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Abstract 

Background 

The impact of COVID-19 across the United States has been heterogeneous, with some areas demonstrating 

more rapid spread and greater mortality than others. We used geographically-linked data to test the hypothesis 

that the risk for COVID-19 is spatially defined and sought to define which features are most closely associated 

with elevated COVID-19 spread and mortality. 

Methods 

Leveraging geographically-restricted social, economic, political, and demographic information from U.S. 

counties, we developed a computational framework using structured Gaussian processing to predict county-

level case and death counts during both the initial and the nationwide phases of the pandemic. After identifying 

the most predictive spatial features, we applied an unsupervised clustering algorithm, topic modelling, to 

identify groups of features that are most closely associated with COVID-19 spread. 

Findings 

We found that the inclusion of spatial features modeled case counts very well, with overall Pearson's correlation 

coefficient (PCC) and �2of 0.96 and 0.84 during the initial phase and 0.95 and 0.87, respectively, during the 

nationwide phase. The most frequently selected features were associated with urbanicity and 2020 presidential 

vote margins. When trained using death counts, models revealed similar performance metrics, with the addition 

of aging metrics to those most frequently selected. Topic modeling showed that counties with similar 

socioeconomic and demographic features tended to group together, and some feature sets were associated with 

COVID-19 dynamics. Unsupervised clustering of counties based on these topics revealed groups of counties 

that experienced markedly different COVID-19 spread. 

Interpretation 

Spatial features explained most of the variability in COVID-19 dynamics between counties. Topic modeling can 

be used to group collinear features and identify counties with similar features in epidemiologic research. 
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Introduction 

 The COVID-19 pandemic is an unprecedented global health crisis that has infected over 160 million 

people and taken approximately 4.8 million lives worldwide as of October 4, 2021.1 In the United States, spread 

of COVID rapidly outstripped public health systems, leading to an extremely deadly and widespread pandemic. 

Even after the initial surge of cases, the nation’s struggles to control disease spread were underscored by 

ongoing limitations in the availability of personal protective equipment, testing, intensive care unit beds, 

ventilators, and eventually vaccines. Long incubation period and propensity for asymptomatic spread mean that 

reactive measures are likely to be too late to quell widespread infection. Targeting intervention to areas at 

greatest risk for spread in future pandemics could provide a means of suppressing hot spot formation and 

flattening the pandemic curve. 

A range of intersecting biological, demographic, and socioeconomic factors determine susceptibility to 

COVID-19.2-4 These factors vary significantly across areas, and often reflect the structural inequities in the 

society. Spatial analysis employing Geographical Information Systems (GIS), in which data are layered upon 

spatial coordinate information, allows researchers to interrogate associations between these factors and COVID-

19 pandemic dynamics within and between geographically-defined regions. Research at the county level is well 

suited to understanding spatial features associated with the pandemic, as COVID-19 spread depends upon 

proximity, and public health interventions and resources are generally organized at the county level. Studies 

utilizing GIS reported that, among counties in the United States, measures of income inequality, poverty, 

urbanity, poor healthcare access, and increased proportion of non-white individuals are associated with COVID-

19 incidence and death.5-8 Similarly, in England, relative humidity and hospital accessibility are negatively 

related to COVID-19 mortality rate, whereas percent of Asians, percent of Blacks, and unemployment rate are 

positively related to COVID-19 mortality rate.9   

In this study we build upon these known associations with the goal of developing more accurate 

predictions that capture the heterogeneity in associations between spatial structure and features and compare 
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them across different temporal phases of the pandemic. We curated a large dataset of GIS-tagged demographic, 

socioeconomic, and political data and utilized structured Gaussian processes (SGP), a machine learning 

approach to develop dynamic prediction models of localized COVID-19 case and death counts. We applied this 

approach to both the initial spread of COVID-19 across the US and the dramatic expansion of infections during 

autumn, 2020, when the virus was ubiquitous, allowing for a direct comparison of factors driving disease 

dynamics during each epoch of the pandemic. Because many of the most prognostic factors are geographically 

restricted, we hypothesized that they serve as surrogates for other unmeasured county characteristics. We 

therefore explored whether counties could be grouped by collinear spatial features to predict those counties with 

the greatest COVID-19 case burden.   

