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Abstract Since December 2019, the world has been
ravaged by the COVID-19 pandemic, with over 150
million confirmed cases and 3 million confirmed deaths

worldwide. To combat the spread of COVID-19, govern-
ments have issued unprecedented non-pharmaceutical
interventions (NPIs), ranging from mass gathering re-
strictions to complete lockdowns. Despite their proven

effectiveness in reducing virus transmission, the poli-
cies often carry significant economic and humanitarian
cost, ranging from unemployment to depression, PTSD,

and anxiety. In this paper, we create a data-driven sys-
tem dynamics framework, THEMIS, that allows us to
compare the costs and benefits of a large class of NPIs

in any geographical region across different cost dimen-
sions. As a demonstration, we analyzed thousands of
alternative policies across 5 countries (United States,
Germany, Brazil, Singapore, Spain) and compared with
the actual implemented policy.

Our results show that moderate NPIs (such as re-
strictions on mass gatherings) usually produce the worst
results, incurring significant cost while unable to suffi-
ciently slow down the pandemic to prevent the virus
from becoming endemic. Short but severe restrictions
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(complete lockdown for 4-5 weeks) generally produced
the best results for developed countries, but only if
the speed of reopening is slow enough to prevent a

resurgence. Developing countries exhibited very differ-
ent trade-off profiles from developed countries, and sug-
gests that severe NPIs such as lockdowns might not be
as suitable for developing countries in general.

Keywords COVID-19 · Cost-benefit Analysis ·
System Dynamics · Epidemiological modeling

1 Introduction

In the last 18 months, the world has been facing one of

the biggest health crises in a century – the COVID-19
pandemic. Starting from the initial outbreak in Wuhan
(Hui et al. 2020), the disease, caused by the SARS-

CoV-2 coronavirus, quickly swept around the globe. As
of May 2021, the pandemic took over 3.3 million lives,
while new hotspots continue to emerge.

To curtail the spread of SARS-CoV-2 and limit its
detrimental humanitarian impact, governments around
the world enacted unprecedented non-pharmaceutical
interventions (NPIs), ranging from social distancing and
mask-wearing to complete lockdowns. Despite their proven
effectiveness in reducing transmission, these NPIs in-
cur significant cost on the society. Restrictions on mass
gatherings and travel have proven to be detrimental
to many industries, greatly reducing economic output
while also causing mass unemployment. The travel in-
dustry alone lost 3.8 trillion USD in 2020 (WTTC 2021),

while the International Labour Organization estimates
that in total 114 million full-time jobs were destroyed
worldwide (Monitor 2020). Beyond their significant eco-
nomic cost, more severe measures, such as lockdowns,
also incur a large humanitarian cost. The isolation and
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confinement induced by these policies have caused a
sharp rise in depression, anxiety, and PTSD worldwide
(Xiong et al. 2020). Researchers have also raised con-
cerns about long-term effects of NPIs such as closing
schools, worrying that there will be a decline in the
long-term educational attainments.

Therefore, there is significant debate both among
the public and the scientific community on whether the
benefits of the implemented measures outweigh their
cost, and what, if any, better alternatives could have
been used. However, quantifying costs from multiple
social and economic dimensions is notoriously difficult.
To identify the outcome under alternative policies, one
also needs to be able to quantify the impact of differ-
ent NPIs on the spread of COVID-19 and simulate the
counterfactual pandemic.

Given these challenges, it is perhaps not surprising
that despite global interest, there is relatively little lit-
erature that tackles this question holistically. Previous
cost-benefit analyses were primarily focused on quan-
tifying the cost-benefit tradeoff for the actual imple-

mented policy (Broughel and Kotrous 2021) or compar-
ing two specific NPIs (e.g. lockdown vs reopening) (La-
yard et al. 2020, Shlomai et al. 2021) with emphasis on
the direct GDP impact of the NPIs (e.g. Rowthorn and

Maciejowski 2020, Miles et al. 2021, Gros et al. 2020,
Zhao et al. 2021). In contrast, we would look at the
pandemic retroactively across the globe. We utilize the

realized experience of the COVID-19 pandemic to con-
struct a data-driven framework, THEMIS, that allow us
to conduct a cost-benefit analysis of the actual sequence

of NPIs implemented in any region across the history
of the pandemic, and compare with a wide range of al-
ternatives that could have been implemented. To simu-
late the effect of the pandemic under different sequence

of NPIs (policies), we utilize a recent, policy-driven
compartmental epidemiological model called DELPHI
(Differential Equations Lead to Predictions of Hospi-
talizations and Infections). DELPHI extends classical
compartmental models to capture key features of the
COVID-19 pandemic: (i) under-detection due to lim-
ited testing, (ii) governmental and societal response to
the pandemic, and (iii) declining mortality rates (Li
et al. 2020). Since its inception in April 2020, DELPHI
has been applied to more than 200 countries and re-
gions worldwide, producing predictions at the country
level and at the state/province level for a few coun-
tries. The DELPHI forecasts have been incorporated

into the central ensemble at the US Center for Dis-
ease Control (2020), and have been utilized by many
organizations (including the Federal Reserve,Johnson &
Johnson, Hartford Healthcare) worldwide for pandemic
planning.

We then build models to calculate the various di-
mensions of costs given the realized pandemic. In par-
ticular, humanitarian costs include the costs due to loss
of life, hospitalization, ICU, and ventilation incurred in
the pandemic but also includes the psychological toll
on the general population due to anxiety, PTSD, and
depression. The economic costs take into account both
the losses due to reduced output but also the increased
economic burden due to unemployment. We construct a
model for each individual cost item based on the latest
studies.

To demonstrate the wide applicability of the THEMIS
framework, we implement THEMIS for Germany, United
States, Singapore, Spain and Brazil using the latest eco-
nomic and health data (see Appendix B for sources).

