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Abstract

To curb the initial spread of SARS-CoV-2, many countries relied on nation-wide implementation
of non-pharmaceutical interventions, at a high socio-economic cost. Using the first COVID-19 wave in
the Netherlands as a case in point, we address how subnational implementations might have achieved
similar levels of epidemiological control with fewer societal consequences; e.g., parts of the country
could have stayed open for longer. To this end, we develop a high-resolution analysis framework
reflecting a demographically stratified population with a spatially explicit, dynamic, individual contact
pattern-based epidemiology, exploiting mobility trends extracted from mobile phone signals and Google
mobility. The framework is exportable to other countries and settings, and may be used to develop
policies on subnational approach as a better strategic choice for controlling future epidemics.

Introduction

As in many countries around the world [1, 2], control of the first COVID-19 pandemic wave in the Nether-
lands was largely based on nation-wide implementation of a variety of non-pharmaceutical intervention
measures (e.g., lockdown, social distancing, or reduced mobility). Their associated societal burden affected
all areas in the country equally, while infections and the healthcare burden, in contrast, were distributed
heterogeneously across space and time. This brings in focus the question whether the pandemic could
have been controlled equally well with interventions specifically tailored to subnational regions, such
as municipalities or provinces. In addition to preventing the unnecessary broader societal burden of
interventions in (largely unaffected) parts of a country, such tailored strategies potentially have several
additional advantages: (1) more efficient use of resources, such as test kits and mobile laboratories; (2)
reduced economic losses due to interventions; (3) reducing intervention-adherence fatigue in the population.

Epidemiological analyses can help to explore the value of such strategies [3]. However, the challenge
therein lies in the fact that epidemiological dynamics cannot easily be untangled from human behavior,
which varies strongly across societies and cultures [3], and are highly heterogeneous even within a
population living in a certain geographic region [4, 5]. For this reason, such an epidemiological analysis
not only needs to capture the spatio-temporal heterogeneities in both transmission and control of an
infectious disease, but also “to embed itself locally” 6, 7]: the demographic composition of the population
and how people travel, interact and mingle, across different demographic groups and subnational regions
[8-10]. Building a corresponding analysis framework that takes all this into account is however not only
highly complex, but also requires rich data at high resolutions.

Such challenges have left their vivid marks in the first COVID-19 wave. By and large, intervention
measures deployed in spring 2020 were not enough to spatially contain the virus: the worldwide spread
of SARS-CoV-2 along the backbones of globalized travel was too fast to allow continuation of travel
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of the first wave. For setting intervention policies in such a situation, large parts of the world used
epidemiological insights that were emerging from other countries that experienced the epidemic earlier,
notably China [11, 12]. First, this meant that local embedding was being missed [7]. Second, by the time
reliable data started to become available, national policies in many countries, e.g., the Netherlands [13] or
the UK [14], were mostly informed by models considering populations that were demographically but not
spatially heterogeneous [15].

Here, using the Netherlands as a case in point, and supported by a combination of rich data sources
(demography, mobility, mixing, hospitalization and seroprevalence), we develop an epidemiological analysis
of the first COVID-19 wave by building a dynamic proxy network of people’s contacts to embed into the
local context as well as to account for high-resolution spatio-temporal heterogeneities [16]. The wave covers
the period February 27, 2020 (the first tested case of COVID-19 in the Netherlands) till June 1, 2020
(lifting of most intervention measures). In this timeline, there are four distinguishable periods in terms of
the policy landscape, which we refer to as phases: (i) Phase 1 (Feb 27 - Mar 11) when transmission of
the pathogen progressed unchecked, (ii) Phase 2 (Mar 12 - Mar 22) with minor interventions involving
a working-from-home policy, cancellation of large events, some social distancing and face mask advice
in specific buildings such as hospitals, (iii) Phase 3 (Mar 23 - May 11) involving a strict nation-wide
lockdown with closed schools and event centers, mandated social distancing and working-from-home
policies, and (iv) Phase 4 (May 11 - May 31) involving a gradual lifting of all measures. The analysis
not only allows us to individually assess the efficacy of the (national) non-pharmaceutical intervention
measures that were implemented in the Netherlands, but it also allows us to investigate to what extent
subnational implementation of interventions during the first wave of COVID-19 would have led to poorer
or comparable control of the pandemic in the country as a whole. In larger countries the most appropriate
subnational resolution could be at the level of counties, provinces, or any other existing administrative
regions to make best use of clear lines of communication and responsibilities; in a small, densely populated
country like the Netherlands, municipalities are the most appropriate ones. Our analysis can be exported
to any other country provided comparably rich datasets, capturing the local embedding for the analysis,
are available.