Results 

A.   Analysis of Initial Phase Dynamics 

We first sought to define the spatial features that predicted the initial rise in cases, defined here as the 30 

days following the first confirmed case in each county. To do so, we trained an SGP regression algorithm on a 

random sampling of two-thirds of the counties in each state (Figure 1A). For each state, a different set of 

features were identified to model the dynamics of case spread in each county. We chose to restrict feature 

selection across counties at the state level, because this represents the main political division at which 

implementation and timing of mitigation measures and other policies were applied. These state-by-state models 

were used to generate case predictions in the remaining one-third of “unseen” test counties (Figure 1B), and 

then compared to the observed case counts in these counties (Figure 1C) to evaluate model performance. 

Features selected for the prediction models in each state are shown in Figure 1D. The top three most frequently 

selected features across all states were Rural-urban continuum code (higher is more rural), Vote difference 

2020 (%Biden [D] - %Trump [R]), and urban influence code (higher is more rural), all of which negatively 

correlated with case counts (Figure 1E). The next three most frequently selected features—Total households, 
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total population and domestic migration rate (net of inmigration - outmigration)—are positively correlated 

with case counts and reflect the known strong association between population and COVID-19 spread.10,11 The 

remaining top predictive features reflected the importance of health insurance, education, race, income, and 

population density in predicting case growth. The overall Pearson’s correlation coefficient (PCC) and the 

proportion of variance explained (�2) of this model applied across counties were 0.96 and 0.84, respectively 

(Figure 1F). Model performance varied across states, with a median PCC of 0.98 [Range 0.74-1] and a median 

�
2of 0.94 [Range 0.07-0.99] (Figure 1G). �2 was greater than 0.90 in the majority of states, demonstrating that 

the models built on spatial features could account for most of the variance in case counts. 

We then applied an identical approach to generate a spatial model utilizing COVID-19-associated deaths 

over the first 30 days following the first death in each county as the dependent variable (Supplementary Figure 

1). Consistent with prior reports, the features most frequently selected to predict deaths included measures of 

advanced age and non-white race.12,13 Vote difference 2020 remained the second most frequently selected 

feature to predict deaths.  

 

B. Analysis of the Nationwide Phase Dynamics 

 We next extended our analysis to a later phase of the pandemic, commonly called the “third wave”, 

which we defined as the period between September 11, 2020, when national case counts were at a local nadir, 

and March 21, 2021, which marked the next local nadir. In contrast with the initial rise, during this phase the 

SARS CoV-2 virus was circulating in nearly all counties, testing was more broadly available, and there was a 

better understanding of modes of spread (droplets and aerosols) and effective mitigation measures, including 

distancing and masking. Case counts in training counties, predicted case counts in test counties, and observed 

case counts in test counties are shown in Figure 2A-C, and feature selection for the models derived in each state 

is shown in Figure 2D. The results largely recapitulated those from the initial phase, with Urban influence 

code, Vote difference 2020, Total households, and Total population the most frequently selected features 
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across all states (Figure 2E). The model again demonstrated a very strong PCC of 0.95 with a ��of 0.87, 

although the model underestimated significant case growth across a subpopulation of counties (Figure 2F). 

Across states, the model median PCC was 0.98 [Range 0.60-0.99] and the median ��was 0.95 [Range 0.20-

0.99] (Figure 2G). We generated an independent model to predict deaths during the nationwide phase 

(Supplementary Figure 2). Because the time interval included both a nationwide rise and fall in cases, which 

could be governed by different spatial factors, we repeated the models over the rising phase alone, from 

September 11, 2020 to January 1, 2021. The most frequently selected features during this interval closely 

reflected those selected over the full epidemic curve, although total female population was selected more 

frequently in the models predicting deaths over the rising phase (Supplementary Figures 3A-B).  

We generated daily case and death count predictions for each week t across all counties from April 6, 

2020 to March 21, 2021 using the spatial features and case counts up through week t-1 as an internal validation 

of the selected features sets (Supplementary Figure 4). Consistent with our other analyses, we found that 

features associated with population and urbanicity, presidential vote margin, and older age were most frequently 

included in prediction models (Supplementary Figure 5A-G). State-by-state case and death count predictions 

based on both the spatial and temporal models described above can be reviewed on interactive maps at 

https://cigdemak.shinyapps.io/sgp_covid-19/.  

C. Topic modeling and unsupervised cluster analysis reveals high risk counties 

One limitation of the spatial prediction models described above is that many features are collinear, so 

the features selected by the SGP modeling are not always the true driver of case growth. Indeed, sets of features 

cluster along well described socioeconomic, educational, and health axes (Figure 3). Notably, neither Vote 

difference 2020 nor Vote difference 2016 is strongly correlated with any spatial features, suggesting that 

political leaning of a county is an independent risk factor for COVID-19 spread. Furthermore, the features 

selected in the models are heterogeneous across states, limiting the ability to define “high risk” locales. For that 

reason, we set out to group counties by sets of collinear spatial features that together are associated with the risk 
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of COVID-19 spread. To address this, we leveraged a topic modeling (TM) framework using the Latent 

Dirichlet Allocation (LDA) algorithm to reduce the dimensionality of the data. Using this approach, we utilized 

TM to find sets of co-occurring features (words) that can then link counties (documents) to topics. 

