medRxiv preprint doi: https://doi.org/10.1101/2022.03.27.22271628; this version posted April 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-ND 4.0 International license .

Title: Spatial prediction of COVID-19 pandemic dynamicsin the United States

Brief Title: Spatial modeling of COVID-19 in the US

Cigdem Ak, Ph.D.}, Alex D. Chitsazan, M.S.', Mehmet Génen, Ph.D.?, Ruth Etzioni, Ph.D.**, Aaron J. Grossberg, M.D.,
Ph.D."*®

! Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, 2720
S Moody Ave, Portland, OR 97201, USA

2 Department of Industrial Engineering, College of Engineering, Kog University, Rumelifeneri Yolu, 34450 Sariyer,
[stanbul, Turkey

® Program in Biostatistics, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview
Ave N, Seattle, WA 98109, USA

* Brenden Colson Center for Pancreatic Care, Oregon Health & Science University, 2730 S Moody Ave, Portland, OR
97201, USA

> Department of Radiation Medicine, Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam

Jackson Park Road, Portland, OR 97239, USA

Corresponding Author:

Aaron J. Grossberg, M.D., Ph.D.
Assistant Professor

Department of Radiation Medicine
3181 SW Sam Jackson Park Road
L-481

Portland, OR 97239

Telephone: 503-494-9945

Email: grossber@ohsu.edu

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.


https://doi.org/10.1101/2022.03.27.22271628
http://creativecommons.org/licenses/by-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2022.03.27.22271628; this version posted April 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-ND 4.0 International license .

Abstract

Background

The impact of COVID-19 across the United States has been heterogeneous, with some areas demonstrating
more rapid spread and greater mortality than others. We used geographically-linked data to test the hypothesis
that the risk for COVID-19 is spatially defined and sought to define which features are most closely associated
with elevated COVID-19 spread and mortality.

M ethods

Leveraging geographically-restricted social, economic, political, and demographic information from U.S.
counties, we developed a computational framework using structured Gaussian processing to predict county-
level case and death counts during both the initial and the nationwide phases of the pandemic. After identifying
the most predictive spatial features, we applied an unsupervised clustering algorithm, topic modelling, to
identify groups of features that are most closely associated with COVID-19 spread.

Findings

We found that the inclusion of spatial features modeled case counts very well, with overall Pearson's correlation
coefficient (PCC) and R?of 0.96 and 0.84 during the initial phase and 0.95 and 0.87, respectively, during the
nationwide phase. The most frequently selected features were associated with urbanicity and 2020 presidential
vote margins. When trained using death counts, models revealed similar performance metrics, with the addition
of aging metrics to those most frequently selected. Topic modeling showed that counties with similar
socioeconomic and demographic features tended to group together, and some feature sets were associated with
COVID-19 dynamics. Unsupervised clustering of counties based on these topics revealed groups of counties
that experienced markedly different COVID-19 spread.

I nter pretation

Spatial features explained most of the variability in COVID-19 dynamics between counties. Topic modeling can

be used to group collinear features and identify counties with similar features in epidemiologic research.
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I ntroduction

The COVID-19 pandemic is an unprecedented global health crisis that has infected over 160 million
people and taken approximately 4.8 million lives worldwide as of October 4, 2021." In the United States, spread
of COVID rapidly outstripped public health systems, leading to an extremely deadly and widespread pandemic.
Even after the initial surge of cases, the nation’s struggles to control disease spread were underscored by
ongoing limitations in the availability of personal protective equipment, testing, intensive care unit beds,
ventilators, and eventually vaccines. Long incubation period and propensity for asymptomatic spread mean that
reactive measures are likely to be too late to quell widespread infection. Targeting intervention to areas at
greatest risk for spread in future pandemics could provide a means of suppressing hot spot formation and
flattening the pandemic curve.

