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Abstract 31 

Background 32 

Gene expression profile of mitochondrial-related genes is not well deciphered in pediatric 33 

acute myeloid leukaemia (AML). We aimed to identify mitochondria-related differentially 34 

expressed genes (DEGs) in pediatric AML with their prognostic significance. 35 

Methods 36 

Children with de novo AML were included prospectively between July 2016-December 2019. 37 

Transcriptomic profiling was done for a subset of samples, stratified by mtDNA copy 38 

number. Top mitochondria-related DEGs were identified and validated by real-time PCR. A 39 

prognostic gene signature risk score was formulated using DEGs independently predictive of 40 

overall survival (OS) in multivariable analysis. Predictive ability of the risk score was 41 

estimated along with external validation in The Tumor Genome Atlas (TCGA) AML dataset.  42 

Results  43 

In 143 children with AML, twenty mitochondria-related DEGs were selected for validation, 44 

of which 16 were found to be significantly dysregulated. Upregulation of SDHC (p<0.001), 45 

CLIC1 (p=0.013) and downregulation of SLC25A29 (p<0.001) were independently predictive 46 

of inferior OS, and included for developing prognostic risk score. The risk score model was 47 

independently predictive of survival over and above ELN risk categorization (Harrell’s c-48 

index: 0.675). High-risk patients (risk score above median) had significantly inferior OS 49 

(p<0.001) and event free survival (p<0.001); they were associated with poor-risk cytogenetics 50 

(p=0.021), ELN intermediate/poor risk group (p=0.016), absence of RUNX1-RUNX1T1 51 
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(p=0.027), and not attaining remission (p=0.016). On external validation, the risk score also 52 

predicted OS (p=0.019) in TCGA dataset.  53 

Conclusion 54 

We identified and validated mitochondria-related DEGs with prognostic impact in pediatric 55 

AML and also developed a novel 3-gene based externally validated gene signature predictive 56 

of survival. 57 

Keywords: Acute Myeloid Leukaemia, Mitochondria, Gene signature, RNA sequencing, 58 

Child 59 
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Introduction 72 

Despite recent advancements, the survival in pediatric acute myeloid leukaemia (AML) 73 

continues to remain dismal(1). Various molecular and genetic alterations are frequently used 74 

for risk stratification, identification of therapeutic targets as well as predicting disease 75 

prognosis in AML(2). Whole genome and transcriptome sequencing have been extensively 76 

used in AML to identify potential novel molecular targets and developing prognostic gene 77 

signatures to predict survival, relapse and risk stratification(3–5). However, data on potential 78 

mitochondrial genes with impact on AML are limited. 79 

Dysregulation of mitochondrial pathways have been implicated in pathogenesis and 80 

progression of various malignancies(6). Multiple studies have reported the role of 81 

mitochondrial DNA (mtDNA) mutations, metabolic pathways and oxidative phosphorylation, 82 

on disease biology and prognosis of AML(7,8). We have previously reported the relationship 83 

of mutations in mtDNA regulatory region with mitochondrial gene expression, and their 84 

impact on survival in children with AML(9–11). Considering the impact of mitochondrial 85 

pathways in outcome of AML, it is important to explore tumor cell heterogeneity in AML 86 

with respect to mitochondrial transcriptome and identify potential therapeutic or prognostic 87 

molecular targets. 88 

Recently, we have reported that high mtDNA copy number  is associated with poor outcome 89 

in paediatric AML and also identified its potential regulation through PGC1A(12). In the 90 

current study, among children with AML stratified according to mtDNA copy number, we 91 

identified mitochondria-related differentially expressed genes (DEGs) through whole 92 

transcriptome sequencing. We further validated the topmost identified mitochondria-related 93 

DEGs in a cohort of paediatric AML patients and formulated a prognostic mitochondrial gene 94 

signature for predicting survival outcome. We then validated this gene signature in an 95 
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external cohort of adult AML patients from The Cancer Genome Atlas (TCGA) dataset along 96 

with estimation of predictive ability of the developed prognostic gene signature. 97 

Methodology  98 

Study design, patient population, treatment and clinical follow up 99 

This was a prospective observational cohort study that included consecutive de novo 100 

paediatric (≤18 years) patients with AML registered from July 2016 to December 2019 at 101 

medical oncology outpatient clinic of our cancer centre. The workflow of the study is 102 

depicted in figure 1. Study was ethically approved by institute ethics committee (IEC/NP-103 

336/2012, IECPG-79/22.03.2017) and informed consent was taken from care givers and 104 

assent was obtained from all participants (≥8 years). Patients with granulocytic sarcoma 105 

without marrow involvement, acute promyelocytic leukaemia, and mixed phenotypic acute 106 

leukaemia were excluded. Fifty age-matched patients of solid malignancies without marrow 107 

involvement were also enrolled as controls. Remission status and survival outcomes were 108 

noted. 109 

Risk Assessment by karyotyping and mutation analysis 110 

Conventional cytogenetics were done at baseline to identify translocations, inversions, 111 

deletion as well as other chromosomal abnormalities for risk stratification of pediatric AML. 112 

Mutation profiling of RUNX1-RUNX1T1 (Runt-related transcription factor 1-RUNX1 partner 113 

transcriptional co-repressor 1 fusion transcript), CBFB-MYH11 (Core binding factor beta-114 

myosin heavy chain 11 fusion transcript), FLT3-ITD (Fms like tyrosine kinase 3-internal 115 

tandem duplication), and NPM1 (Nucleophosmin 1) by reverse transcriptase polymerase 116 

chain reaction (PCR) were performed at baseline for risk assessment as per European 117 

LeukemiaNet (ELN) recommendation (13).  118 

Treatment protocol 119 
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All patients were treated with uniform induction protocol, i.e., 3+7 regimen including 120 

daunorubicin 60 mg/m
2
 day 1-3 and cytarabine 100mg/m

2
 continuous infusion day 1-7. 121 

Consolidation therapy with three cycles of high dose cytarabine at 18g/m
2 

were given to 122 

patients after achieving complete remission (CR) whereas repeated induction with ADE 123 

regimen (cytarabine: 100 mg/m2 twice daily, day 1-10; daunorubicin: 50 mg/m2, day 1-3; 124 

and etoposide: 100 mg/m2, day 1-5) were used for refractory or relapse cases. Patients at 125 

CR2 underwent allogeneic hematopoietic stem cell transplantation with matched sibling 126 

donor if available (13,14).  127 

Isolation of bone marrow mononuclear cells (BMMCs), DNA and RNA extraction and 128 

quantification 129 

BMMCs were isolated by Ficoll-Hypaque (Sigma diagnostics, USA) density gradient 130 

centrifugation followed by isolation of total RNA and DNA.  Briefly, BM samples collected 131 

from all the patients and controls were layered onto the histopaque in 15 ml falcon tube 132 

followed by centrifugation at 400g for 30 min at room temperature. The mononuclear cells 133 

layer was carefully taken out after centrifugation and washed twice with phosphate buffer 134 

saline (PBS). BMMC were then stored for DNA isolation using isopropanol precipitation 135 

method and total RNA was isolated using TRIzol method as per manufacturer’s protocols.   136 

Quality of DNA and RNA was checked by Nanodrop 1000 (Thermo Fisher) and integrity of 137 

RNA was checked by TapeStation (Agilent). 138 

Estimation of mitochondrial DNA copy number 139 

Relative mtDNA copy number was assessed by fluorescent DNA binding dye SYBR based 140 

quantitative real time PCR using, with Roche Light Cycler 480 II. The relative mitochondrial 141 