The application of TM was able to find sets of collinear features that score each county and feature 

association to each topic. The top features contributing to each topic are shown in Figure 4A. Topics grouped 

together many geographically similar counties (Figure 4A), such as topics 2 and 3 which occurred largely in the 

South and Midwestern regions of the USA respectively. TM also grouped geographically remote but 

demographically similar counties, such as topic 8, which largely showed features associated with low 

socioeconomic status. Notably, vote differences were not a primary contributor to any topic, consistent with the 

low correlation between political orientation and the other features in our dataset.  To see how topics related to 

COVID-19 spread, we looked at the relationship between COVID cases/deaths and topic scores by plotting 

topic scores against quintiles of cases or deaths for each phase in the. pandemic. Several topics showed 

correlations with cases and deaths (Figures 4B and 4C). For example, topic 8 (e.g., Less than high school 

diploma, Percent of people in poverty, Households with supplemental security Income, Medicaid) correlated 

positively with deaths during the nationwide phase (Figure 4C). Topic 10, which has high feature score 

contributions from higher education and access to services, showed a negative correlation to the death rate 

(Figure 4C).  

We therefore clustered the topics using county topic scores in a Louvain clustering algorithm to 

segregate discrete groups of counties with similar spatial features (topic contributions). After clustering counties 

with similar socioeconomic and demographic composition tended to group together (Figure 5A). To highlight 

the feature and topic contributions of each cluster of counties, Figure 5B shows the mean topic score for each 

topic within each cluster of counties. For example, Cluster 1 is composed of counties with high scores from 

topics 1, 3 and 9 and low topic 10 scores. This cluster highlights most of the Midwest region where the largest 

surge in cases and deaths during the autumn, 2020, period of the nationwide phase of the pandemic occurred 
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(Figure 5C). Clustering further delineated cases from deaths and initial phase from nationwide phase dynamics, 

highlighting plasticity in the composition of spatial features most associated with COVID risk across the course 

of the pandemic.  Cluster 3, which was geographically restricted to the Southeast US, was associated with high 

COVID-19 case counts during the initial phase, whereas Cluster 0, restricted to Texas, the lower Midwest, and 

the Rocky Mountain region, was associated with high COVID-19 spread during the nationwide phase (Figure 

5C).  

 

Discussion 

We adopted SGP analysis to generated highly predictive models for case growth, and found that the majority of 

variance in COVID-19 spread can be explained by the spatial features included in each model. Both case and 

death counts in each county were most strongly associated with measures of urbanicity, age, and presidential 

voting margin. We also found that non-white race and measures of socioeconomic status were frequently 

included in optimal spatial models, recapitulating well-established risk factors for COVID-19 infection and 

mortality.14-18 Extending upon these previously reported models, we show geographic heterogeneity in which 

factors predict case and mortality across the USA, making it difficult to apply a uniform set of features to 

identify counties at greatest risk. Because many of the features included in these models are highly correlated, 

our SGP modeling approach may have obscured stronger effects by diluting selection among collinear features. 

For example, urban influence code, rural-urban continuum, population density, and total households all describe 

the urbanicity of a county, yet each individually shows up among the most selected features associated with 

COVID-19 dynamics, effectively competing for inclusion in the model. Furthermore, these measures of 

urbanicity were also correlated with the number of individuals over 65 years old, who represent the highest risk 

cohort for COVID-19 mortality.19,20 Correlation analysis also revealed interactions between socioeconomic, 

health, and racial features, complicating interpretation of the relationships between these features and COVID-

19 dynamics.  
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We therefore sought to identify which combinations of spatial features are most consistently associated with 

COVID-19 spread across the country using topic modeling to reduce the dimensionality of these data. Although 

COVID-19 data were not included in the unsupervised groupings, topics were correlated with both cases and 

deaths.  The degree to which a county was represented by a given topic clustered geographically, supporting the 

utility of this analysis to identify similar places. In accordance with our SGP analysis and prior studies, topics 

associated with low socioeconomic status correlated with high case and death counts, whereas topics associated 

with increased wealth and education exhibited an inverse correlation with cases and deaths. By clustering 

counties according to the overall contribution of topics to their spatial feature set, we were then able to identify 

those counties across the US that were demographically similar and could show that certain combinations of 

topics were associated with more case and death burden. These combinations of features likely relate not only to 

factors that increase rate of spread or mortality, but also adherence and implementation of mitigation measures. 