Analysis framework

Taking an agent-based approach, we build our framework in two parts: (i) demography, mobility and mixing
considerations that provide a high-degree of local embedding, and (ii) transmission and interventions,
each consisting of four steps (1-4 and 5-8, respectively in Fig. 1). The key steps for the epidemiological
dynamics are summarized below; additional details can be found in the methods section and SI A.1-A.8
(one SI A section per step).
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Figure 1: Our analysis framework consists of two parts: establishing proxy dynamic contact patterns from information on
demography, mobility and mixing (left panel), and transmission and interventions (right panel); each part consists of four further
steps. See SI B.1 for a detailed description of the data used in steps 2 and 5. Processes in steps 2, 3 and 6 are stochastic in nature.
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In the first part, we define the agents and their movements. In the first step, using registry data
available at the Dutch national statistics agency (CBS, Statistics Netherlands), we stratify the Dutch
population into 11 demographic categories and 380 municipalities. With about 17 million Dutch residents,
we define an agent to represent approximately 100 Dutch residents. We distribute the agents across
municipalities proportionally to population sizes. The second step is to define the probability that an
agent moves between municipalities. This process is constructed using Dirichlet distributions for the
probability of an agent’s location, quantified based on anonymized mobile phone signals. In the third step,
we draw the agent’s locations and movements at hourly time resolution. The fourth step is to define the
mixing of agents present within the same municipality, which depends on the demographic category of the
agent, time of day and the type of activity that the agent is engaged in: ‘home’ , ‘school’, ‘work’ and
‘other’. The corresponding mixing matrices were based on existing surveys [9]. Together, the four steps
establish a dynamic proxy network of people’s contacts throughout the entire country at municipality-level,
with hourly resolution over the full period of analysis.

The second part of the analysis covers transmission and interventions. Here, the fifth step concerns the
initialization of the epidemic transmission model, which was based on observed hospital admissions, which
initially occurred mainly in the south of the country. The sixth step was to define transmission, based on
the SEIR model for agent-to-agent pathogen transmission, which means that every agent at any time
has one of the following four labels: susceptible (S), exposed (F), infected (I) and recovered (R). Every
one-hour time step, susceptible agents may move to the exposed compartment as a result of the force
of infection that they experience as a function of the prevalence of infectious cases in each demographic
category in the same municipality, expected contact rates between the agent and the different demographic
categories, and their respective infectiousness. The seventh step concerns the quantification of changes
across the first COVID-19 wave: (i) behavioral measures that reduce contact rates, (i) mobility reductions,
and (iii) school closure. Mobility changes were computed using Google Mobility data and mixing changes
were based on survey data [17] conducted during this period. The effect of behavioral measures were
calibrated to reproduce the epidemic trend over time. In the final step, we simulate transmission and
the effect of changes in interventions over time. Predicted trends in infection numbers were translated to
incident and prevalent hospital admission using a simple cohort model [18] that accounts for the delay
between initial infection and admission as well as the duration of admission. This cohort model was
quantified based on hospitalization data from the Dutch National Intensive Care Evaluation (NICE)
registration.

A summary of the analysis itself can be found in the Methods section.

Reproducing the first COVID-19 wave

Even for a geographically heterogeneous analysis it is necessary to verify that the national trends are
reproduced, which serves to calibrate and validate the relevant parameters in our simulations. The results
of the calibration process, carried out by means of an ensemble of 40 stochastic simulations, is shown
Fig. 2(a-b). The calibration is performed by means of four transmission-related parameters — 3 through
B4, one for each phase of the first wave — to reproduce the total national hospital admissions data
spanning approximately three months [panel (a)], including the (initial) doubling time [panel (b)]. Hospital
admissions were the most reliable source of data during the first wave, and are shown in Fig. 2 as a thick
black line in both panels, with the red line and its margins showing the range produced by our simulations.
The curves in other colors in panel (a) denote the numbers of infected and exposed people, obtained from
simulations. See Methods for the 3;-parameter values, and SI A.8 for the details of the calibration process.