DNA copy number was normalized to expression of nuclear gene ACTB, which was chosen 142 

as a nuclear housekeeping gene. The mitochondrial DNA copy number, normalized to copies 143 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 3, 2022. ; https://doi.org/10.1101/2022.04.01.22273235doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.01.22273235


7 
 

per cell, in each subject and control sample was calculated using the following formula: 144 

2^[Ct(𝛽−actin) −Ct (minor arc)] (Ct being respective cycle thresholds). Relative 145 

mitochondrial DNA copy numbers of patients were then compared with controls. 146 

Whole transcriptome sequencing, identification of differentially expressed genes (DEG) 147 

and selection of DEG for analysis 148 

All the samples were classified into three separate groups based on relative mtDNA copy 149 

number(12). Patients were categorized into: AMLCN_H (mtDNA copy number ≥ 75
th

 150 

percentile), AMLCN_I (mtDNA copy number 50th to 75th percentile) and AMLCN_L 151 

(mtDNA copy number < 50th percentile) groups. A subset of samples was randomly selected 152 

from each of the three sub-groups and controls with RNA integrity score above 7 and a total 153 

of 15 samples (12 patients including 3 from AMLCN_H group, 4 from AMLCN_I group, 5 154 

from AMLCN_L group and 3 controls) were sent for whole transcriptome profiling for the 155 

identification of DEGs compared to controls.  156 

Library Construction and sequencing 157 

The sequencing library was prepared by random fragmentation of the cDNA sample, 158 

followed by 5' and 3' adapter ligation, after end-repair and the addition of an ‘A’ base and 159 

SPRI clean-up. The prepared cDNA library was amplified using PCR for the enrichment of 160 

the adapter-ligated fragments. The individual libraries were quantified using a NanoDrop 161 

spectrophotometer (Thermo Scientific) and validated for quality with a Bioanalyzer (Agilent 162 

Technologies). Adapter-ligated fragments were then PCR amplified and gel purified. cDNA 163 

library was used for sequencing which was carried out on Illumina Hiseq 4000 NGS 164 

platform.   165 

 Processing of the reads and differential expression analysis 166 
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The quality of raw reads was first checked by FastQC version v0.11.8. Trimmomatic was 167 

performed to remove adapter sequences and low-quality reads for further analysis. The 168 

trimmed reads were then aligned to reference Human genome (hg38) using HISAT2 tool. 169 

SAM tool was used to convert SAM files into BAM files which was used for quantification 170 

and estimation of aligned reads by StringTie (v2.0.6). Lastly differential expression analysis 171 

was performed by limma Bioconductor package (version 3.48.1). Absolute fold change value 172 

≥ 2 (a ≥ two-fold change in expression, either upregulated or downregulated) and adjusted p 173 

value (q ≤ 0.05) threshold was used for the identification of differentially expressed genes 174 

(DEGs). Volcano plots were made with log fold change; p value and adjusted p value of the 175 

transcripts were calculated using devtools in R package (version 3.6.1). Gene name of the 176 

corresponding transcripts with significant p value, adjusted p value and log 2-fold difference 177 

compared to controls, were fetched using gProfilerR library in R package. Exclusive 178 

differentially expressed genes were identified among the groups by making Venn diagram 179 

using Venny (Venny 2.1) online tool. (Figure 2). 180 

Construction of protein-protein interaction network, determination of HUB genes and 181 

MCODE analysis  182 

A interactive network of proteins encoded DEGs present in the respective groups were 183 

constructed using Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) 184 

database (15) in Cytoscape. Cytohubba plugin was used for identifying Hub genes among the 185 

whole interactome network. Those genes which got enriched using at least six different 186 

topological algorithms among Degree, Edge Percolated Component (EPC), Maximum 187 

Neighbourhood Component (MNC), Density of Maximum Neighbourhood Component 188 

(DMNC), Maximal Clique Centrality (MCC) and centralities based on shortest paths, such as 189 

Bottleneck (BN), Eccentricity, Closeness, Radiality, Betweenness, and Stress were 190 

considered as Hub genes(16). Cytoscape plug-in MCODE clustering algorithm was used for 191 
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identifying the maximum ranked cluster which has a highly interconnected region , also 192 

known as seed nodes as well as their neighbour nodes in the whole network (17). Subcellular 193 

location of the genes was identified from the gene ontology table. Compartment mitochondria 194 

score was used for selecting mitochondrial related genes among all the AML subgroups.  195 

Selection and validation of mitochondria-related DEGs 196 

Out of all identified DEGs from transcriptome sequencing, mitochondria-related genes were 197 

filtered using Cytoscape compartment mitochondrion score (0 being minimum and 5 being 198 

highest)(18). DEGs with topmost mitochondrial compartment score were selected for 199 

validation in a cohort of paediatric patients with AML. The genes of MCODE cluster 1 and 200 

Hub genes were assessed for their mitochondrial localization as above and genes in each 201 

group with highest mitochondrial compartment score were selected for validation. Based on 202 

these selection strategies, a total of 20 mitochondria-related DEGs were selected for 203 

validation. Real time PCR was performed to validate the selected mitochondria-related genes 204 

using specific primers (Table S1) and the gene expressions were quantified per previously 205 

described protocol(12). All experiments were replicated in triplicates. 206 

Comparison of validated mitochondria-related DEGs in TCGA data set 207 

For external validation of mitochondrial related DEGs, the RNA-sequencing data (Illumina 208 

HiSeq 2000) of TCGA adult AML(LAML) dataset was chosen, which is one of the largest 209 

datasets of transcriptomic profile in AML with recorded clinical 210 

outcome(https://www.cbioportal.org/ study/summary? id=laml_tcga). The adult dataset was 211 

specifically chosen to see the impact of prognostic impact of the validated mitochondria-212 

related age group in a different age group as well. The expression of validated DEGs was 213 

compared with LAML data set using online available GEPIA2 (Gene Expression Profiling 214 

Interactive Analysis) web server (http://gepia2.cancer-pku.cn/#index)(19). 215 
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Statistical Methods 216 

Prognostic impact of mitochondria-related DEGs and development of mitochondrial 217 

gene signature 218 

Statistical analysis was carried out in SPSS (v23, IBM, NY, USA). Descriptive statistics were 219 

used to summarize baseline characteristics. Gene expression was reported as median values 220 

with interquartile ranges. Gene expression values and clinical continuous variables with non-221 

parametric distribution were compared by Mann Whitney test. Clinical categorical variables 222 

were compared by Chi-square test/Fisher’s exact test as applicable. Alpha error was adjusted 223 

for multiple comparisons by Bonferroni correction. Kaplan Meier method was used to 224 

analyse time to event outcomes. Duration from enrolment to relapse or death due to any cause 225 

was considered as event free survival (EFS). Time from enrolment to death due to any cause 226 

was defined as overall survival (OS).  Survival data was censored till 31
st
 Dec 2020. The 227 

follow-up estimation was done by reverse Kaplan Meier method.  228 

Prognostic impact of all validated DEGs on OS of the whole validation cohort was performed 229 

by multivariable Cox regression analysis in a forward stepwise manner based on log 230 

likelihood change. Validated DEGs with significant (p<0.05) predictive impact on OS in 231 

multivariable analysis were included for the prognostic gene signature model. The 232 

proportional hazard assumption was assessed by Schoenfeld global test. Internal validation of 233 

the multivariable prognostic model was carried out by bootstrapping method (10000 234 

resampling) and genes that did not satisfy bootstrapping validation were excluded. A 235 

prognostic risk score was generated using cox regression coefficient Beta (β) values of 236 

included genes, of the final multivariable model as below: 237 

Risk score = [∑ (
𝑛

𝑘
) { 𝛽𝑘 × (𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑚𝑅𝑁𝐴𝑘)}

𝑛

𝑘=0

] × 100 
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The area under the time-dependent receiver operating characteristic (ROC) curve (Timed 238 