Indeed, clusters identified as highest risk largely overlap the National Institute of Environmental Health 

Sciences’ COVID-19 Pandemic Vulnerability Index,21 suggesting that the same spatial features that identified 

counties with high COVID-19 burden early in the pandemic may drive susceptibility to subsequent waves of 

infection.   

 

Aside from population metrics, presidential vote margin was the most consistently selected spatial feature in our 

COVID-19 prediction models. The margin by which a county voted in support of the Republican candidate, 

Donald Trump, in either the 2016 or 2020 election strongly predicted for more cases and deaths both early and 

later in the pandemic, adding to prior work revealing this association. Notably, presidential vote margin was not 

collinear with any other features, suggesting that political orientation represents an independent risk factor for 

COVID-19 spread. Politics played a prominent role in the US response to the coronavirus pandemic, with 

mitigation policies and adherence varying widely between areas under Democrat or Republican governance.  It 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 2, 2022. ; https://doi.org/10.1101/2022.03.27.22271628doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.27.22271628
http://creativecommons.org/licenses/by-nd/4.0/


  
 

  
 

is not clear whether this association stems from a “top-down” effect of the administration’s dismissive 

management and communication approach or reflects growing distrust in science on the ideological right.22,23 

Indeed, recent work linked partisanship to attitudes about COVID-19 policy and mitigation measures from the 

beginning of the pandemic, before polarized messaging had developed.24-26  

 

The development and implementation of spatially-informed prediction models suffer from several 

limitations. Our models did not include mitigation measures or vaccine coverage, due in part to inconsistencies 

in implementation and data availability. The end date for the nationwide phase analysis, March 31, was before 

vaccine availability was opened to the general public in most states, but differences in vaccine uptake to that 

point represent a potential confounder. Early case numbers were heavily influenced by low test availability, 

leading to significant missing data. However, our analyses found similar features predicted case dynamics 

throughout the pandemic, suggesting that the effect of this missing data may be minimal. Finally, TMand 

Louvain clustering generate highly overlapping feature sets that may be specific to the breadth of data included. 

Thus, while spatial analysis provides a powerful predictive tool, the precise effect of each feature or set of 

features is likely to be context-specific. 

 

In conclusion, we show that spatial features account for the majority of variation in COVID-19 case and death 

dynamics across the US. Predictive modeling based on combinations of spatial features can identify counties at 

greatest risk for COVID-19 spread and can be used to direct aggressive mitigation strategies and limited 

resource pools to these areas. Finally, we show that topic modeling provides a new approach to dimensional 

reduction in epidemiologic data and may be of value in other datasets with highly collinear variables. 

Methods 
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We retrieved county-level daily case counts from January 22, 2020 until March 21, 2021 provided by the Center 

for Systems Science and Engineering at Johns Hopkins University. We extracted county-specific features from 

the United States Census Bureau and the National Center for Health Statistics population estimates. County-

specific features used in this study are shown in Table S1 along with the source information. Boundary 

shapefile of counties downloaded from TIGER/Line database (https://www.census.gov). We normalized the 

daily confirmed COVID-19 case and death counts per 100,000 residents and then calculated the 7-day moving 

average.  

 

Supervised prediction algorithm: Gaussian process regression 

We used Structured Gaussian Processes (SGP) regression algorithm to predict case counts for each county of a 

given state. SGP allows performing spatiotemporal predictions thanks to the Kronecker multiplication of 

kernels calculated on spatial and temporal features. After calculating a Gaussian kernel for each spatial and 

temporal feature, spatial and temporal kernels are combined separately, then combined spatial and temporal 

kernels are unified with Kronecker multiplication to a larger spatiotemporal kernel, which allows us to make 

predictions for each given location and time point (Supplementary Figure 4). We calculated a Gaussian kernel 

for each spatial feature and added it to our feature set only if it improved the prediction quality on the validation 

set in terms of normalized root mean square error (NRMSE), i.e., forward feature selection. We used the kernel 

calculated on latitude and longitude of each county by default in the feature selection process.  