A range of intersecting biological, demographic, and socioeconomic factors determine susceptibility to
COVID-19.%* These factors vary significantly across areas, and often reflect the structural inequities in the
society. Spatial analysis employing Geographical Information Systems (GIS), in which data are layered upon
spatial coordinate information, allows researchers to interrogate associations between these factors and COVID-
19 pandemic dynamics within and between geographically-defined regions. Research at the county level is well
suited to understanding spatial features associated with the pandemic, as COVID-19 spread depends upon
proximity, and public health interventions and resources are generally organized at the county level. Studies
utilizing GIS reported that, among counties in the United States, measures of income inequality, poverty,
urbanity, poor healthcare access, and increased proportion of non-white individuals are associated with COVID-
19 incidence and death.>® Similarly, in England, relative humidity and hospital accessibility are negatively
related to COVID-19 mortality rate, whereas percent of Asians, percent of Blacks, and unemployment rate are
positively related to COVID-19 mortality rate.’

In this study we build upon these known associations with the goal of developing more accurate

predictions that capture the heterogeneity in associations between spatial structure and features and compare
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them across different temporal phases of the pandemic. We curated a large dataset of GIS-tagged demographic,
socioeconomic, and political data and utilized structured Gaussian processes (SGP), a machine learning
approach to develop dynamic prediction models of localized COVID-19 case and death counts. We applied this
approach to both the initial spread of COVID-19 across the US and the dramatic expansion of infections during
autumn, 2020, when the virus was ubiquitous, allowing for a direct comparison of factors driving disease
dynamics during each epoch of the pandemic. Because many of the most prognostic factors are geographically
restricted, we hypothesized that they serve as surrogates for other unmeasured county characteristics. We
therefore explored whether counties could be grouped by collinear spatial features to predict those counties with

the greatest COVID-19 case burden.

Results

A. Analyssof Initial Phase Dynamics

We first sought to define the spatial features that predicted the initial rise in cases, defined here as the 30
days following the first confirmed case in each county. To do so, we trained an SGP regression algorithm on a
random sampling of two-thirds of the counties in each state (Figure 1A). For each state, a different set of
features were identified to model the dynamics of case spread in each county. We chose to restrict feature
selection across counties at the state level, because this represents the main political division at which
implementation and timing of mitigation measures and other policies were applied. These state-by-state models
were used to generate case predictions in the remaining one-third of “unseen” test counties (Figure 1B), and
then compared to the observed case counts in these counties (Figure 1C) to evaluate model performance.
Features selected for the prediction models in each state are shown in Figure 1D. The top three most frequently
selected features across all states were Rural-urban continuum code (higher is more rural), Vote difference
2020 (%Biden [D] - %Trump [R]), and ur ban influence code (higher is more rural), all of which negatively

correlated with case counts (Figure 1E). The next three most frequently selected features—T otal households,
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total population and domestic migration rate (net of inmigration - outmigration)—are positively correlated
with case counts and reflect the known strong association between population and COVID-19 spread.’®*! The
remaining top predictive features reflected the importance of health insurance, education, race, income, and
population density in predicting case growth. The overall Pearson’s correlation coefficient (PCC) and the
proportion of variance explained (R?) of this model applied across counties were 0.96 and 0.84, respectively
(Figure 1F). Model performance varied across states, with a median PCC of 0.98 [Range 0.74-1] and a median
R“of 0.94 [Range 0.07-0.99] (Figure 1G). R? was greater than 0.90 in the majority of states, demonstrating that
the models built on spatial features could account for most of the variance in case counts.

We then applied an identical approach to generate a spatial model utilizing COVID-19-associated deaths
over the first 30 days following the first death in each county as the dependent variable (Supplementary Figure
1). Consistent with prior reports, the features most frequently selected to predict deaths included measures of
advanced age and non-white race.**** VVote differ ence 2020 remained the second most frequently selected

feature to predict deaths.