AUC) for 12-months and 18-months survival was estimated and Harrel’s C-index of the 239 

prognostic model was calculated using the R package “survminor” in R (version 4.0.3). 240 

Patients were classified into two groups based on their risk score above (High-risk) and 241 

below (Low-risk) the median. The survival outcomes of the patients were compared between 242 

high-risk score vs low-risk score patients using Kaplan Meier analysis to evaluate the 243 

prognostic significance of the gene signature model.   244 

Impact of clinical features and independent prognostic value of the gene signature 245 

The role of demographic and clinical features, including gender, age, haemoglobin, 246 

hyperleukocytosis (≥50000/µl), platelet count, presence of chloroma and ELN risk 247 

stratification(2)on survival outcome was analysed using the Cox regression. Factors with 248 

p<0.1 in univariable analysis were included for multivariable Cox regression in a forward 249 

stepwise manner using log likelihood change. Clinico-demographic factors which were 250 

significant in multivariable analysis were included in a multivariable Cox regression model 251 

along with gene signature risk score to explore the independent predictive value of gene 252 

signature. The timed AUC using 12-months survival and 18-months survival as the outcome 253 

and Harrel’s C-index of the clinical prognostic model and combined clinical and gene 254 

signature prognostic model were compared for identifying the additional prognostic benefits 255 

of gene signature over clinical parameters. The impact of mtDNA copy number on survival 256 

outcome was also analysed similarly. 257 

External validation of mitochondrial prognostic gene signature in TCGA dataset 258 

The prognostic impact of our gene signature risk score on OS was done in TCGA LAML 259 

(n=179) dataset by Cox regression analysis. Patients were similarly sub-grouped into high-260 

risk and low-risk category based on median value of the gene signature; the survival 261 

outcomes of the patients were compared between high-risk score vs low-risk score patients 262 
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using Kaplan Meier analysis and timed AUC of 12-month and 18-month survival was 263 

evaluated. Based on available karyotyping data, patients of the TCGA dataset were grouped 264 

into poor-risk karyotype and others (including good and intermediate-risk karyotype). The 265 

karyotype category and mitochondrial gene risk score were assessed for their impact on OS 266 

by a multivariable Cox regression model to explore the independent predictive value of the 267 

gene signature in the external cohort as well.  268 

Results 269 

Patients’ recruitment and baseline clinical features 270 

Total 170 patients were enrolled, out of which 27 patients (5 patients were AML M3, 4 had 271 

granulocytic sarcoma without marrow involvement, and 18 patients had insufficient samples) 272 

were excluded. The baseline demographic and clinical characteristics of final 143 patients are 273 

summarized in Table 1.  Median age was 10 years (range: 0.8-18 years) and 50% of the 274 

patients were classified as ELN good risk. Total 104 patients (72.7%) achieved complete 275 

remission (CR) after induction therapy. At median follow-up of 36 months (32.67-39.33 276 

months), the median OS was 21.93 months (13.54–30.31months). The clinical characteristics 277 

of the TCGA LAML dataset are summarized in Table S2. 278 

Identification of DEGs in paediatric AML based on mtDNA copy number 279 

We identified 898,769, and 953 significantly dysregulated transcripts in AMLCN_H, 280 

AMLCN_I and AMLCN_L groups respectively by whole transcriptome sequencing as 281 

represented in volcano plots (Figure3). Majority of genes were found significantly 282 

downregulated in all three groups whereas the number of dysregulated genes were higher in 283 

AMLCN_H group compared to other two groups. A total of 351 DEGs (59 upregulated and 284 

292 downregulated) were identified in AMLCN_H. Similarly, AMLCN_I and AMLCN_L 285 

groups had 290 (66 upregulated and 224 downregulated) and 332 (47 upregulated and 285 286 

downregulated) DEGs respectively as compared to controls. 287 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 3, 2022. ; https://doi.org/10.1101/2022.04.01.22273235doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.01.22273235


13 
 

Identification of mitochondria-related DEGs, hub genes and selection of genes for 288 

validation 289 

Out of all DEGs, 78, 58, and 71 mitochondria-related DEGs were identified in AMLCN_H, 290 

AMLCN_I and AMLCN_L groups respectively. Among them, 35 genes were common in all 291 

three subgroups, whereas 18, 12 and 14 mitochondria-related DEGs were exclusively present 292 

in AMLCN_H, AMLCN_I and AMLCN_L groups respectively (Figure 4). In AMLCN_H, 293 

AMLCN_I and AMLCN_L groups, we identified 17, 18 and 17 hub genes respectively using 294 

CytoHubba analysis, of which eight were common among all subgroups (Table S3, Figure 5). 295 

Furthermore, using MCODE analysis, clusters with maximum scores were generated and 296 

seed gene was determined in the three groups (Figure 6). MMP9 was identified as seed node 297 

with maximum MCODE score in both AMLCN_H and AMLCN_I group (Table S4). Based 298 

on the mitochondrial compartment score, CytoHubba and MCODE analyses, a total of 20 299 

DEGs were selected for further validation (Table 2). 300 

Validation of selected DEGs, comparison with TCGA database 301 

In the validation cohort of 143 AML patients, the expression of SLC25A3, SDHC, 302 

RACK1/GNB2L1, FASTKD1, ATP5J, CLIC1, GLUD1, and SLC25A29 were found to be 303 

significantly upregulated (Figure 7, Table 3) while FASLG, HRK, ALAS2, SLC25A21, 304 

CYP1B1, SNCA, MMP9, and OLFM4 were significantly downregulated (Figure 8, Table 3) 305 

compared to controls. Two selected genes, LIG1 and MRPL51 did not show significant 306 

dysregulation while LONP1 had a reverse expression in the validation compared to 307 

transcriptomic expression profile. Upon comparison with TCGA dataset of adult AML 308 

patients, similar dysregulation was observed for ALAS2, SLC25A21 and SLC25A29 genes 309 

while a reverse expression pattern was observed for ATP5J and CLIC1 genes; none of the 310 

other genes showed significant dysregulation in the TCGA dataset (Table 3). 311 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 3, 2022. ; https://doi.org/10.1101/2022.04.01.22273235doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.01.22273235


14 
 

Mitochondria-related DEGs and mtDNA copy number 312 

On univariable analysis, increased mtDNA copy number was significantly associated with 313 

poor event free survival (HR= 2.14; 95%CI (1.39-3.29); p=0.001) and overall survival (HR= 314 

2.77; 95% CI (1.70-4.59); p<0.001) (Figure 9). In patients with increased mtDNA copy 315 

number, expression of SLC25A3, SDHC, RACK1/GNB2L1 and FASTKD1, were significantly 316 

higher compared to those with low mtDNA copy number (Figure 10).Exclusive elevated 317 

expression of these 4 genes were also observed in transcriptome of samples with 318 

high/intermediate mtDNA copy number(AMLCN_H/AMLCN_I) compared to low mtDNA 319 

copy number (AMLCN_L).On correlation analysis, these 4 genes along with 2 other genes 320 

CLIC1 and ATP5J showed significant positive correlation with mtDNA copy number(Table 321 

4). 322 

Predictive ability of expression of validated DEGs on survival outcome and 323 

establishment of the prognostic gene signature 324 

On multivariable analysis, upregulated expression of 2 genes, SDHC (HR 1.29; 95% CI 325 

