visit and that never registered a COVID-19 endpoint. The risk score is defined as the logit of the predicted COVID-19 outcome probability from the predictive regression model, estimated using the ensemble algorithm superlearner (i.e. stacking), where this logit predicted outcome is scaled to have empirical mean zero and empirical standard deviation one.

The receiver operating characteristic curve for the Superlearner model built from baseline SARS-CoV-2 seronegative per-protocol placebo recipients was applied to baseline SARS-CoV-2 seronegative per-protocol vaccine recipients, yielding an AUC of 0.670 for classifying COVID-19 outcome status.

Supplementary References:

 Gilbert PB, Fong Y, Carone M. Assessment of Immune Correlates of Protection via Controlled Vaccine Efficacy and Controlled Risk. arXiv:2107.05734 [stat.ME]<u>https://arxiv.org/abs/2107.05734</u>.
 2021. Supplementary Figure 1. Inverse probability sampling-weighted empirical reverse cumulative distribution function curves for each D29 marker [(A) spike IgG, (B) receptor-binding domain (RBD) IgG, (C) ID50] in the vaccine arm and application of the Siber 2007 method for estimating a threshold of perfect vs. no protection.

Siber GR, Chang I, Baker S, et al. Estimating the protective concentration of anti-pneumococcal capsular polysaccharide antibodies. *Vaccine* 2007; **25**(19): 3816-26.