Our experimental results yield three main implica-
tions. First, our results show that different governments
face vastly different cost tradeoff curves in the pan-
demic. In particular, developing countries tend to suf-
fer more under restrictive NPIs compared to developed

countries, due to differences in economy composition,
demographics, compliance, population density, health-
care infrastructure, among others. This suggests that

developed countries potentially should take more bur-
den of implementing restrictive policies in order to con-
trol the pandemic effectively, given the ineffectiveness of

developing countries to do so. Second, we see that across
countries mild pandemic restrictions are ineffective at
the start of the pandemic and often produce the worst
outcomes in terms of total cost. Contrary to many situ-

ations in which a moderate policy is preferred, we show
that for a pandemic, moderate policies generate signifi-
cant societal costs while are usually completely ineffec-

tive in stopping the spread of the pandemic. This pro-
vides further evidence that the lockdown policies widely
adopted at the start of the pandemic were indeed ben-
eficial, even when taking into account the costs of lock-
down. Our final result highlights the outsized impact
of when interventions start – we show that the total
cost of the pandemic could decrease by 90% just by im-
plementing policies one week earlier. This highlights the
necessity for fast response in a pandemic, and also again
reinforces how the exponential nature of the pandemic
makes good policy-making difficult.

In summary, this paper makes two contributions.
From a modeling standpoint, it formulates an origi-

nal, modular system dynamics model for conducting
cost-benefit analyses of COVID-19 NPIs. The model
is capable to provide data-driven insights on how the
pandemic could have evolved under different interven-
tion scenarios, which is critical for policymakers to pre-
pare for the next pandemic. The modular nature means
that THEMIS could be easily applied to other regions.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 10, 2022. ; https://doi.org/10.1101/2022.04.09.22273656doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.09.22273656
http://creativecommons.org/licenses/by/4.0/


THEMIS: A Framework for Cost-Benefit Analysis of COVID-19 Non-Pharmaceutical Interventions 3

To facilitate this process, we open-source the THEMIS
codebase and it can be found at https://github.com/
COVIDAnalytics/THEMIS along with detailed instruc-
tions for reproducing and extending the results.

From a practical standpoint, this paper also con-
solidates the insights of applying the THEMIS model
to a large range of countries during the first-wave of
the pandemic. In particular, it demonstrates the highly
complex nature of decision making in a pandemic to
balance different dimensions of social cost. Further, it
highlights how swift and strong action in the pandemic
is the key to minimizing the total impact, and how dif-
ferent governments can optimize their strategies in the
future.

2 THEMIS Framework Formulation

The schematic for the THEMIS Framework is shown
in Figure 1. THEMIS starts with the input of a policy

P = (I,T ), which we formally define as a combination
of k NPIs I = (i0, · · · , ik−1) and (k + 1) implementa-
tion times T = (t0, t1, · · · , tk) where t0 < t1 < · · · <
tk. The policy is implemented such that each NPI il,

l ∈ {0, · · · , k − 1} is effective between [tl, tl+1], and is
selected from a set of possible NPIs I. For example, the
policy P with:

I = (Lockdown,Social Distancing,No Restrictions)

T = (2020.03.01, 2020.04.01, 2020.05.01, 2020.06.01)

represents a policy from March 1st, 2020 to June 1st,
2020 with the stages as outlined in Table 1. We note

that this structure is general and all policies imple-
mented in the COVID-19 pandemic can be written in
such structure, given a sufficiently large set of N . For
simplicity only, we would assume throughout this paper
that tl for l ∈ {0, · · · , k} has units of days.

Policy Start Date Policy End Date Policy
March 1st, 2020 April 1st, 2020 Lockdown
April 1st, 2020 May 1st, 2020 Social Distancing
May 1st, 2020 June 1st, 2020 No Restrictions

Table 1: Example Policy

Now the goal of THEMIS is to calculate, for a spe-
cific region with region-specific data R, the cost of such
policy P within the implementation period t ∈ [t0, tk].
As illustrated in Figure 1, the first step is to utilize the
DELPHI epidemiological model to simulate the spread
of the epidemic E under such policy for this region
E = fDEL(R,P ). Then, we calculate the cost of the

epidemic using both P and E. In particular, we sep-
arated the cost into two categories, with five dimen-
sions in total: economic cost (unemployment (cU ), GDP
(cY )), and humanitarian cost (deaths (cD), hospitaliza-
tions (cH), and mental illnesses (cM )).

The following subsections describe the detail con-
struction of each model (fDEL,cU ,cY ,cD,cH ,cM ).

2.1 The DELPHI model: Forecasting the dynamics of
the COVID-19 pandemic

DELPHI is a policy-driven compartmental epidemio-
logical model that extends the widely used SEIR model
to account for effects specific to the COVID-19 pan-
demic. The model is governed deterministically by a
system of ordinary differential equations (ODEs) in-
volving 11 states: susceptible (S), exposed (E), infec-
tious (I), undetected cases who will recover (UR) or
die (UD), detected hospitalized cases who will recover
(HR) or die (HD), detected quarantined cases who will

recover (QR) or die (QD), recovered (R) and deceased
(D). Within the hospitalized states (H), there are also
helper states to govern patients that are in the ICU
(IC) and patients who are ventilated (V ). Since its

conception in late March 2020, it has been success-
fully applied to more than 210 countries and regions
worldwide with high accuracy, and is utilized by or-
ganizations including the Hartford Hospital system for
pandemic planning. (Li et al. 2020)

DELPHI differs from other COVID-19 forecasting

models (see, e.g. Kissler et al. 2020) by capturing three
key elements of the pandemic:

– Under-detection: Many cases remain undetected
due to limited testing, asymptomatic carriers, and

detection errors. Ignoring them would underestimate
the scale of the pandemic. The DELPHI model cap-
tures them through the UR and UD states.

– Governmental and societal response: Social dis-
tancing policies limit the spread of the virus. Ig-
noring them would overestimate the scale of the
pandemic. However, if restrictions are lifted prema-
turely, a resurgence may occur. We define a govern-
mental and societal response function γ(t), which
modulates the infection rate and is parameterized
as follows:

γ(t) = 1 +
2

π
arctan

(
−(t− tint)

κ

)
+ c exp

(
− (t− tjump)2

2σ2

)
. (1)

This parameterization encompasses four phases (Fig-
ure 2). In Phase I, most activities continue normally

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 10, 2022. ; https://doi.org/10.1101/2022.04.09.22273656doi: medRxiv preprint 

https://github.com/COVIDAnalytics/THEMIS
https://github.com/COVIDAnalytics/THEMIS
https://doi.org/10.1101/2022.04.09.22273656
http://creativecommons.org/licenses/by/4.0/


4 Dimitris Bertsimas et al.

Policy
P = (I,T )

Region-specific
Information

R

DELPHI Epidemiology Model
E = fDEL(R,P )

Unemployment Costs
cU (R,P )

GDP Costs
cY (R,E,P )

Mortality Costs
cD(R,E)

Hospitalization Costs
cH(R,E)

Mental Illnesses Costs
cM (R,E,P )

Fig. 1: THEMIS Schematic. Here we ignore the arrows from R to every module for simplicity.

as people adjust their behaviors. This is followed by
a sharp decline in the infection rate during Phase

II as the policies get implemented. The parameters
tint and κ can be interpreted as the start time and
the strength of this response. In Phase III, the de-

cline in the infection rate reaches saturation. The
epidemic then experiences a resurgence of magni-
tude c in Phase IV, due to relaxations in govern-
mental restrictions and in social behaviors. This is

counteracted at time tjump, when restrictions are re-
implemented, with σ controlling the duration of this
second wave.