(1.14-1.41); p<0.001) andCLIC1(HR 1.20; 95% CI (1.04-1.38); p=0.013), and 326 

downregulation of SLC25A29(HR 0.88; 95% CI (0.83-0.93); p<0.001) were found to be 327 

independently predictive of worse OS (Table 5) and they were included for the development 328 

of a prognostic gene signature model. All these 3 genes (SDHC, CLIC1, SLC25A29) satisfied 329 

internal validation by bootstrapping (Table S5), and were finally selected for prognostic 330 

model building. Beta coefficient of each of the variables were used for calculation of risk 331 

score as follows: 332 

𝑅𝑖𝑠𝑘 𝑠𝑐𝑜𝑟𝑒 = [(0.237 × Expression 𝑆𝐷𝐻𝐶) + (0.179 × Expression 𝐶𝐿𝐼𝐶1) + ((−0.131)

× Expression 𝑆𝐿𝐶25𝐴29)] × 100 

The formula was used to calculate risk score of all the patients. Risk score median value 333 

(10.382) was taken as the cut-off for subgrouping patients into high-risk and low risk group. 334 
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Patients with high-risk scores (≥10.382) had inferior OS (HR 1.010; 95% CI (1.007-1.014): 335 

p<0.001) compared to those with low-risk score (<10.382) (Figure 11A). Harrel’s C-index of 336 

the prognostic model was 0.675. The timed AUC of the risk score for 12 months and 18 337 

months survival was 0.747 and 0.736 respectively (Figure 11(B, C).  338 

Association of gene signature-based risk score with event free survival (EFS)  339 

On multivariable Cox regression analysis, upregulation of SDHC (HR 1.225; 95% CI (1.100-340 

1.363); p<0.001) and downregulation of SLC25A29 (HR 0.905; 95% CI (0.860-0.952); 341 

p<0.001) were also predictive of worse EFS. We also found that patients with high-risk score 342 

had significantly lower EFS as compared to low-risk score patients (HR 1.008; 95% CI 343 

(1.001-1.012); p<0.001) (Table 5). Harrel’s C-index of prognostic model was 0.626. The 344 

timed AUC of the risk score for 12 months and 18 months EFS was 0.617 and 0.612 345 

respectively 346 

Impact of baseline clinical features on survival outcome and association with gene 347 

signature model 348 

On univariable Cox regression analysis, ELN intermediate/poor risk and absence of chloroma 349 

were significantly associated with inferior OS and only ELN category came out to be an 350 

independent prognostic factor in multivariable analysis (Table 6, Figure 11D). Furthermore, 351 

on multivariable analysis, both the ELN risk category (p=0.040) and risk score (p<0.001) 352 

were found to be independent prognostic factors for OS. We also performed multivariable 353 

analysis including mtDNA copy number and observed that all three factors i.e. risk score 354 

(p<0.001), ENA risk categories(p=0.012) and mtDNA copy number(p=0.012) were 355 

independent prognostic factors for OS (Table S6). 356 

Impact of combined clinical and gene signature model on survival outcome of the cohort 357 

To compare the predictive ability of our gene signature risk score and ELN risk stratification 358 

on OS of AML patients, a time dependent AUC was constructed. Harrel’s C-index of the 359 
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model was 0.59 and the timed AUC of ELN risk category on 12 months and 18 months 360 

survival was 0.60 and0.64 respectively (Figure 11E, F). We combined the ELN risk strategy 361 

with our risk score and calculated the predictive ability of the model. The Harrel’s C-index of 362 

the model was 0.688 and the timed AUC of combining ELN risk strategy with gene signature 363 

risk score for 12 months and 18 months was 0.761 and 0.765 respectively (Figure 11H and 364 

2I).  365 

Association of gene signature risk score on disease characteristics 366 

We found that a high-risk score was significantly associated with poor risk 367 

cytogenetics(p=0.021), absence of RUNX1-RUNX1T1 translocation (p=0.027) and ELN 368 

intermediate/poor risk group (p=0.016). Furthermore, the proportion of patients achieving CR 369 

was significantly higher in the low-risk group as compared to the high-risk group(p=0.017) 370 

(Table 7). On subgroup analysis, it was observed that the mitochondria-related gene signature 371 

risk score category was significantly predictive of survival outcome across all clinically 372 

relevant subgroups except in those with intermediate/poor-risk karyotype (Figure 12). 373 

Predictive ability of combined gene signature and ELN category model on survival 374 

outcome 375 

The predictive ability of gene signature score along with ELN risk stratification on survival 376 

outcome of paediatric AML patients was also assessed. Patients with low gene signature 377 

score (low risk) belonging to ELN good risk category had significantly better survival 378 

outcome (Median OS: Not reached) and predicted 12-months (80%±6%), as well as 18-379 

months (75%±7%) survival. Similarly, patients with high gene signature score (high risk) 380 

belonging to ELN intermediate/poor risk category had significantly inferior outcome (4.67 381 

months (0-3.71)) with 12-months and 18-months predicted survival of 33% ± 8% and 25% ± 382 

7% respectively. On the other hand, patients belonging to other groups (ELN 383 

intermediate/poor risk and low-risk; ELN good risk and high-risk score) had intermediate 384 
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survival outcome (median survival of 27.77-22.90 months respectively) between the two 385 

other groups (Figure 11G; Table 8). 386 

External validation of gene signature risk score in TCGA database 387 

Using our risk calculation model, we calculated the risk score in TCGA dataset (n=179) and 388 

similarly, patients were further sub-grouped as high-risk score (higher than median) and low 389 

risk score (lower than median) based on the median value (43.434).  Kaplan Meier analysis 390 

showed that patients with a high-risk score (≥43.434) had inferior OS (HR 1.01;95% CI 391 

(1.00-1.02); p<0.019) compared to those with a low-risk score (<43.434) (Figure 11J; Table 392 

5). Along with this, poor risk karyotype patients had worse overall survival (HR 1.89; 95% 393 

CI (2.95-1.20); p=0.004) compared to patients with good risk or intermediate risk karyotype 394 

(7.03 vs 18.96months). On multivariable analysis karyotype (poor vs good risk/intermediate 395 

risk) and risk score were found to be independently predictive of (p=0.002; p=0.025 396 

respectively) for worse OS. The timed AUC of risk score for 12-months and 18-months 397 

survival in the TCGA dataset were 0.64 and 0.63 respectively (Figure 11K and 11L) and 398 

Harrel’s C-index of the prognostic model was 0.600.  399 

Discussion 400 

Our study is the first one to identify and validate mitochondria-related DEGs in paediatric 401 

AML along with determining their prognostic significance. In paediatric AML patients, we 402 

identified and validated 16 mitochondrial DEGs including 8 upregulated and 8 403 

downregulated genes compared to controls. The dysregulated expression of these genes has 404 

been previously reported in the pathogenesis of various malignancies(20–23). However, they 405 

have not been studied in paediatric AML. Comparison with LAML dataset of TCGA cohort 406 

suggests that the mitochondria-related gene expression profile in paediatric AML is likely 407 

distinct. Elevated expression of genes like SLC25A3, FASTKD1, SDHC, ATP5J, which were 408 

observed for the first time in our cohort, are involved in mitochondrial energy 409 
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metabolism(24–26). Genes like FASLG, HRK and SNCA, which were observed to be 410 

downregulated, also play role in prevention of mitochondrial damage and apoptosis inhibition 411 

in melanoma/medulloblastoma cell lines(27–29). Preliminary data suggests that 412 

downregulation of genes like MMP9 and OLFM4, as observed in our cohort, may aid in 413 

AML progression(30,31).  The expression of CYP1B1 is reported to be elevated in various 414 

malignancies, however, its expression is downregulated in early age leukaemia, as seen in our 415 

cohort(32). These findings suggest that the observed mitochondria-related DEGs likely play 416 

crucial role in disease progression in paediatric AML, which needs to be studied further 417 

mechanistically. 418 

Enhanced mtDNA copy number has been previously reported to be play role on AML 419 

initiation, progression as well as predictive of survival outcomes(12,33). Similar to our 420 

previous finding, we found that mtDNA copy number were significantly higher and 421 

independently predictive of worse survival outcome in this cohort of pediatric AML patients. 422 