B. Analysis of the Nationwide Phase Dynamics

We next extended our analysis to a later phase of the pandemic, commonly called the “third wave”,
which we defined as the period between September 11, 2020, when national case counts were at a local nadir,
and March 21, 2021, which marked the next local nadir. In contrast with the initial rise, during this phase the
SARS CoV-2 virus was circulating in nearly all counties, testing was more broadly available, and there was a
better understanding of modes of spread (droplets and aerosols) and effective mitigation measures, including
distancing and masking. Case counts in training counties, predicted case counts in test counties, and observed
case counts in test counties are shown in Figure 2A-C, and feature selection for the models derived in each state
is shown in Figure 2D. The results largely recapitulated those from the initial phase, with Urban influence

code, Vote difference 2020, Total households, and Total population the most frequently selected features
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across all states (Figure 2E). The model again demonstrated a very strong PCC of 0.95 with a R%0f 0.87,
although the model underestimated significant case growth across a subpopulation of counties (Figure 2F).
Across states, the model median PCC was 0.98 [Range 0.60-0.99] and the median R?was 0.95 [Range 0.20-
0.99] (Figure 2G). We generated an independent model to predict deaths during the nationwide phase
(Supplementary Figure 2). Because the time interval included both a nationwide rise and fall in cases, which
could be governed by different spatial factors, we repeated the models over the rising phase alone, from
September 11, 2020 to January 1, 2021. The most frequently selected features during this interval closely
reflected those selected over the full epidemic curve, although total female population was selected more
frequently in the models predicting deaths over the rising phase (Supplementary Figures 3A-B).
We generated daily case and death count predictions for each week t across all counties from April 6,

2020 to March 21, 2021 using the spatial features and case counts up through week t-1 as an internal validation
of the selected features sets (Supplementary Figure 4). Consistent with our other analyses, we found that
features associated with population and urbanicity, presidential vote margin, and older age were most frequently
included in prediction models (Supplementary Figure 5A-G). State-by-state case and death count predictions

based on both the spatial and temporal models described above can be reviewed on interactive maps at

https://cigdemak.shinyapps.io/sqp covid-19/.

C. Topic modeling and unsupervised cluster analysis reveals high risk counties

One limitation of the spatial prediction models described above is that many features are collinear, so
the features selected by the SGP modeling are not always the true driver of case growth. Indeed, sets of features
cluster along well described socioeconomic, educational, and health axes (Figure 3). Notably, neither Vote
difference 2020 nor Vote difference 2016 is strongly correlated with any spatial features, suggesting that
political leaning of a county is an independent risk factor for COVID-19 spread. Furthermore, the features
selected in the models are heterogeneous across states, limiting the ability to define “high risk” locales. For that

reason, we set out to group counties by sets of collinear spatial features that together are associated with the risk


https://doi.org/10.1101/2022.03.27.22271628
http://creativecommons.org/licenses/by-nd/4.0/

e o ol b e e ot ndr o s A e O 5 CETS% 15 Sy e repin Py
It is made available under a CC-BY-ND 4.0 International license .
of COVID-19 spread. To address this, we leveraged a topic modeling (TM) framework using the Latent
Dirichlet Allocation (LDA) algorithm to reduce the dimensionality of the data. Using this approach, we utilized
TM to find sets of co-occurring features (words) that can then link counties (documents) to topics.

The application of TM was able to find sets of collinear features that score each county and feature
association to each topic. The top features contributing to each topic are shown in Figure 4A. Topics grouped
together many geographically similar counties (Figure 4A), such as topics 2 and 3 which occurred largely in the
South and Midwestern regions of the USA respectively. TM also grouped geographically remote but
demographically similar counties, such as topic 8, which largely showed features associated with low
socioeconomic status. Notably, vote differences were not a primary contributor to any topic, consistent with the
low correlation between political orientation and the other features in our dataset. To see how topics related to
COVID-19 spread, we looked at the relationship between COVID cases/deaths and topic scores by plotting
topic scores against quintiles of cases or deaths for each phase in the. pandemic. Several topics showed
correlations with cases and deaths (Figures 4B and 4C). For example, topic 8 (e.g., Less than high school
diploma, Percent of people in poverty, Households with supplemental security Income, Medicaid) correlated
positively with deaths during the nationwide phase (Figure 4C). Topic 10, which has high feature score
contributions from higher education and access to services, showed a negative correlation to the death rate
(Figure 4C).