– Declining mortality rates: The mortality rate
of COVID-19 has been declining through the pan-
demic, due to a better detection of mild cases, en-

hanced care for COVID-19 patients, and other fac-
tors. We model the mortality rate as a monotoni-
cally decreasing function of time:

m(t) = (m0 −mmin)

(
1 +

2

π
arctan (−rmt)

)
+mmin, (2)

where m0 is the initial mortality rate, mmin is the
minimum mortality rate and rm is a decay rate.

Ultimately, DELPHI involves 16 parameters that
define the transition rates between the 11 states. We
calibrate 7 of them from a database on clinical out-
comes (Bertsimas et al. 2020b). Using non-linear op-
timization, we estimate the other 9 parameters from

historical data on the number of cases and deaths in
each region. We provide the full mathematical formu-

lation of the DELPHI model and its fitting procedure
in Appendix A.

We utilize the DELPHI model to provide THEMIS

with a highly accurate epidemiological model that re-
sponds to changes in policy. The key feature of DELPHI
that is specifically relevant to THEMIS is that the rate
of people being exposed to the virus and leaving the

susceptible state (S) is policy-driven, and governed by
the following differential equation:

dS

dt
= −αRγR(t)S(t)I(t). (3)

Here αR can be interpreted as the natural infection
rate of the epidemic in the region, while γR(t) is the
time-varying reduction of such infection rate due to the
policies implemented in the region. αR is extracted di-
rectly from the appropriate fitted parameters for DEL-
PHI. For the actual policy implemented in the region,
We can also estimate γR(t) directly by the DELPHI
model.

To create γR(t) for a hypothetical policy P , we first
estimate a global correction factor γi for every potential

NPI i ∈ I using historical data (we assume that every
i ∈ I has been historically implemented somewhere).
Specifically, γi is calculated as the average reduction of
the natural infection rate αR as observed all days and
regions that i was implemented. We normalize these
values so that γi = 1 for i = “No Measure”. Note that
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Fig. 2: Governmental and societal response function γ(t) (κ = 5, tint = 10, c = 1, tjump = 25 and σ = 2).

we are not using these correction values in our model
directly but we use these to calculate the region specific
gammaR as explained below, which means implement-
ing no NPI can also have a correction factor not equal

to 1 for a region.
Then, for any region R, we calculate γR,iobs for ev-

ery potential NPI iobs ∈ I that was implemented in

the region by taking the average observed γR(t) over
all days that iobs was implemented in region R. For a
NPI iuobs ∈ I that were not historically implemented

in region R, we perform a linear regression between
the global and region-specific reduction factors (γiobs ,
γR,iobs), and utilize the imputed value as the region-
specific reduction factor γR,iuobs , as shown in Figure 3.

Then, for a hypothetical policy P = (I,T ), we de-
fine γR(t) as a piecewise constant function of the region-
specific reduction factors:

γR(t) =


γR,i0 t0 ≤ t < t1

γR,i1 t1 ≤ t < t2
...

...

γR,ik−1
tk−1 ≤ t < tk

(4)

Intuitively, we are assuming that each NPI has a region-
specific constant reduction on the infection rate during
its duration of application. Thus, by changing the policy
P , the evolution of the pandemic E would be different.

2.2 Humanitarian Cost Models

The first major category of cost during the pandemic is
the humanitarian cost. This includes not just the phys-

γi

γR,i

γiobs,1

γR,iobs,1

γiobs,2

γR,iobs,2

γiuobs

γR,iuobs

Fig. 3: A linear interpolation procedure to impute the
impact of policies on the infection rate γR,iuobs that
were not implemented in region R, using the global es-
timated impact γi.

ical health component of hospitalization and deaths in
the COVID-19 pandemic, but also the impact on men-

tal health. The NPIs induce isolation and confinement,
leading to increased mental illnesses, while healthcare
workers on the COVID-19 front-line experience PTSD
(Liu et al. 2020a, Carmassi et al. 2020). We develop
models for these components of humanitarian cost be-
low.
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Cost of COVID-19 Deaths

We calculate the cost of COVID-19 deaths by consid-
ering the total quality-adjusted life years (QALYs) lost
due to the premature mortality. This allows us to adjust
for the skew in COVID-19 mortality that is predomi-
nantly concentrated in the elder age group. Specifically,
we assume that each individual of age u who died from
COVID-19 would have otherwise on average lived for
l(u) years, where l(u) is the expected remaining life
expectancy at age u for the population in the region
under consideration (we omit the dependence on the
region in the notation here for simplicity). Then, we
denote the Probability Density Function (PDF) of age
in COVID-19 deaths in that region as f(u). Using f(u)
and l(u), we can calculate the expected QALY lost for
each COVID-19 death as:∫ U

0

l(u)f(u) du, (5)

where U is some finite maximum age. Then, we calcu-
late the total cost of QALYs lost using the total number
of deaths in the epidemic ED and the unit QALY cost
cQALY :

cD = cQALY × ED ×
∫ U

0

l(u)f(u) du (6)

Cost of COVID-19 Hospitalizations

Our calculation of the cost of COVID-19 hospitaliza-
tions separates into three categories: general hospital-

izations, Intensive Care Unit (ICU) hospitalizations,
and ventilated hospitalizations. This separation is nat-
ural due to the large differences in both the length

and cost of treatment across the three categories, of
which the DELPHI epidemiological model takes into
account. Therefore, we can extract the total number
of hospitalization-days in each category from the DEL-
PHI simulated pandemic E as EH , EI , EV respectively.
Then, denoting the daily treatment cost in each cate-
gory as cDH , c

D
I , c

D
V , the cost of COVID-19 hospitaliza-

tions can be written as:

cH = cDHEH + cDI EI + cDV EV (7)

Cost of Mental Illnesses

For mental illnesses, we focus on the effects of the pan-
demic and policies on post-traumatic stress disorder
(PTSD) and depression, highlighted by multiple studies
as the leading mental health issues arising in the pan-
demic (e.g. Pfefferbaum and North 2020, Usher et al.
2020, Zhong et al. 2021). Specifically, there has been

a sharp increase in PTSD among healthcare workers
and hospitalized COVID-19 patients, while the general
population experiences a significant increase in rate of
clinical depression due to isolation caused by contain-
ment policies (Liu et al. 2020a, Carmassi et al. 2020).
We would consider both these effects in our calcula-
tions. Specifically, we write N for the total population
in the region, and NH as the total number of health
workers exposed to COVID-19.