Age stratification in our analysis reveals how the first wave likely played out nationally across
demographic groups, with non-studying adolescents, middle-age working people, and students as the most
affected demographic groups [Fig. 2(c)]. The model predicts similar patterns for seroprevalence levels
across age as was observed in June 2020 [Fig. SI B.2]. It also predicts that the epidemic geographically
spread from the south (where COVID-19 is introduced in the analysis) to the north of the country via
major cities in the west [Fig. 2(d)]. This geographic pattern approximately reflects the actual spread
in the Netherlands, although we should not expect the analysis to perfectly reproduce given the high
variability in the ensemble runs (see SI B.4). Finally, in panel 2(e) the hospitalization data over time
are compared for three different locations in the Netherlands: the first Dutch outbreak site in the South
(Eindhoven), a location in the West (The Hague) where the epidemic spread relatively quickly, and a
site in the North (Groningen) which was affected less and also later. That only four (national-level §;-)
parameters leads to realistic geographical spread across 380 individual municipalities over time serves to
validate our approach for a geographically heterogeneous analysis (next section).

After the satisfactory calibration process above, we use the analysis to unravel the impact of individual
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Figure 2: Calibration (a-b), and demography- and geography-resolved results from our analysis (c-e). Panel (a), left axis: the
daily number of new infections and exposures in yellow and green, respectively. Right axis: daily hospital admissions from analysis
output (red) and observed data (black). Background colors and vertical black lines denote the four phases (arbitrary coloring).
Uncertainty intervals mark the minima and the maxima in the ensemble of realizations used in the analysis; the same holds for
panels (b), (c) and (e). Panel (b): Hospitalization doubling time over the period March 13 - March 27, 2020 (shaded gray shaded
time domain) in analysis (red, 4.69 days) and observed data (black, 4.61 days). Panel (c): % affected agents (i.e., E, I or R)
per demographic group over time. Panel (d): % affected agents per municipality on two days (March 5, May 25). Blue circles
indicate the geographical locations of the three example municipalities shown in panel (e). Panel (e): Infected agents (yellow) and
hospital-admitted agents (analysis in red, and observed data in black) in three municipalities in different municipalities: Eindhoven,
The Hague and Groningen. Analysis data correspond to an ensemble of 10 independent realizations.

lockdown components (behavior, mobility, school closure). Figure 3(a), again a 40-member strong ensemble,
shows how reductions in mobility contributed most to epidemic control; without mobility restrictions (red),
case numbers would have approximately doubled. Behavioral changes (blue) have also had a considerable
impact, albeit lower than mobility. (Determining the impact of the behavioral intervention measures is
fairly straightforward: rather than varying the values of the transmission-related parameters (1-84, we
simply keep all at the same value as for the very first phase.) Our analysis also predicts school closure
[vellow, Fig. 3(a)] to have had little impact. On this, we note that due to political debate, the Dutch
schools were closed relatively late (March 16, while the first confirmed case was on Feb 27) and therefore
have contributed little to epidemic control in our analysis (logically, earlier closure of schools should have
had a positive epidemiological impact, see SI B.3). The individual lockdown components contributed
similarly to spatial spread [Fig. 3(b)], which quantifies the geographic spread of the COVID-19 pandemic
in the Netherlands by following the number of municipalities affected substantially (for this, we use the
measure of having > 0.08% of population hospital admitted).

Effects of subnational implementation of interventions

Next, we evaluate the potential of subnational interventions, which in the Dutch case concerns non-
pharmaceutical interventions issued at the level of municipalities. For a fair comparison across scenarios
and with hospital admission data during the first wave, we implement subnational interventions in our
simulations following the national trend. This means that we initiate lockdown in a municipality when
the simulated prevalence of infectious cases within that municipality has passed a certain threshold — a
fraction of the municipality’s population — where the exact intervention measures are synchronous those
issued in reality on a national scale (SI A.9). Choosing the value of this threshold poses a trade-off: a
lower threshold ensures implementation of local interventions in an early stage of the COVID-19 wave


https://doi.org/10.1101/2022.03.31.22273222
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2022.03.31.22273222; this version posted March 31, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

100%
(a) Cumulative hospital admissions (b) Spatial spread

| | 90%
25000
— Data /

—— Reference

20000 No school closure
—— No behavioral changes
—— No mobility reduction

issions

15000

-= 10000

Cumulative hospital adm

"
8
8
% municipalities with
at least 0.08% hospital admissions
g
2

10%

0 0%

; ! 3 e
Feb 27 Mar 12 Mar 23 May 11 June 1 Feb 27 Mar 12 Mar 23 May 11 June 1
First Working  Intelligent Reopening First Working Intelligent Reopening

case home  lockdown case home  lockdown

Figure 3: Comparing the impacts of nationally administered intervention measures. In both panels, observed data are shown
in black, the reference in green, and the impacts of (i) no behavioral changes like wearing masks, enhanced hygiene and social
distancing in blue, (ii) no mobility reduction in red and (iii) no closing of schools in yellow. Bandwidths indicate the minima
and maxima around the mean of a simulation ensemble of 40 realizations. Panel (a): Cumulative national hospital admissions.
Panel (b): Geographical spread of hospital admissions, measured by the fraction of municipalities that have at least 0.08% of the
population admitted to the hospital.