We therefore clustered the topics using county topic scores in a Louvain clustering algorithm to
segregate discrete groups of counties with similar spatial features (topic contributions). After clustering counties
with similar socioeconomic and demographic composition tended to group together (Figure 5A). To highlight
the feature and topic contributions of each cluster of counties, Figure 5B shows the mean topic score for each
topic within each cluster of counties. For example, Cluster 1 is composed of counties with high scores from
topics 1, 3 and 9 and low topic 10 scores. This cluster highlights most of the Midwest region where the largest

surge in cases and deaths during the autumn, 2020, period of the nationwide phase of the pandemic occurred
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(Figure 5C). Clustering further delineated cases from deaths and initial phase from nationwide phase dynamics,
highlighting plasticity in the composition of spatial features most associated with COVID risk across the course
of the pandemic. Cluster 3, which was geographically restricted to the Southeast US, was associated with high

COVID-19 case counts during the initial phase, whereas Cluster 0, restricted to Texas, the lower Midwest, and

the Rocky Mountain region, was associated with high COVID-19 spread during the nationwide phase (Figure

5C).

Discussion

We adopted SGP analysis to generated highly predictive models for case growth, and found that the majority of
variance in COVID-19 spread can be explained by the spatial features included in each model. Both case and
death counts in each county were most strongly associated with measures of urbanicity, age, and presidential
voting margin. We also found that non-white race and measures of socioeconomic status were frequently
included in optimal spatial models, recapitulating well-established risk factors for COVID-19 infection and
mortality.***® Extending upon these previously reported models, we show geographic heterogeneity in which
factors predict case and mortality across the USA, making it difficult to apply a uniform set of features to
identify counties at greatest risk. Because many of the features included in these models are highly correlated,
our SGP modeling approach may have obscured stronger effects by diluting selection among collinear features.
For example, urban influence code, rural-urban continuum, population density, and total households all describe
the urbanicity of a county, yet each individually shows up among the most selected features associated with
COVID-19 dynamics, effectively competing for inclusion in the model. Furthermore, these measures of
urbanicity were also correlated with the number of individuals over 65 years old, who represent the highest risk
cohort for COVID-19 mortality.*** Correlation analysis also revealed interactions between socioeconomic,
health, and racial features, complicating interpretation of the relationships between these features and COVID-

19 dynamics.
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We therefore sought to identify which combinations of spatial features are most consistently associated with
COVID-19 spread across the country using topic modeling to reduce the dimensionality of these data. Although
COVID-19 data were not included in the unsupervised groupings, topics were correlated with both cases and
deaths. The degree to which a county was represented by a given topic clustered geographically, supporting the
utility of this analysis to identify similar places. In accordance with our SGP analysis and prior studies, topics
associated with low socioeconomic status correlated with high case and death counts, whereas topics associated
with increased wealth and education exhibited an inverse correlation with cases and deaths. By clustering
counties according to the overall contribution of topics to their spatial feature set, we were then able to identify
those counties across the US that were demographically similar and could show that certain combinations of
topics were associated with more case and death burden. These combinations of features likely relate not only to
factors that increase rate of spread or mortality, but also adherence and implementation of mitigation measures.
Indeed, clusters identified as highest risk largely overlap the National Institute of Environmental Health
Sciences’ COVID-19 Pandemic Vulnerability Index,?* suggesting that the same spatial features that identified
counties with high COVID-19 burden early in the pandemic may drive susceptibility to subsequent waves of

infection.