To calculate the cost of depression, we make a few
practical assumptions. First, we assume that the in-
crease in clinical depression is only significant if the
current NPI implemented is in the set of ”severe NPIs”,
IS ⊂ I, such as lockdown. Then, denote the increase
in prevalence of clinical depression under severe NPIs
in the general population as ∆rDep and the total gen-
eral population as N . Then, if we write the daily cost
of depression as cDep, then the total cost of depression
can be written as:

cDep ×N∆rDep ×
k∑

l=1

(tl − tl−1)1{il ∈ IS} (8)

Compared to depression induced by the containment
policies, PTSD due to either COVID-19 hospitalization

or working closely with severe COVID-19 patients can
be more persistent (Carmassi et al. 2020). We assume
that PTSD due to effects of COVID-19 continue for

TPTSD days. We denote the increase in prevalence of
PTSD among the susceptible population as ∆rPTSD.
Then the total cost of PTSD can be written as:

cPTSD × (NH +EH +EV +EI)∆rPTSD × TPTSD (9)

Therefore, the total cost of mental illnesses is:

cM = cDep ×N∆rDep ×
k∑

l=1

(tl − tl−1)1{il−1 ∈ IS}

+ cPTSD × (NH + EH + EV + EI)∆rPTSD × TPTSD

(10)

2.3 Economic Cost Models

Beyond the humanitarian impact, the COVID-19 pan-
demic created an outsized shock to the economy. The
effect of the pandemic, and the NPIs aimed to slow the
spread created large economic consequences that goes
beyond the direct GDP impact. In particular, the re-
duced output triggered massive unemployment, which
carries significant costs on its own. Therefore, in this
category, we would consider both the direct costs of
the pandemic on output, and the indirect costs of un-

employment.
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GDP Costs

The COVID-19 pandemic affects the GDP in at least
two important ways. The first is the direct output loss
due to sick workers for their duration of illness. Note
that the long-term output loss due to deaths of indi-
viduals have already been considered in the costs of
COVID-19 deaths, and thus we would only focus on the
short-term output loss due to recovered COVID-19 pa-
tients. Denote the average length (in days) of COVID-
19 sickness in the region as TS , and the number of yearly
working days as TW . Then we assume that the total
number of people who were sick, ES , is representative
of the entire workforce, which has size NW . The total
output loss due to sick workers is thus the appropriate
portion of the entire yearly GDP, GDPY :

GDPY ×
ES

NW
× TS
TW

(11)

The second important mechanism in which the COVID-
19 pandemic affects output is through the government
policy P . Concretely, we need to estimate a function

∆YR(i) which outputs the impact on the annual GDP
for region R for any NPI i ∈ I. We do so by breaking
down GDP of region R into private consumption (C),

investment (I), government expenditures (G), and net
exports (NX):

GDPR = CR + IR +GR +NXR

Then, we first establish the counterfactuals for each of

the 4 constituents of annual GDP if the pandemic did
not happen: CR,0, IR,0, GR,0, NXR,0. Then for a NPI
iobs ∈ I that was implemented in region R, we calculate

∆YR(i) as:

∆YR(iobs) = (CR,iobs − CR,0) + (IR,iobs − IR,0),

where CR,iobs is the average annual private consump-
tion over all periods during the pandemic when NPI iobs
was implemented, and similar for IR,iobs . Note that we
are ignoring the GDP change due to changes in govern-
ment expenditure and net exports. We ignore changes
in G to avoid the confounding effect due to govern-
ment stimulus policies in the pandemic (which would
not have likely been enacted if the pandemic had not
occurred). We further ignore any fluctuations in NX
as net exports are primarily affected by international
policies, and therefore should not be counted towards
the effect of i as applied within the region.

For NPI iuobs ∈ I that were not historically imple-
mented in region R, we estimate ∆YR(iuobs) by linear
interpolation between γiobs and ∆YR(iobs) to impute
∆YR(iuobs), similar to the procedure illustrated on Fig-
ure 3.

With ∆YR(i), we can calculate the total output loss
due to government policies as:

k∑
l=1

(tl − tl−1)

365
∆YR(il−1) (12)

Therefore, the total GDP costs can be calculated as:

cY = GDPY ×
ESTS
NWTW

+
k∑

l=1

(tl − tl−1)

365
∆YR(il−1) (13)

Unemployment Costs

Due to government-issued NPIs, many industries were
forced to ground to a halt or severely reduce its capac-
ity to produce, driving massive unemployment. In this
model, we would calculate the indirect costs of unem-
ployment beyond the direct loss of GDP as included in
the model for GDP costs. Specifically, this refers to the

costs of reduced well-being (physical and psychological)
due to loss of work. We denote the yearly indirect cost
of unemployment as cYU .