These findings emphasise the importance of mtDNA copy number as a driver of disease 423 

biology. Among the 16 validated mitochondria-related DEGs analysed, we observed that the 424 

patients with higher mtDNA copy number had significantly higher expression of SLC25A3, 425 

SDHC, RACK1, and FASTKD1 compared to patients with low mtDNA copy number. While, 426 

only a small percentage of mitochondrial proteins are coded by the mitochondrial genome, 427 

variations in mtDNA may modulate molecular signals through nuclear-mitochondrial 428 

crosstalk, which may promote tumorigenesis by upregulating oncogenes(34,35). This 429 

suggests that in paediatric AML, cells with high mtDNA copy number are possibly driven 430 

through unique gene expression alterations, influencing disease biology and therapeutic 431 

response. 432 

Comprehensive gene expression profiling has been extensively used to identify potential 433 

prognostic genes in adult AML; however, dysregulation of mitochondria-related gene 434 
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expression, especially in children has not been well explored(36–38). Transcriptomic 435 

profiling of cytogenetically normal paediatric AML has identified complex genomic 436 

rearrangements and/or driver mutations in seemingly normal AML genomes and may even 437 

aid risk stratification(39,40). Cai et al. developed a 3-gene prognostic risk model for children 438 

with AML using NCI TARGET dataset, although it was not externally validated(36). 439 

Similarly, Duployez et al. and Jiang et al. developed leukaemia stem cell score gene 440 

signature and immune checkpoint related gene signature respectively in paediatric AML 441 

predictive of survival outcomes(4,41). None of the above studies evaluated alterations in 442 

mitochondrial gene expressions. Mitochondrial gene expression has been evaluated in other 443 

malignancies like ovarian cancer, where a mitochondria-related gene signature, consisting of 444 

8 metabolic genes, has been identified with independent prognostic impact(42). 445 

In this study, we identified exclusive mitochondria-related DEGs in paediatric AML and 446 

developed a prognostic gene signature including 3 genes (SDHC, CLIC1, and SLC25A29).  447 

The gene signature risk score was additionally found to be independently predictive of 448 

survival along with established ELN risk stratification with improved predictive ability over 449 

clinical risk categorization. The risk score was also found to be associated with poor clinical 450 

features of AML like the absence of RUNX1-RUNX1T1 translocation or poor-risk 451 

cytogenetics. Hence, the gene signature model is able to categorize the heterogenous 452 

molecular landscape of AML into clinically meaningful categories along with identification 453 

of adverse disease biology. The developed prognostic score also has the potential to identify 454 

high-risk subgroup even among those belonging to ELN good risk and vice-versa allowing 455 

better upfront risk stratification and personalized treatment decisions.  456 

TCGA LAML dataset has been extensively used for identifying as well as validating 457 

prognostic gene signatures in various AML studies(43,44). We used the LAML dataset of 458 

TCGA for external validation of our gene signature model and observed that the prognostic 459 
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gene signature score was also independently predictive of survival outcome in a large adult 460 

cohort as well with predictive ability over and above known clinical predictors. This suggests 461 

that the identified DEGs have a prognostic impact in AML across age group. 462 

Our gene signature included 3 mitochondria-related genes i.e., SDHC, CLIC1, and 463 

SLC25A29. SDH mutations lead to decreased activity of SDH with accumulation of succinate 464 

and increase in oxidative stress resulting in DNA damage and tumorigenesis(45). In contrast 465 

to previous findings, which suggests that the SDH gene is inactivated in solid tumors(46), we 466 

observed an increased expression of SDHC gene in AML which was predictive of worse 467 

survival. This is likely because, in contrast to solid malignancies, aggressive leukemias like 468 

AML depend on cellular oxidative phosphorylation for proliferation which is supported by 469 

upregulation of respiratory complex genes(47). Various studies also suggest dysregulation of 470 

chloride ion channels such as  the CLIC1 gene which plays a role in drug resistance and 471 

progression of various malignancies(22,48). Although, the role of CLIC1 in AML is still 472 

unexplored, we observed significant upregulation of CLIC1 in paediatric AML with adverse 473 

prognostic impact. The downstream effects of upregulation of CLIC1 on disease biology of 474 

AML need to be further deciphered.  475 

In the current study, we observed an upregulation of  SLC25A29 in our cohort of paediatric 476 

AML patients, which is in line with previous studies where it was found to be significantly 477 

elevated in multiple malignancies(23). Similar upregulation was also been observed in adult 478 

AML patients of TCGA LAML dataset. However, on survival analysis, downregulation of 479 

SLC25A29 was independently predictive of worse OS in our cohort. This finding was 480 

consistent even in the external cohort of TCGA LAML dataset, where even though the 481 

expression of SLC25A29 was upregulated, a downregulated expression was predictive of 482 

worse survival outcomes. This finding was intriguing and the mechanism by which 483 

downregulation of SLC25A29 drives a worse survival outcome remains unclear. SLC25A29 is 484 
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the main arginine transporter in the mitochondrial membrane(49). Aberrant upregulation of 485 

SLC25A29 may result in transportation of more arginine into mitochondria, promoting 486 

synthesis of metabolites like  nitric oxide, polyamines, proline and creatine, which are 487 

essential for cell survival and proliferation(50). Mitochondria-derived nitric oxide is known 488 

to have a dichotomous role in regulation of cancer progression which is influenced by 489 

expression of SLC25A29likelyaffecting disease outcome(51). The SLC25 family of genes 490 

which encodes for a set of mitochondrial inner membrane carrier proteins, have been 491 

identified as a potential biomarker as well as novel therapeutic targets in various 492 

malignancies(52). The implications of altered expression of SLC25A29 on disease biology of 493 

AML and its assessment as a therapeutic target is an exciting area of further research. 494 

Our study has certain limitations. Transcriptomic profile and further validation by RTPCR 495 

were done in whole isolated mononuclear cell and not in sorted blasts. Initial selection of 496 

DEGs were also done from whole RNA sequencing of a limited number of samples, which 497 

may lead to a bias in selection, however, external validation of the validated genes confirmed 498 

their prognostic impact in an independent cohort. 499 

In conclusion, this is the first study to report a validated set of mitochondria-related DEGs in 500 

paediatric AML. We observed that patients with high mtDNA copy number have a unique 501 

gene expression pattern possibly affecting disease biology. We developed a 3-gene based 502 

mitochondrial gene signature model with ability to predict prognosis in paediatric AML 503 

patients over and above established clinical prognostic parameters. The gene signature was 504 

also externally validated in a cohort of adult AML patients demonstrating its predictive 505 

ability in adult AML as well. Further directions for research include in vitro studies for 506 

elucidating the role of prognostic genes in leukemogenesis and their evaluation as potential 507 

targets for the treatment of paediatric AML.  508 
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Figures 725 

726 
Figure 1.  Workflow of the study:  Study workflow showing flow of patients from enrolment to 727 

RNA sequencing, identification of mitochondria- related DEGs, development and validation of novel 728 

3-gene based Risk score. 729 
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 730 

Figure 2: Workflow of RNA sequencing data analysis using various bioinformatic tools 731 
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 735 
 736 

Figure 3: Volcano plots representing all dysregulated transcripts among AMLCN_H (A), 737 