Aside from population metrics, presidential vote margin was the most consistently selected spatial feature in our
COVID-19 prediction models. The margin by which a county voted in support of the Republican candidate,
Donald Trump, in either the 2016 or 2020 election strongly predicted for more cases and deaths both early and
later in the pandemic, adding to prior work revealing this association. Notably, presidential vote margin was not
collinear with any other features, suggesting that political orientation represents an independent risk factor for
COVID-19 spread. Politics played a prominent role in the US response to the coronavirus pandemic, with

mitigation policies and adherence varying widely between areas under Democrat or Republican governance. It
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is not clear whether this association stems from a “top-down” effect of the administration’s dismissive
management and communication approach or reflects growing distrust in science on the ideological right.?>?
Indeed, recent work linked partisanship to attitudes about COVID-19 policy and mitigation measures from the

beginning of the pandemic, before polarized messaging had developed.?*?°

The development and implementation of spatially-informed prediction models suffer from several
limitations. Our models did not include mitigation measures or vaccine coverage, due in part to inconsistencies
in implementation and data availability. The end date for the nationwide phase analysis, March 31, was before
vaccine availability was opened to the general public in most states, but differences in vaccine uptake to that
point represent a potential confounder. Early case numbers were heavily influenced by low test availability,
leading to significant missing data. However, our analyses found similar features predicted case dynamics
throughout the pandemic, suggesting that the effect of this missing data may be minimal. Finally, TMand
Louvain clustering generate highly overlapping feature sets that may be specific to the breadth of data included.
Thus, while spatial analysis provides a powerful predictive tool, the precise effect of each feature or set of

features is likely to be context-specific.

In conclusion, we show that spatial features account for the majority of variation in COVID-19 case and death
dynamics across the US. Predictive modeling based on combinations of spatial features can identify counties at
greatest risk for COVID-19 spread and can be used to direct aggressive mitigation strategies and limited
resource pools to these areas. Finally, we show that topic modeling provides a new approach to dimensional

reduction in epidemiologic data and may be of value in other datasets with highly collinear variables.

Methods
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We retrieved county-level daily case counts from January 22, 2020 until March 21, 2021 provided by the Center
for Systems Science and Engineering at Johns Hopkins University. We extracted county-specific features from
the United States Census Bureau and the National Center for Health Statistics population estimates. County-

specific features used in this study are shown in Table S1 along with the source information. Boundary

shapefile of counties downloaded from TIGER/Line database (https://www.census.gov). We normalized the

daily confirmed COVID-19 case and death counts per 100,000 residents and then calculated the 7-day moving

average.

Supervised prediction algorithm: Gaussian processregression

We used Structured Gaussian Processes (SGP) regression algorithm to predict case counts for each county of a
given state. SGP allows performing spatiotemporal predictions thanks to the Kronecker multiplication of
kernels calculated on spatial and temporal features. After calculating a Gaussian kernel for each spatial and
temporal feature, spatial and temporal kernels are combined separately, then combined spatial and temporal
kernels are unified with Kronecker multiplication to a larger spatiotemporal kernel, which allows us to make
predictions for each given location and time point (Supplementary Figure 4). We calculated a Gaussian kernel
for each spatial feature and added it to our feature set only if it improved the prediction quality on the validation
set in terms of normalized root mean square error (NRMSE), i.e., forward feature selection. We used the kernel

calculated on latitude and longitude of each county by default in the feature selection process.

For the regression algorithm, we designed two different prediction scenarios--spatial prediction and temporal
prediction. We performed spatial prediction for (A) initial disease dynamics: the 30 days following the first case
in each county and (B) nationwide disease dynamics: the time period between September 11, 2020, when the
nationwide rise in cases began and March 21 2021, when the epidemic curve is completed (see Supplementary

Figure 5). For both phases, we randomly selected two-thirds of the counties in each state to train our model and
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predicted case and death counts of the remaining one-third of the counties in each state and repeated the
training--testing selection 100 times to eliminate random sampling. In temporal prediction, we are interested in
finding case counts in observed locations for a future unseen time period. We predicted daily COVID-19 case
counts/death counts for each location at the beginning of each week for a week starting from April 6, 2020, the
peak of the first rise, until March 21, 2021. We used the last week of training dataset as the validation dataset to
select the spatial features with forward selection method and also to optimize the model’s response noise
parameter. Accuracy was assessed using PCC, which shows how well the dynamics of the event counts are
captured by the algorithms, and R, which shows the proportion of total variation in outcomes explained by the

model. SGP implementation in R is publicly available.?’