Then similar to the GDP costs, we would estimate
the function ∆UR(i) that measures the impact on un-

employment rate for any NPI i ∈ I. First, we establish
a pre-pandemic unemployment rate UR,0 by averaging
the seasonally-adjusted unemployment rate in region R
6 months prior to the pandemic. Then, for an observed

NPI iobs ∈ I, we calculate ∆UR(iobs) as the average
gain in unemployment rate over U0 across all months
where iobs was implemented. For an unobserved NPI

iuobs ∈ I in region R, we again utilize linear interpola-
tion with γi to impute ∆UR(iuobs), similar to the pro-
cedure illustrated on Figure 3. Then the total cost of
unemployment can be calculated as:

cU = cYU ×
k∑

l=1

(tl − tl−1)

365
∆UR(il−1)×NW (14)

3 Analyzing the Governmental Response in the
First Wave of the COVID-19 Pandemic

Using the THEMIS model, we now proceed to ana-
lyze the governmental response during the COVID-19
pandemic. As a demonstration, we focus on the first
wave as it spread around the world (t0 ≥ 2020.03.15,
tk ≤ 2020.06.15). We aim to understand the costs of the
pandemic induced by the actual policy and compare to

alternative strategies to understand how different coun-
tries could have better responded to the pandemic.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 10, 2022. ; https://doi.org/10.1101/2022.04.09.22273656doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.09.22273656
http://creativecommons.org/licenses/by/4.0/


8 Dimitris Bertsimas et al.

3.1 Data and Experimental Setup

During the first wave of the pandemic, there was still
much unknown about COVID-19. Although the Wuhan
outbreak proved COVID-19’s capability to transmit be-
tween humans, key characteristics such as symptoms,
mode of transmission, and mortality, were still being
heavily debated in the scientific community. Therefore,
most countries around the world focused on NPIs that
primarily affected population mobility, including restric-
tions on travel, work, school, or stay-at-home/lockdown
orders.

With such context, in the THEMIS model simula-
tion, we would limit the set of potential NPIs I to only
mobility restrictions that were actually implemented
around the world during the very early stages of the
first wave (2020.03-2020.04). This ensures that our com-
parison is realistic and we do not propose alternative
strategies that rely on information unavailable during

the early stages of the pandemic.

We collected the mobility restriction NPIs deployed
by 167 countries and regions around the world dur-

ing March and April of 2020, and categorized the NPIs
based on whether they restrict mass gatherings, schools,
travel and work activities. We group travel restrictions

and work restrictions together due to their tendency
to be implemented simultaneously. The set I includes
six strategies, ranked from least to most severe: (1)
No measure; (2) Restrict mass gatherings only ; (3) Re-

strict mass gatherings, travel and work ; (4) Restrict
mass gatherings and school ; (5) Restrict mass gather-
ings, schools, travel and work ; and (6) Stay-at-Home

/Lockdown. We consider the last two NPIs as ”severe
NPIs” (Is), incurring costs due to mental illnesses. We
specify that each NPI would last for one month, and

thus throughout the period of consideration [2020.03.15,
2020.06.15] each policy consists of three different NPIs.
We consider all 63 combinations of NPIs as valid poli-
cies P . For simplicity, we would refer to policies by the
numerical numbering of the NPIs below - a 6-6-6 policy
thus represents a policy that enforced lockdowns for 3
months.

To demonstrate the wide applicability of THEMIS,
we apply it to a diverse selection of countries around
the world: Germany, United States, Singapore, Spain
and Brazil. To ensure the greatest accuracy in model-
ing the alternative strategies, we take the region-specific
epidemiological parameters from the DELPHI model
trained at the end of the first wave (2020.07.01), and
the region-specific reduction coefficients γR,i are esti-
mated using the process detailed in Section 2.1. For
the region-specific cost parameters, we take the most

recent available data, and apply an appropriate infla-

tion correction if necessary. The full table is included
in Appendix B.

3.2 Results and Discussion

In Figure 4, we present the results of the simulation
of all valid policies P for the countries specified above.
We graph the resultant cost of such policy along both
the humanitarian dimension (including mortality, hos-
pitalization and mental illnesses’ costs), and the eco-
nomic dimension (including GDP and unemployment).
The cost of the actual implemented policy is denoted in
blue. We immediately observe that the different regions
have drastically dissimilar tradeoff curves, which high-
light that a policy suitable for a certain area may very
well be suboptimal for another. This is a reflection of
the significant differences in cultural and governmental
structure and capabilities across the different regions
analyzed here.

However, despite the immense differences, there are
still some important general trends that we can draw
from these graphs. First, we see that the incurred hu-

manitarian cost varies logarithmically while the eco-
nomic cost roughly stays on the same order of mag-
nitude. This is a reflection of the exponential nature

of a pandemic - NPIs insufficient to control the spread
of COVID-19 carry exponentially more humanitarian
cost than those that do. We empirically observe that
policies with the highest humanitarian cost most often

are policies that assume a very relaxed measure during
the start of a pandemic (e.g. Restrict Mass Gatherings
only), regardless of the policies later in the pandemic.

This demonstrates the outsized importance of policy
timing in regards to controlling the pandemic. In con-
trast, most policies seem to incur between 10− 30% of

the GDP of that region within the 3-month period.
Therefore, the ”efficient frontier” of the policies in

terms of economic and humanitarian costs in instituting
NPIs is very flat: An exponential decrease in humani-
tarian cost only requires a small increase in economic
costs. For example, for Germany, compared with the 1-
1-1 policy, the 6-6-6 policy (that institutes 3 months of
lockdown) reduces humanitarian costs by over 1 Tril-
lion Euros with only an increase in economic costs of
less than 70 Billion. We can also compare the efficient
frontier with the actual policy implemented in the re-
gions, demonstrated by the blue dots in Figure 4, to un-
derstand how different policymakers valued the trade-
offs differently. In Germany, we see that the actual pol-

icy implemented is very close to the minimum human-
itarian cost achievable, while the economic costs are
higher. This suggests that the German government im-
plemented a policy that highly valued a reduction in
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(a) Germany (b) New York State, US

(c) Spain (d) Florida, US

(e) Singapore (f) Brazil

Fig. 4: Tradeoff of Humanitarian and Economic Costs for various governmental policies P starting on March 15th
and continuing for 3 months. Blue indicates the cost of the actual policy implemented over such period.

humanitarian cost. We also note that the actual pol-

icy is relatively close to the efficient frontier, suggest-
ing that the German government had implemented a
very successful policy in combating the first wave of
the COVID-19 pandemic. In contrast, the actual pol-
icy for New York is quite far away from the efficient
frontier, incurring a significant economic cost yet still
registering a high humanitarian cost. The optimal pol-
icy for New York could have saved 120 billion dollars in
estimated humanitarian cost while also saving 4 billion
dollars in estimated economic cost.

However, the presence of an efficient frontier that
is heavily biased towards reducing humanitarian costs
does not mean that a more severe NPI is always bet-
ter. In fact, across all countries tested, the most severe
policy, 6-6-6, is never the optimal policy in terms of

achieving minimum costs in the sum of the two dimen-
sions.