AMLCN_I (B) and AMLCN_L (C) groups compared to controls. Green dots represent 738 

significantly differentially expressed transcripts in the three subgroups of AML compared to 739 

controls. High AMLCN_H (more than 75th percentile); intermediate AMLCN_I (50th to 75th 740 

percentile) and low AMLCN_L (lower than 50th percentile) relative mitochondrial DNA copy number 741 
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 743 

 744 

Figure 4: Venn diagram representing mitochondrial associated differentially expressed genes (DEGs) 745 

among three groups of AML (AMLCN_H; AMLCN_I and AMLCN_L). High AMLCN_H (more 746 

than 75th percentile); intermediate AMLCN_I (50th to 75th percentile) and low AMLCN_L (lower than 747 

50th percentile) relative mitochondrial DNA copy number 748 
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 752 

 753 

Figure 5: Hub gene based on Maximal Clique Centrality (MCC) (A): AMLCN_H; (B) AMLCN_I; 754 
(C) AMLCN_L. High AMLCN_H (more than 75th percentile); intermediate AMLCN_I (50th to 75th 755 
percentile) and low AMLCN_L (lower than 50th percentile) relative mitochondrial DNA copy number 756 
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 759 

Figure 6: MCODE (molecular complex detection) analysis showing most interactive clusters 760 

among A: (A): AMLCN_H; (B) AMLCN_I; (C) AMLCN_L. High AMLCN_H (more than 75th 761 

percentile); intermediate AMLCN_I (50th to 75th percentile) and low AMLCN_L (lower than 50th 762 

percentile) relative mitochondrial DNA copy number 763 
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 766 

 767 

Figure 7: Validation of selected upregulated differentially expressed genes (DEGs) in patients as 768 

compared to controls. SLC25A3, SLC25A29, SDHC, FASTKD1, GLUD1, RACK1, ATP5J and CLIC1 769 

were significantly upregulated in pediatric AML patients (n=143) compared to controls (n=50). *: 770 

P<0.05; **: P< 0.01; ***: P<0.001; ****: P<0.0001. 771 
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 776 

 777 

Figure 8: Validation of selected downregulated differentially expressed genes (DEGs) in patients as 778 

compared to controls. FASLG, CYP1B1, HRK, ALAS2, SLC25A21, MMP9, SNCA and OLFM4 were 779 

significantly downregulated in pediatric AML patients (n=143) compared to controls (n=50) *: 780 

P<0.05; **: P< 0.01; ***: P<0.001; ****: P<0.0001 781 
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 785 

Figure 9: Kaplan Meier curves representing association of mtDNA copy number with (A) event free 786 
survival and (B) overall survival of pediatric AML patients   787 
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 789 

 790 

Figure 10: Subgroup analysis of acute myeloid leukemia showing exclusive deregulation of validated 791 

genes among AMLCN_L and AMLCN_H group. The expression of SLC25A3(A), SDHC(B), 792 

RACK1(C) and FASTKD1(D) were significantly higher in AMLCN_H group as compared to 793 

AMLCN_L 794 
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Figure 11: Kaplan Meier curves representing association of mtDNA copy number with (A) event free 798 

survival and (B) overall survival of pediatric AML patients  Figure 11.A 3-gene based gene 799 

signature stratifies survival in pediatric and adult AML patients along with clinically 800 

established European LeukemiaNet (ELN) risk categories. (A) Kaplan Meier estimates of overall 801 

survival in pediatric AML patient’s subgroup into high Risk-score and low Risk-score. (B) and (C) 802 

AUC curves quantify the ability of our 3-gene based risk score to predict outcome in individual 803 

patients (specificity and sensitivity) within the first 12 months(B) and 18 months(C) of treatment 804 

initiation respectively. (D) Kaplan Meier estimates of overall survival in pediatric AML patient’s 805 

subgroup into ELN good risk and ELN intermediate or poor risk categories. (E) and (F) AUC curves 806 

quantify the ability of ELN risk categories to predict outcome in individual patients (specificity and 807 

sensitivity) within the first 12 months (E) and 18 months(F) of treatment initiation respectively. (G)  808 

Kaplan Meier estimates of overall survival in pediatric AML patient’s subgroup by combining ELN 809 

risk categories with our 3 gene-based risk score.  (H) and (I) AUC curves quantify the ability of 810 

combined model of ELN risk categories and our 3 gene-based risk score to predict outcome in 811 

individual patients (specificity and sensitivity) within the first 12 months(H) and 18 months(I) of 812 

treatment initiation respectively. (J) Kaplan Meier estimates of overall survival in external adult The 813 

Cancer Genome Atlas (TCGA) AML patient’s subgroup into high Risk-score and low Risk-score 814 

using our 3 gene-based gene signature model. (K) and (L) AUC curves quantify the ability of our 3-815 

gene based risk score to predict outcome in individual patients of TCGA adult AML datasets 816 

(specificity and sensitivity) within the first 12 months(K) and 18 months(L) of treatment initiation 817 

respectively. AUC = 1.0 would denote perfect prediction, and AUC = 0.5 would denote no predictive 818 

ability. 819 
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 832 

 833 

Figure 12:  Forest plot showing the impact of mitochondrial prognostic gene signature risk score 834 

category on survival outcome in various clinically relevant subgroups of pediatric Acute myeloid 835 

leukemia 836 
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Table 1: Baseline characteristic features of pediatric AML patients (n=143) 841 

Characteristics Number (%) 

Median age (years) 10 (0.8-18) 

Sex 

Male 87 (60.8) 

Female 56 (39.2) 

Haematological parameters 

Median haemoglobin, (g/dL) 7.4 (2.1‐14.6) 

Median total leucocyte count, 

(×10
3
/μL) 

24.38 (0.76-314.3) 

Hyperleukocytosis, (>50×10
3
/μL) 45 (31.46) 

Median platelet count, (×10
3
/μL) 35.00(4‐276) 

Clinical features at presentation 

Fever 112(78.3) 

Chloroma 27 (18.9) 

Cytogenetics (n=130)  

Normal 36 (27.5) 

t(8;21) & inv (16)* 52 (39.7) 

Complex karyotype 8 (6.1) 

Other 19 (14.5) 

Failed cytogenetics 16(12.2) 

Molecular analysis (n= 122) 

FLT3 ITD 17 (13.8) 

RUNX1‐RUNX1T1 53 (43.1) 

CBFB‐MYH11 6 (4.9) 

NPM1 5 (4.1) 

Negative 41 (33.6) 

ELN risk stratification** (n=134)  

Good 67 (50) 

Intermediate 37 (27.6) 

Poor 30 (22.4) 

Complete remission (n=143) 

Achieved  104 (72.7%) 

Not achieved  39 (27.3%) 

* t(8;21)= t(8;21)(q22;q22) RUNX1-RUNX1T1; inv(16)= inv(16)(p13.1;q22) CBFB-MYH11 842 
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**ELN risk stratification was done using both cytogenetics and molecular markers in 134 patients.  However, 843 
for 12 patients risk stratification was done with only cytogenetics and in 20 patients, it was done by only 844 
molecular analysis. 845 

Median values were reported with range 846 

n: number of patients; AML: Acute Myeloid Leukemia; Normal cytogenetics: 46,XX/46,XY; Failed 847 
cytogenetics: metaphases could not be isolated; FLT3 ITD: FMS-like tyrosine kinase internal tandem 848 
duplication; RUNX1-RUNX1T1: runt-related transcription factor 1-RUNX1 partner transcriptional co-repressor 849 
1 fusion transcript; CBFB-MYH11: core binding factor beta-myosin heavy chain 11 fusion transcript; NPM1: 850 
Nucleophosmin 1; ELN: European LeukemiaNet. 851 
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Table 2: List of genes selected for validation among all the groups based on mitochondrial 854 
compartment score, Cytohubba and MCODE  855 