Unsuper vised prediction algorithm: Topic Modeling

TM using the LDA algorithm, in the traditional framework, associates words and documents to topics by
linking together co-occurring words in k-number of topics, which then can be related to the documents by
comparing the relative occurrence of said words in each topic, outputting a topic-word and topic-document
distribution. Using this approach, TM finds sets of co-occurring features (words) that can then link counties
(documents) to topics. We ran LDA with the package ‘Ida’ in R. Total number of topics was found using the
rate of perplexity change elbow plot reported by Zhao and colleagues.”® To visualize how cases and deaths
related to topics, deaths and cases from the initial phase and nationwide phase, as described above, were binned

into 5 categorical quintiles of mean cases/100k and deaths/100k and regressed against average topic scores.

Clustering counties
To group counties together by the relative contributions of topics to each county, we imputed the dimensionally
reduced LDA topics into a Louvain clustering algorithm using a resolution of 0.7, which resulted in 9 clusters.

Topic contributions were then shown by plotting the average z-score normalized topic scores across all counties
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within a given cluster. Then to see which clusters had a high incidence of deaths/cases per capita, we plotted a

histogram of the number of counties across each quintile.
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Figure L egends:

Figure 1. Spatial modeling of case dynamics during initial phase of pandemic. Blue shade indicates
observed cases over first 30 days in counties used for model training (A) and testing (B), with predicted case
counts in test counties shown in (C). Cases were aggregated over 30 days in each county in the maps. (D)
Predictive features selected for modeling in each state. (E) The most predictive top 20 features selected overall
by the algorithm for the initial phase. Purple-colored features are negatively correlated with case counts and the
orange-colored features are positively correlated with the case counts. (F) PCC and [ values of the predictive

models on a state-by-state level. (G) PCC and 1° values of all predictions, shown as a box blot.

Figure 2. Spatial modeling of case dynamics during nationwide phase of pandemic. Blue shade indicates
observed cases over first 30 days in counties used for model training (A) and testing (B), with predicted case
counts in test counties shown in (C). Cases were aggregated over the time period after September, 11, 2020
until March 21, 2021 in each county in the maps. (D) Predictive features selected for modeling in each state. (E)
The most predictive top 20 features selected overall by the algorithm for the nationwide phase. Purple-colored
features are negatively correlated with case counts and the orange-colored features are positively correlated with
the case counts. (F) PCC and [J° values of the predictive models on a state-by-state level. (G) PCC and [°

values of all predictions, shown as a box blot.

Figure 3. Correlation matrix of the spatial features used in the SGP model. Blue indicates positive
correlation and red indicates negative correlation. Shade indicates strength of correlation, per scale shown at

bottom of matrix.


https://doi.org/10.1101/2022.03.27.22271628
http://creativecommons.org/licenses/by-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2022.03.27.22271628; this version posted April 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-ND 4.0 International license .

Figure 4. Topic modeling identifies associations between sets of spatial featuresand COVID-19 dynamics.
(A) z-score normalized topic scores for each county in the US as well as the top 10 feature scores for features
associated with each topic. (B) Heatmap of each county z-scored topic score against the mean deaths during the
nationwide phase, binned into quintiles. To highlight the relationships between topic scores and deaths, the
heatmap is sorted by topic 8. (C) Boxplot of topic scores for each county across death quintiles for exemplar

topics 10 and 8, showing negative and positive correlations with death counts, respectively.

Figure 5. Clustering by topics can identify high and low risk counties. (A) Geographical map of counties
and their discrete cluster assignments when topic-county matrix inputted into Louvain clustering. (B) Mean
topic score for each topic for each of the 9 clusters of counties. (C) Bar graph of the number of countries within
each cluster that fall within each quintile bin of cases and deaths for the initial as well as nationwide phases of

the pandemic.
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