The Figure 5 shows 20 minimum overall cost poli-
cies for all regions and the breakdown of all the costs.
It shows how the share of all cost components for the
optimal policies of different regions are so different. For
example, for Germany, the optimal policies have very
low Loss of Life Costs (about €10 billion) but higher
share of Economic Costs (about €60 billion). On the
other hand, for Spain, even with a more severe policy of

5-5-3 the Loss of Life Costs are the dominant costs at
around €920 billion out of €960 billion, which justifies
taking those more severe policy measures for Spain.

For New York State, Spain, and Brazil, the opti-

mal policy is to have a strong initial response, followed
by slow gradual reopening can avoid the vast majority
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(a) Germany (b) Spain

(c) New York State, US (d) Florida, US

(e) Singapore (f) Brazil

Fig. 5: The 20 minimum total cost policies for different regions, starting on March 15th and continuing for 3
months. The red bar is mental health costs, the orange bar is loss of life costs, the green bar is hospitalization
costs, while the blue bar is economic costs.

of humanitarian costs while also protecting the econ-
omy. In contrast, in Florida and Singapore, the most
optimal policy is to institute no measures for 3 months
(1-1-1). This is because in both regions, the model be-
lieves that additional restrictions would bring little ben-
efit. In Florida, the model estimates that the pandemic
is already so widespread that additional restrictions,
leading to large economic costs, would not save many
additional lives. In Singapore, the model predicts that
there is not enough local transmission to sustain an
epidemic even if no restrictions were instituted. This
again highlights the critical importance of timing for

these government actions.

Furthermore, we observe that regions with high GDP
per capita (US, Singapore and Germany) have differ-
ent behavior with regions with lower GDP per capita
(Spain and Brazil). For regions with high GDP per
capita, we note in Figure 4 that generally there is a
”twin peak” structure - the policies with the highest
economic costs tend to occur both at those with the
least humanitarian costs, but also those with the high-
est humanitarian costs. The peak at the minimum hu-
manitarian costs are a result from policies that continu-
ally apply the most severe NPIs, culminating in a large
reduction in societal output. The peak at the maxi-

mum humanitarian costs are due to an uncontrolled
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pandemic reducing worker availability across the soci-
ety, and thus GDP.

In contrast, for Spain and Brazil, high humanitar-
ian costs does not mean high economic costs (due to
reduced worker availability). This is because even if
the government implements a relaxed COVID-19 pol-
icy, the effect of reduced output caused by COVID-19
infections is less significant in areas with lower GDP per
capita. This indicates that developing countries might
have more economic incentive to institute a more re-
laxed pandemic policy.

4 Limitations

Although the THEMIS model uncovered important ac-
tionable insights for policymakers, there are some in-
nate limitations. First, due to the data-driven nature
of estimating the effect of NPI, the THEMIS frame-
work is unable to analyze any alternative NPI i that
has not been historically implemented. This in turn re-
stricts the potential set of alternative policies that we

can consider.
Another important limitation of the THEMIS model

relates to confounding in estimating the policy effect

on the pandemic. Due to the observational nature of
data, many societal variables change concurrently as
NPIs are implemented, creating potential confounding
effects. For example, voluntary behavior changes during

the pandemic could inflate the perceived effect of NPIs
on reducing infection rates. It is therefore important to
attempt to isolate the effect of NPIs so that the coun-

terfactual estimates are reliable. The THEMIS model,
in its construction, attempts to minimize confounding
whenever possible. For example, the DELPHI model
contains many epidemiological parameters in attempt
to isolate the policy-driven effect on the pandemic. The
GDP cost model removes the change in GDP due to
governmental expenditures and net exports as these are

confounded by additional policies not within the scope
of this paper. However, despite these measures, it is
likely that residual confounding remains. Therefore, the
conclusions drawn in this paper should be treated as a
first step to attempt to create a holistic cost-benefit
analysis of various policies. Further research is needed
to develop a greater understanding of how the NPIs and

other levers work together in affecting key dimensions
of a society during a pandemic.

The modeling of various models within THEMIS
also carries limitations of its own. The DELPHI model,
while accurate, is still a simplification of the complex
real-world dynamics of a pandemic. In particular, DEL-
PHI carries the same limitations as other SEIR-based
models in requiring a sufficiently large population and

epidemic size for the large-scale population dynamics
of compartmental models to be accurate. (Holmdahl
and Buckee 2020) This means that the THEMIS model
might be unsuited for application to granular regions
or to regions where the epidemic is not yet significant.
Furthermore, in many of the cost models, we have as-
sumed the effects are linear and additive, when in real-
ity non-linearities are often present. These assumptions
were necessary to create a tractable model that could
be supported by available data.

5 Conclusion

In this paper, we presented a system dynamics frame-
work, THEMIS, that allows us to compare both the hu-
manitarian and the economic effects of different NPIs
on the society during a pandemic. THEMIS builds upon
a state-of-the-art epidemiological model, DELPHI, and

constructs data-driven cost models to analyze the im-
pact of NPIs across mortality, hospitalizations, mental
illnesses, GDP, and unemployment. We applied THEMIS
to a wide variety of countries; the results demonstrate

that early application of severe NPIs for a short period
of time generally minimized total societal cost but the
situation differs widely between countries. In particu-

lar, we note that developing countries face a relatively
higher cost in implementing severe NPIs. The THEMIS
framework is open-source and can be easily extended to
other countries/regions around the world.
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A The DELPHI Model

The DELPHI model is a compartment epidemiological model
that extends the classical SEIR model into 11 states under
the following 8 groups:
– Susceptible (S): People who have not been infected.
– Exposed (E): People currently infected, but not conta-

gious and within the incubation period.
– Infected (I): People currently infected and contagious.
– Undetected (UR) & (UD): People infected and self-

quarantined due to the effects of the disease, but not con-
firmed due to lack of testing. Some of these people recover
(UR) and some die (UD).

– Detected, Hospitalized (DHR) & (DHD): People
who are infected, confirmed, and hospitalized. Some of
these people recover (DHR) and some die (DHD).

– Detected, Quarantine (DQR) & (DQD): People who
are infected, confirmed, and home-quarantined rather than
hospitalized. Some of these people recover (DQR) and
some die (DQD).

– Recovered (R): People who have recovered from the
disease (and assumed to be immune).