S no. Gene name 

Compartment 

mitochondria 

score (0-5) Groupwise expression 

Expression in 

RNA seq data 

1 SLC25A3 5 AMLCN_H Upregulation 

2 LONP1 5 AMLCN_H Downregulation 

3 SDHC 5 AMLCN_H Upregulation 

4 GNB2L1/RACK1 4.2 AMLCN_H Upregulation  

5 FASTKD1 5 AMLCN_I Upregulation 

6 MRPL51 5 AMLCN_I Downregulation 

7 ATP5J 5 AMLCN_I Upregulation  

8 FASLG 2.64 AMLCN_L Downregulation 

9 CLIC1 3.12 AMLCN_L Upregulation  

10 HRK 5 Common in all AML samples Downregulation 

11 ALAS2 5 Common in all AML samples Downregulation 

12 SLC25A21 5 Common in all AML samples Downregulation 

13 CYP1B1 4.35 Common in all AML samples Downregulation 

14 GLUD1 5 

Common in AMLCN_H & 

AMLCN_I Upregulation  

15 SLC25A29 5 

Common in AMLCN_H & 

AMLCN_I Upregulation 

16 LIG1 3.6 

Common in AMLCN_H & 

AMLCN_I Downregulation 

17 SNCA 4.6 

Common in AMLCN_L & 

AMLCN_H Downregulation 

18 DHFR 4.7 

Common in AMLCN_L & 

AMLCN_H Downregulation 

19 MMP9 2.8 

Hub gene and Seed gene in MCODE 

cluster of AMLCN_H & AMLCN_I Downregulation 

20 OLFM4 5 MCODE cluster gene Downregulation 
All the genes selected for validation are listed in the table. Selection of genes were based on their mitochondrial 856 
compartment score as determined by Cytoscape. SLC25A3, LONP1, SDHC, GNB2L1/RACK1 were selected 857 
exclusively from AMLCN_H subgroup. Three genes (FASTKD1, MRPL51 AND ATP6J) belongs to AMLCN_I 858 
subgroup and two genes (FASLG & CLIC1) were selected from AMLCN_L subgroup. Furthermore, three genes 859 
(SLC25A29, GLUD1 and LIG1) which were common among AMLCN_H and AMLCN_I and two genes, DHFR 860 
and SNCA were selected from the common genes among AMLCN_H and AMLCN_L cohort. MMP9 and 861 
OLFM4 were selected based on the Hub gene and MCODE analysis. 862 
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Table 3: Median expression of validated genes in patients (n=143) compared to controls(n=50) 866 
and their comparison with TCGA LAML dataset(n=179) 867 

S.n

o. 

Gene list Expression Median expression (IQR)# P value## Expression in 

our cohort 

Expression in TCGA 

dataset (LAML)* 

1. SLC25A3 Patients 7.45E-04 (5.46E-04-1.08E-03) < 0.0001 Overexpression Non-significant 

Controls 4.83E-04(3.08E-04-6.95E-04) 

2. SDHC Patients 1.03E-04(7.21E-05-1.66E-04) < 0.0001 Overexpression Non-significant 

Controls 5.13E-05(3.39E-05-7.81E-05) 

3. RACK1/ 

GNB2L1 

Patients 1.56E-02(1.07E-02-2.26E-02) < 0.0001 Overexpression Non-significant 

Controls 6.43E-03(4.12E-03-9.42E-03) 

4. FASTKD1 Patients 6.10E-04(3.75E-04-1.09E-03) < 0.0001 

 

Overexpression Non-significant 

Controls 2.71E-04(1.60E-04-5.06E-04) 

5. ATP5J Patients 2.67E-06(1.48E-06-4.23E-06) < 0.0001 Overexpression Downregulation 

Controls 5.63E-07(1.44E-07 -1.04E-06) 

6. FASLG Patients 1.24E-05(5.82E-06-2.23E-05) < 0.0001 Downregulation Non-significant 

Controls 2.83E-05(1.72E-05-5.11E-05) 

7. CLIC1 Patients 9.63E-04(6.70E-04-1.48E-03) < 0.0001 Overexpression Downregulation 

Controls 5.46E-04(3.68E-04-7.91E-04) 

8. HRK Patients 2.99E-06(1.30E-06-7.32E-06) < 0.0001 Downregulation Non-significant 

Controls 2.64E-05(7.26E-06-4.44E-05) 

9. ALAS2 Patients 9.00E-05(1.68E-05-4.16E-04) < 0.0001 Downregulation Downregulation 

Controls 7.61E-04(4.68E-04-1.71E-03) 

10. SLC25A21 Patients 2.27E-06(6.51E-07-7.02E-06) < 0.0001 Downregulation Downregulation 

Controls 8.28E-05(3.86E-05-1.32E-04) 

11. CYP1B1 Patients 4.87E-07(1.94E-07-1.87E-06) < 0.0001 Downregulation Non-significant 

Controls 4.57E-06(3.22E-06-1.05E-05) 

12. GLUT1 Patients 5.46E-04(3.88E-04-8.10E-04) < 0.0001 

 

Overexpression Non-significant 

Controls 2.65E-04(1.91E-04-4.08E-04) 

13. SLC25A29 Patients 3.48E-04(1.94E-04-6.53E-04) < 0.0001 

 

Overexpression Upregulation 

Controls 7.30E-05(5.35E-05-1.26E-04) 

14. SNCA Patients 5.73E-05(2.30E-05-1.59E-04) 0.0023 Downregulation Non-significant 

Controls 1.06E-04(5.29E-05-2.25E-04) 

15. DHFR Patients 5.01E-04(2.58E-04-7.72E-04) 0.0115 Non- significant Non-significant 

Controls 7.15E-04(4.32E-04-1.25E-03) 

16. MMP9 Patients 2.70E-05(7.74E-06-7.15E-05) < 0.0001 

 

Downregulation Non-significant 

Controls 9.05E-04(3.79E-04-1.37E-03) 

17. OLFM4 Patients 3.78E-05(1.16E-05-1.47E-04) < 0.0001 Downregulation Non-significant 

Controls 9.37E-04(4.46E-04-2.54E-03) 

18. LIG1 Patients 1.57E-04(9.12E-05- 2.46E-04) 0.8696 

 

Non- significant Non-significant 

Controls 1.38E-04(1.06E-04- 2.46E-04) 

19. MRPL51 Patients 6.95E-04(5.46E-04-1.07E-03) 0.0116 Non- significant Downregulation 

Controls 5.25E-04 (3.56E-04-1.00E-03) 

20. LONP1 Patients 2.93E-04(2.10E-04-4.11E-04) < 0.0001** 

 

Upregulation Downregulation 

Controls 1.79E-04(1.03E-04-2.59E-04) 
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#IQR= Interquartile Range 868 
##Level of significance was set by adjusting alpha error for multiple comparisons by Bonferroni correction (p< 869 
(0.05/20) i.e. p<0.0025 were considered as significant) 870 
*LAML = adult AML data available on TCGA (The Cancer Genome Atlas) database accessed from Gepia 871 
** The expression of LONP1 showed reverse expression trend in validation cohort when compared to RNA 872 
sequencing data of test cohort hence considered not validated. 873 
 874 

 875 

  876 
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Table 4: List of genes showing significant correlation with mitochondrial DNA copy number 877 
using Pearson’s correlation   878 

n= number of patients 879 

 880 

 881 

  882 

Gene name Mitochondrial DNA Copy number (n=143) 