which would suppress hospital admission counts, but could unnecessarily shut down economic and social
activity in some parts of the country that are less affected by the disease. Vice versa, a higher threshold
would target municipalities where the epidemic has progressed most, but could pose the risk of starting
control too late, resulting in more hospital admissions. To show the effect of different thresholds for
prevalence of infectious cases, we choose a wide range of 3%, 1%, 0.33% and 0.1%. Our choice to use
prevalence of infectious cases for local decision-making is motivated by the following premise. Even though
testing and case reporting were not yet at a sufficient scale to inform local decisions during the first wave,
since then they were significantly scaled up. Moreover, with emerging methods and technologies such as
sewage monitoring, fast identification of disease biology (e.g., time until symptoms) and live tracking of
infections by mass testing [19] and using apps, number of infections in future will be proxy-estimated with
progressively greater accuracy and speed, facilitating faster decision-making on subnational intervention
measures (such as, in the Netherlands, starting or scaling down lockdowns at the level of municipalities).

The results are shown in Fig. 4. In panel (a), the epidemiological impact of subnational interventions
is quantified in terms of the number of hospital admissions, while the societal impact is quantified in
panel (b) by the number of municipalities that are undergoing interventions. In panel (a), the lockdown
as implemented in the Netherlands is represented by the black (observed) and green lines (prediction),
which resulted in approximately 13 thousand hospital admissions up to 1 June 2020. Higher thresholds for
deciding to implement a local lockdown clearly result in higher numbers of cumulative hospital admissions
[panel (a)] and correspondingly a lower number of municipalities affected [panel (b)], and vice versa.
A decision-making threshold of 3% (dark red) can be seen to be too high; although it allowed for 185
million additional person-days spent without interventions, it results in a 157% increase in number of
admissions (~ 19 thousand). The more stringent thresholds of 1.0% and 0.33% result in numbers of
hospital admissions closer to a national lockdown (4,670 and 355 additional admissions, respectively),
but at a more modest societal benefit (103 million and 36 million additional person-days free from
interventions, respectively). Interestingly, at the lower threshold of 0.33% (yellow), approximately 6% of
the municipalities could remain without interventions for the full duration of the first wave. The maps
[Fig. 4(c-d)] show the corresponding geographical distribution of percentages of affected people, i.e., people
who would have been hospitalized [panel (c)] and the societal benefits of subnational interventions in terms
of the fraction of simulation-ensemble realizations in which a municipality remains without interventions
[panel (d)]. Municipalities that remain free of interventions are mainly located in the north and east of
the country, as can be most clearly seen for the 0.33% threshold scenario. From a mobility perspective,
these municipalities belong to the more rural, isolated, and less densely populated subnational regions of
the country.

During the first COVID-19 wave, the Dutch government did not implement subnational intervention
measures, aside from bringing out an early advice to work from home in the south of the country, the
epicenter for the first wave. The reasoning was that once COVID-19 cases were discovered locally, most
likely, the pathogen would have already spread throughout the entire country. This is generally in line
with observations that the Netherlands is spatially well-connected in terms of people’s mobility patterns,
facilitated by a robust public transport system and a high population density, with the caveat that hospital
admission data during the first wave did suggest that provinces in the north and east of the country were
substantially less affected. Our results show that when combined with live tracking of local infections in
sufficient detail, implementation of interventions could be postponed or tailored towards local contexts,
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Figure 4: Quantification of the trade-off between costs (left) and benefits (right) of locally-adjusted interventions at four threshold
values (0.1%, 0.33%, 1% and 3% of population simultaneously infected). Panel (a): Cumulative hospital admissions for different
scenarios. Panel (b): Fraction of municipalities that do not have any interventions in place. Panel (c): Cumulative fraction
of infection cases per municipality for the three local intervention thresholds. The additional number and percentage growth in
hospital admissions as compared to the observed national interventions is indicated. Panel (d): Geographical indication of which
municipalities have undergone interventions and which ones not. The number of municipalities that do not is shown in panel (b).

without causing too much additional health burden. (This would of course require local governments to
be mandated appropriately and that local populations adhere to local measures.)