– Deceased (D): People who have died from the disease.
In addition to main functional states, we introduce auxiliary
states to calculate a few useful quantities: Total Hospitalized
(TH), Total Detected deaths (DD) and Total Detected Cases
(DT). The full mathematical formulation of the model is as
followed:

dS

dt
= −α̃γ(t)S(t)I(t)

dE

dt
= α̃γ(t)S(t)I(t) − βE(t)

dI

dt
= βE(t) − rdI(t)

dUR

dt
= rd(1 − µ̃(t))(1 − p̃d)I(t) − σUR(t)

dDHR

dt
= rd(1 − µ̃(t))p̃dphI(t) − κDHR(t)

dDQR

dt
= rd(1 − µ̃(t))p̃d(1 − ph)I(t) − σDQR(t)

dUD

dt
= rdµ̃(t)(1 − p̃d)I(t) − τ̃UD(t)

dDHD

dt
= rdµ̃(t)p̃dphI(t) − τ̃DHD(t)

dDQD

dt
= rdµ̃(t)p̃d(1 − ph)I(t) − τ̃DQD(t)

dTH

dt
= rdp̃dphI(t)

dDD

dt
= τ̃(DHD(t) +DQD(t))

dDT

dt
= rdp̃dI(t)

dR

dt
= σ(UR(t) +DQR(t)) + κDHR(t)

dD

dt
= τ̃(UD(t) +DQD(t) +DHD(t)).

Figure 6 depicts a flow representation of the model, where
each arrow represents how individuals can flow between dif-
ferent states. The underlying differential equations are gov-
erned by 16 parameters which are shown on the appropriate
arrows in Figure 6 and defined below. To limit the amount
of data needed to train this model, only the parameters de-
noted with a tilde are being fitted against historical data for
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Fig. 6: Flow Diagram of DELPHI.

each area (country/state/province); the others are largely bi-
ological parameters that are fixed using available clinical data
from a meta-analysis of over 190 papers on COVID-19 avail-
able at time of model creation (Bertsimas et al. 2020a). A
small selection of references for each parameter is given be-
low.
– α̃ is the baseline infection rate.
– γ(t) measures the effect of government response and is

defined as:

γ(t) = 1+
2

π
arctan

(
−(t− t̃0)

k̃

)
+ c̃ exp

(
−

(t− t̃jump)2

2σ̃2

)
,

where the parameters t̃0 and k̃ capture, respectively, the
timing and the strength of the response. The exponential
term intends to reflect a resurgence in infections due to
relaxation of governmental policy and societal response,

where c̃ controls the magnitude of resurgence, t̃jump the
time of the acme of the resurgence, and σ̃ the duration of
the resurgence phase. The effective infection rate in the
model is α̃γ(t), which is time dependent. The 2

π
constant

is so that the starting γ(t) with c̃ = 0 is normalized to
the range of [0, 2] with γ(t) = 1 if t = t0.

– rd is the rate of detection. This equals to log 2
Td

, where Td

is the median time to detection (fixed to be 2 days), see
Wang et al. (2020).

– β is the rate of infection leaving incubation phase. This
equals to log 2

Tβ
, where Tβ is the median time to leave

incubation (fixed at 5 days), see Lauer et al. (2020).
– σ is the rate of recovery of non-hospitalized patients. This

equals to log 2
Tσ

, where Tσ is the median time to recovery of

non-hospitalized patients (fixed at 10 days), see Hu et al.
(2020), Kluytmans et al. (2020).

– κ is the rate of recovery under hospitalization. This equals
to log 2

Tκ
, where Tκ is the median time to recovery under

hospitalization (fixed at 15 days), see Liu et al. (2020b),
Grein et al. (2020).

– τ̃ is the rate of death. This captures the speed at which
a dying patient dies, and thus inversely proportional to
how long a dying patient stays alive.

– µ̃(t) is the case fatality rate, defined as:

µ̃(t) = (µ̃0 − µmin)

(
1 +

2

π
arctan (−r̃mt)

)
+ µmin,

Where µ̃0 is the initial case fatality rate, µmin is the min-
imum case fatality rate and r̃m is the decay rate for mor-
tality. This parametric curve describes the natural decay

of case fatality rate as standard of care improves through-
out the pandemic. Notice that this quantity measures the
percentage of people who die from the disease in a par-
ticular region, and is independent from the rate of death.
If rm < 0, this function can also capture the effect of an
increasing mortality rate.

– pd is the percentage of infectious cases detected, which
is fixed at 20% based on various reports trying to un-
derstand the extent of underdetection in countries with
earlier outbreaks. Wang et al. (2020), Krantz and Rao
(2020), Niehus et al. (2020)

– ph is the (constant) percentage of detected cases hospi-
talized, which is set to 15%, see Arons et al. (2020), Xu
et al. (2020).
We fit on 11 parameters from the list above (α̃, µ̃, τ̃ , t̃0,

k̃,c̃,t̃jump,σ̃,µ̃0,r̃m). In addition, we introduce 2 additional pa-

rameters k̃1, k̃2 to account for the unknown initial population
in the infected (I) and exposed (E) states. We thus fit 13 pa-
rameters per area.

The parameters are fitted by minimizing a weighted Mean
Squared Error (MSE) metric with respect to the parameters.
Let DT (t) and DD(t) denote the number of reported total
detected cases and detected deaths, respectively, on day t.
Then, the loss function for a training period of T days is
defined as:

T∑
t=1

t2

T 2
·
(
D̃T (t) −DT (t)

)2
+ λ2 ·

T∑
t=1

t ·
(
D̃D(t) −DD(t)

)2
,

where D̃T (t) and D̃D(t) are respectively the total detected

cases and deaths predicted by DELPHI. The factor t2

T 2 gives
more prominence to more recent data, as recent errors are
more likely to propagate into future errors. The lambda factor

λ = min
{
DT (T )

3·DD(T )
, 10
}

balances the fitting between detected

cases and deaths; this re-scaling coefficient was obtained ex-
perimentally. We specifically exclude historical data starting
before the area recorded more than 100 cases; this allows us to
exclude sporadic outbreaks that are not epidemics. To opti-
mize over the highly non-convex search space, we utilize both
the local truncated newton algorithm (TNC) (Nocedal and
Wright 2006) and the global optimization method of dual an-
nealing (DA) (Xiang et al. 1997).TNC is utilized to produce
forecasts on a daily basis while DA, being more computa-
tionally expensive, is performed on a weekly basis to shift
and re-adjust the parameters more significantly if the under-
lying mechanics have changed (e.g. in the case of a new wave
of cases). We use a bound of 20% deviation around the latest
value for TNC, and a bound of 50% deviation for DA.
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Parameters Germany Spain New York, US
Cost of loss of life
COVID-19 deaths Institut (2021) INED (2021) DoH (2021b)
Actuarial tables Statistisches Bundesamt (2020a) INE (2021) SSA (2021)