 

For the regression algorithm, we designed two different prediction scenarios--spatial prediction and temporal 

prediction. We performed spatial prediction for (A) initial disease dynamics: the 30 days following the first case 

in each county and (B) nationwide disease dynamics: the time period between September 11, 2020, when the 

nationwide rise in cases began and March 21 2021, when the epidemic curve is completed (see Supplementary 

Figure 5). For both phases, we randomly selected two-thirds of the counties in each state to train our model and 
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predicted case and death counts of the remaining one-third of the counties in each state and repeated the 

training--testing selection 100 times to eliminate random sampling. In temporal prediction, we are interested in 

finding case counts in observed locations for a future unseen time period. We predicted daily COVID-19 case 

counts/death counts for each location at the beginning of each week for a week starting from April 6, 2020, the 

peak of the first rise, until March 21, 2021. We used the last week of training dataset as the validation dataset to 

select the spatial features with forward selection method and also to optimize the model’s response noise 

parameter. Accuracy was assessed using PCC, which shows how well the dynamics of the event counts are 

captured by the algorithms, and �
2, which shows the proportion of total variation in outcomes explained by the 

model. SGP implementation in R is publicly available.27  

 

Unsupervised prediction algorithm: Topic Modeling  

TM using the LDA algorithm, in the traditional framework, associates words and documents to topics by 

linking together co-occurring words in k-number of topics, which then can be related to the documents by 

comparing the relative occurrence of said words in each topic, outputting a topic-word and topic-document 

distribution. Using this approach, TM finds sets of co-occurring features (words) that can then link counties 

(documents) to topics. We ran LDA with the package ‘lda’ in R. Total number of topics was found using  the 

rate of perplexity change elbow plot reported by Zhao and colleagues.28 To visualize how cases and deaths 

related to topics, deaths and cases from the initial phase and nationwide phase, as described above, were binned 

into 5 categorical quintiles of mean cases/100k and deaths/100k and regressed against average topic scores.  

 

Clustering counties 

To group counties together by the relative contributions of topics to each county, we imputed the dimensionally 

reduced LDA topics into a Louvain clustering algorithm using a resolution of 0.7, which resulted in 9 clusters. 

Topic contributions were then shown by plotting the average z-score normalized topic scores across all counties 
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within a given cluster.  Then to see which clusters had a high incidence of deaths/cases per capita, we plotted a 

histogram of the number of counties across each quintile.  
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Figure Legends: 

 

Figure 1. Spatial modeling of case dynamics during initial phase of pandemic. Blue shade indicates 

observed cases over first 30 days in counties used for model training (A) and testing (B), with predicted case 

counts in test counties shown in (C). Cases were aggregated over 30 days in each county in the maps. (D) 

Predictive features selected for modeling in each state. (E) The most predictive top 20 features selected overall 

by the algorithm for the initial phase. Purple-colored features are negatively correlated with case counts and the 

orange-colored features are positively correlated with the case counts. (F) PCC and �2 values of the predictive 

models on a state-by-state level. (G) PCC and �2 values of all predictions, shown as a box blot.  

 

Figure 2. Spatial modeling of case dynamics during nationwide phase of pandemic. Blue shade indicates 

observed cases over first 30 days in counties used for model training (A) and testing (B), with predicted case 

counts in test counties shown in (C). Cases were aggregated over the time period after September, 11, 2020 

until March 21, 2021 in each county in the maps. (D) Predictive features selected for modeling in each state. (E) 

The most predictive top 20 features selected overall by the algorithm for the nationwide phase. Purple-colored 

features are negatively correlated with case counts and the orange-colored features are positively correlated with 

the case counts. (F) PCC and �2 values of the predictive models on a state-by-state level. (G) PCC and �2 

values of all predictions, shown as a box blot.  

 

 

Figure 3. Correlation matrix of the spatial features used in the SGP model. Blue indicates positive 

correlation and red indicates negative correlation. Shade indicates strength of correlation, per scale shown at 

bottom of matrix. 
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Figure 4. Topic modeling identifies associations between sets of spatial features and COVID-19 dynamics. 

(A) z-score normalized topic scores for each county in the US as well as the top 10 feature scores for features 

associated with each topic. (B)  Heatmap of each county z-scored topic score against the mean deaths during the 

nationwide phase, binned into quintiles. To highlight the relationships between topic scores and deaths, the 

heatmap is sorted by topic 8. (C) Boxplot of topic scores for each county across death quintiles for exemplar 

topics 10 and 8, showing negative and positive correlations with death counts, respectively.  

 

Figure 5. Clustering by topics can identify high and low risk counties. (A) Geographical map of counties 

and their discrete cluster assignments when topic-county matrix inputted into Louvain clustering. (B) Mean 

topic score for each topic for each of the 9 clusters of counties. (C) Bar graph of the number of countries within 

each cluster that fall within each quintile bin of cases and deaths for the initial as well as nationwide phases of 

the pandemic. 
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