Correlation coefficient (r) p value 

ATP5J 0.133 0.024 

FASTKD1 0.158 0.008 

CLIC1 0.165 0.005 

RACK1/GNB2L1 0.174 0.003 

SDHC 0.172 0.004 

SLC25A3 0.155 0.009 
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 883 

Table 5: Impact of expression of individual genes and overall risk score on overall survival and 884 
event free survival of the test cohort (pediatric cohort) and overall survival in validation cohort 885 
(TCGA adult LAML cohort) 886 

Gene 

Name 

Overall survival  

(Pediatric cohort) 

n=143 

Overall survival (TCGA adult 

LAML cohort)  

n=179 

Event Free Survival  

(Pediatric cohort) 

n=143 

Hazard Ratio 

(95% CI) 
P value 

Hazard Ratio 

(95% CI) 
P value 

Hazard Ratio (95% 

CI) 
P value 

SDHC 1.29(1.14-1.41) <0.001 0.994(0.941-1.050) 0.826 1.225(1.100-1.363) <0.001 

SLC25A29 0.88(0.83-0.93) <0.001 0.988(0.981-0.996) 0.003 0.905(0.860-0.952) <0.001 

CLIC1 1.20(1.04-1.38) 0.013 1.002(1.00-1.004) 0.069 1.136(0.984-1.312) 0.082 

Risk Score 1.010(1.007-1.014) <0.001 1.011(1.002-1.021) 0.019 1.008(1.001-1.012) <0.001 

CI: Confidence interval; n= number of patients; TCGA The cancer genome atlas; LAML Adult AML dataset 887 

  888 

 889 

 890 

 891 

 892 

 893 

 894 

 895 

 896 

 897 

 898 

 899 

 900 

 901 

  902 
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Table 6: Univariable and multivariable analysis of clinical features with overall survival 903 

Variables (n=143) Categories (n) Univariable analysis  Multivariable analysis 

Median Hazard (95% 

CI) 

p 

value 

Hazard (95% 

CI) 

p 

value 

Age(years) ≤10 (64) 20.63 0.98(0.63-1.52) 0.93 

 

- - 

>10(79) 21.93 

Gender Male (87) 15.07 0.72(0.45-1.143) 0.16 

 

- - 

Female (56) 40.23 

Total leukocyte 

count (/mm
3
) 

<50000(98) 23.77 0.8(0.517-1.238) 0.32 

 

- - 

>50000(45) 13.88 

Platelets (/µL) ≤ 50000(92) 19.53 0.94(0.59-1.48) 0.789 

 

- - 

>50000(51) 23.33 

Haemoglobin(g/dl) ≤8(95) 13.87 0.73(0.47-1.12) 0.16 

 

- - 

>8(48) 24.87 

Fever Negative (26) Not reached 1.52(0.82-2.83) 0.18 - - 

Positive (112) 19.53 

Chloroma (n=132) Negative (105) 20.63 0.56(0.29-1.07) 0.083 1.45(0.74-2.84) 0.27 

Positive (27) Not reached 

ELN Risk group 

(n=134) 

 

Good (67) 40.23 1.95(1.23-3.09) 0.004 

 

0.59(0.36-0.98) 0.041 

Others (67) 12.27 

CI: Confidence interval; ELN: European LeukemiaNet. 904 

 905 

 906 

 907 

  908 
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Table 7: Association of 3-gene risk score with clinical and demographic parameters 909 

Characteristics (n=143)  Risk score 

Low (%) 

(n=71) 

Risk score 

High (%) 

(n=72) 

χ
2 

P value 

Age (years)  

<10 Years (64)  26(36.6) 38(52.8) 
3.775 0.052 

≥10 years (79)  45(63.4) 34(47.2) 

Sex 

Male (87)  42(59.2) 45(62.5) 
0.168 0.682 

Female (56)  29(40.8) 27(37.5) 

Hyperleukocytosis, (>50×10
3
/μL)  

TLC <50×10
3
/μL (98)  53(74.6) 45(62.5) 

2.446 0.118 
TLC≥50×10

3
/μL (45)  18(25.4) 27(37.5) 

Fever(n=138) 

Negative (26)  17(24.6) 9(13.0) 
3.033 0.082 

Positive (112)  52(75.4) 60(87.0) 

Chloroma  

Negative (116)  57(80.3) 59(81.9) 
1.781 0.182 

Positive (27)  14(19.7) 13(18.1) 

Cytogenetics (n=130) * 

Good Risk (50)  32(54.2) 18(32.7) 
5.349 0.021 

Others (64)  27(45.8) 37(67.3) 

Molecular analysis (n= 122) ** 

FLT3ITD  

Negative (105)  54(87.1) 51(85.0) 
0.112 0.738 

Positive (17)  8(12.9) 9(15.0) 

RUNX1‐RUNX1T1  

Negative (69)  29(46.8) 40(66.7) 
4.911 0.027 

Positive (53)  33(53.2) 20(33.3) 

CBFB‐MYH11 # 

Negative (113)  58(93.5) 55(91.7) 
- 1.00

##
 

Positive (6)  3(4.83) 3(5.0) 

NPM1  

Negative (117)  61(98.4) 56(93.3) 
- 0.203

##
 

Positive (5)  1(1.61) 4(6.7) 
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ELN Risk stratification (n=134) *** 

Good Risk (67)  41(60.3) 26(39.4) 
5.852 0.016 

Intermediate and poor risk (67)  27(39.7) 40(60.6) 

Complete remission (n=143) 

Achieved (104)  58(81.7) 46(63.9) 
5.711 0.017 

Not achieved (39)  13(18.3) 26(36.1) 

*Cytogenetics failed (n=16) and not done in n=13 cases. 910 
** Molecular analysis was not done in 19 cases; molecular mutation was absent in n=43 cases 911 
#CBFB-MYH11 mutation was assessed in n=119 cases 912 
## Fisher’s Exact Test 913 
***ELN (European LeukemiaNet) risk stratification was done using both cytogenetics and molecular markers in 914 
134 patients.  However, 12 patients risk stratification was done with only cytogenetics and in 20 patients, it was 915 
done by only molecular analysis 916 

χ 2: Chi square value; TLC: Total leukocyte count; FLT3 ITD: FMS-like tyrosine kinase internal 917 
tandem duplication; RUNX1-RUNX1T1: runt-related transcription factor 1-RUNX1 partner transcriptional co-918 
repressor 1 fusion transcript; CBFB-MYH11: core binding factor beta-myosin heavy chain 11 fusion transcript; 919 
NPM1: Nucleophosmin 1; 920 

 921 

  922 
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Table 8: Predictive ability of combined gene risk score group and ELN risk category on 923 

survival outcome in pediatric AML cohort 924 

 925 

HR: Hazard Ratio; CI: Confidence interval; OS: overall survival; ELN: European LeukemiaNet; AML: Acute 926 
myeloid leukemia 927 

 928 

 929 

 930 

 931 

 932 

 933 

 934 

 935 

 936 

 937 

 938 

 939 

Variables(n) HR (95%CI) P 

Value 

P value 

(overall) 

Median OS 

(months) 

Predicted 

12 

months 

survival 

Predicted18 

months 

survival 

ELN Good risk & gene 

signature risk group 

Low (41) 

1 -- <0.001 Not reached 80%±6% 75%±7% 

ELN Others & gene 

signature risk group 

Low (27) 

1.58 (0.78-

3.21) 

0.20 - 27.77(±7.82) 74% ±8% 58% ±10% 

ELN Good risk & gene 

signature risk group 

High (26) 

2.12 (1.06-

4.26) 

0.034 - 22.90(±8.31) 54% 

±10% 

44% ±10% 

ELN Others & gene 

signature risk group 

High (40) 

3.83 (2.07-

7.07) 

<0.001 - 4.67(±3.71) 33% ± 8% 25% ± 7% 
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