VSLY
158,448

(Schlander et al. 2017)
158,448

(Schlander et al. 2017)
455,484

(Robinson et al. 2021)
Hospitalization Cost

Inpatient
162

(Kaier et al. 2020)
353

(iFHP 2021)
2,250

(BCBS 2021)

ICU
795

(Kaier et al. 2020)
1,700

(Bittner et al. 2013)
5,625

(BCBS 2021)

ICU+Ventilation
1539

(Kaier et al. 2020)
2,703

(Bittner et al. 2013)
7,010

(BCBS 2021)
Economic Cost

GDP
3.86 × 1012

(IMF 2020)
1.25 × 1012

(IMF 2020)
1.77 × 1012

(Bureau of Economic Analysis 2020)
Mental Health Cost

Cost of MDD
4,000

(Rowthorn and Maciejowski 2020)
3,412

(Vieta et al. 2021)
37,932

(Greenberg et al. 2015)

Cost of PTSD
40,000

(Bothe et al. 2020b)
1,876

(Bothe et al. 2020b)
14,857

(Bothe et al. 2020a)

No. of Healthcare Workers
892,000

(Federal Statistical Office, Wiesbaden, Germany 2020)
542,140

(Statista 2020)
600,000

(CDC 2018)

General Population over 14
72,520,000

(World Bank 2020e)
39,756,493

(World Bank 2020f)
16,164,571

(New York, Department of Health 2018)

Baseline Depression rate
7.6%

(Bäuerle et al. 2020)
4.7%

(Vieta et al. 2021)
8.5%

(Ettman et al. 2020)
Depression rate increase for General Population

6.7%
(Bäuerle et al. 2020)

14.0%
(González-Sanguino et al. 2020)

20.2%
(Young et al. 2021), (Liu et al. 2020a)

Depression rate increase for Sick

Depression rate increase for Healthcare Workers
5.8%

(Feng 2020)

Baseline PTSD rate
2.31%

(Burri and Maercker 2014)
0.57%

(Burri and Maercker 2014)
3.6%

(NIMH 2021)
PTSD rate increase for sick 6.7%

(Bäuerle et al. 2020), (Steudte-Schmiedgen et al. 2021)
15.2%

(González-Sanguino et al. 2020)PTSD rate increase for Healthcare Workers

Total Labor Force
43,356,000

(World Bank 2020b)
22,694,625

(World Bank 2020c)
9,500,000

(Bureau of Labor Statistics 2020)
Unemployment Statistisches Bundesamt (2020b) St. Louis Fed (2020a) St. Louis Fed (2020c)

Unemployment Cost
77,510

(Chen and Hou 2019)
66,312

(Gorjón et al. 2018)
100,000

(Blanchflower and Oswald 2004)

Parameters Florida, US Brazil Singapore
Cost of loss of life
COVID-19 deaths DoH (2021a) FIOCRUZ (2021) Kayano and Nishiura (2020)
Actuarial tables SSA (2021) IBGE (2020) Singstat (2020)

VSLY
455,484

(Robinson et al. 2021)
247,803

(Mardones and Riquelme 2018)
59,971

(Hoon and Lim 2008)
Hospitalization Cost

Inpatient
2,250

(BCBS 2021) 593†

(Santos et al. 2021)

520
(Feng 2020)

ICU
5,625

(BCBS 2021)
1,560

(Feng 2020)

ICU+Ventilation
7,010

(BCBS 2021)
1,944

(Feng 2020)
Economic Cost

GDP
1.11 × 1012

(Bureau of Economic Analysis 2020)
1.25 × 1012

(IMF 2020)
4.69 × 1011

(Moody’s 2020)
Mental Health Cost

Cost of MDD
37,932

(Greenberg et al. 2015)
4,100

(Lepine 2012)
23,971

(Ho et al. 2013)

Cost of PTSD
14,857

(Bothe et al. 2020a)
4,100

(Lepine 2012)
23,971

(Ho et al. 2013)

No. of Healthcare Workers
624,451

(U.S. Department of Health and Human Services 2018)
2,579,430

(World Bank 2020a)
58,000

(Health Hub 2020)

General Population over 14
17,696,804

(Florida, Office of Economic and Demographic Research 2015)
43,695,990

(World Bank 2020d)
3,456,030

(World Bank 2020g)

Baseline Depression rate
8.5%

(Ettman et al. 2020)
3.9%

(Feter et al. 2021)
2.3%

(Subramaniam et al. 2019)
Depression rate increase for General Population

20.2%
(Young et al. 2021), (Liu et al. 2020a)

25.2%
(Feter et al. 2021)

8.0%
(Tan et al. 2020)Depression rate increase for Sick

Depression rate increase for Healthcare Workers
5.8%

(Feng 2020)

Baseline PTSD rate
3.6%

(NIMH 2021)
5.0%

(da Silva et al. 2018)
0.0%

PTSD rate increase for sick 4.8%
(CDC 2021), (Liu et al. 2020a)

29.2%
(Goularte et al. 2021)

10.9%
(Tan et al. 2020)PTSD rate increase for Healthcare Workers

Total Labor Force
10,451,550

(Bureau of Labor Statistics 2020)
107,461,083

(World Bank 2020a)
3,750,000

(Moody’s 2020)
Unemployment St. Louis Fed (2020b) IBGE (2020) Ministry of Manpower (2020)

Unemployment Cost
80,000

(Blanchflower and Oswald 2004)
52,557∗

(Chen and Hou 2019)
120,000∗

(Chen and Hou 2019)

Table 2: Values and sources for the THEMIS parameters used in Section 3. All monetary units are in local
currency units unless otherwise specified. For sources with monetary information not from the simulation year

(2020), we correct the monetary value using the Consumer Price Index. †We were only able to find the blended
average hospitalization cost for COVID-19 across inpatient, ICU, and ventilated patients. ∗We extrapolate from
the observation in the paper that unemployment cost is around 1.5 year of GDP per capita.
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