Discussion and conclusion

Using the Netherlands as a case in point, we have evaluated the contribution of different interventions to
the total effect of the lockdown, and explored to what extent subnational implementations of intervention
measures might have had less of a societal impact, but comparable epidemiological impact. To this end,
we have developed a highly detailed geographically- and demographically-stratified analysis framework
based on a dynamic proxy network of people’s contacts throughout the entire country at municipality-level,
with hourly resolution, which in turn utilizes human mobility between municipalities based on mobile
phone signal data. We found that in the Netherlands mobility reductions during the first wave contributed
most to epidemic control; without, a doubling of hospital admissions was predicted to have occurred. Our
analysis, albeit based on a small country, shows that subnational (translated to be at the municipality-
level) implementation of interventions strategies is worth considering, provided that means to monitor
infection levels are available (via sewage surveillance [20], can substantially reduce the societal burden
of interventions. The benefits of such an approach are expected to be even greater for larger and more
populated countries. Moreover, similar or even higher gains can be expected by considering a subnational
approach for also lifting interventions at a subnational level: analogous to initializing interventions, the
reduction of the disease’s prevalence across municipalities is not synchronous and, depending on the chosen
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prevalence threshold, some will be able to lift earlier than was done nationally.

Even though the methodology proposed in this paper comprises demographic and geographic stratifica-
tion, and distinguishes multiple circumstances of mixing, there are still forms of granularity that we omit
(e.g., households), which limits our ability to evaluate the impact of specific interventions with higher
precision [21]. For instance, when incorporating the effect of school closures, the effect of interacting only
with family members instead of school mates has been captured at the level of a municipality as a whole
(i.e., a different mixing pattern between demographic groups combined with an overall lower transmission
rate). As such, our framework cannot provide insights into the role of households and household-level
interventions, which have for instance been shown to play a critical role in the geographical spread of
infection between schools [22, 23]. Another limitation is that mobility in our framework is quantified based
on mobile phone signal data that only provide anonymized movements between pairs of locations. As such,
the data do not provide identifiers to link multiple movements into one itinerary, which means that in our
analysis, agent movements are somewhat shorter on average than in reality, but agents also visit more
different locations than in reality. We further assume that agent movements vary randomly day-by-day,
whereas in reality commuting means that an agent would repeatedly travel to the same location. However,
the impact of this simplifying assumption is limited as, at the start of an epidemic, the distribution of
movement over agents is of relatively low importance, especially in the case of a relatively small and
highly connected country as the Netherlands. This is in contrast to situations towards the tail of an
epidemic or in larger geographies (e.g., Brazil [24, 25] and India [26]), where the transmission potential
of “high-mobility corridors” can eventually dry up as a result of rising immunity among high-mobility
individuals. Finally, we adopted data on national patterns in mobility (Google mobility), meaning that it
was not possible to account for changes in mobility by geography or demographic group. The geographical
aspects could be addressed by using longitudinal mobile phone signal data or individual-level self-reported
data via mobile phone apps [27-29]. This would require that such data are stored in a useful and accessible
format in a General Data Protection Regulation (GDPR)-compliant manner, which may be challenging
indeed.

In this study, we investigated only one of the several potential uses of our framework in a specific country.
With appropriate data sources, the framework can be adapted to other countries and settings of similar or
larger geographical scale. Importantly, the framework can also address other policy questions that involve
a geographical or social dimension. For instance, we explored the potential impact of specifically isolating
affected subnational areas (i.e., banning all mobility into and out of a municipality for the Netherlands),
which could reduce hospital admissions by about 30%, compared to the actual national lockdown (SI B.3).
With further expansions, the framework could address questions related to, for instance, closing or limiting
specific (public) transport routes [30] and banning specific mass events [31-33] — for both of which
much more fine-grained (temporal and geographical) data would be required. Evaluating pharmaceutical
interventions such as vaccination, too, is possible to capture within this framework, upon coupling data
sources associated with age-stratified vaccination rollout, as well as types of vaccines used.

In conclusion, we have shown that the potential added value of subnational implementation of
interventions which, with appropriate information about infection levels in subnational areas, may
significantly reduce the societal burden of lockdowns to control infectious disease. The main merit of
our approach lies in the fact that it captures the local context by coupling empirical data sources on
demography, mobility, and spatial clustering of the population and link this to disease transmission, which
makes the approach exportable to other settings.

Methods

This section is devoted to discuss a few of the core concepts of the methods. For a detailed step-by-step
explanation, see SI A.1-A.8.

Agents and their mobility patterns

The basis for the mobility patterns is anonymized mobile phone signal data gathered by a commercial
dataprovider, resulting in numbers of daily travels by people living in municipality ¢ to municipality j, split
into frequent, regular and incidental movements. Additionally, the demographic data provided by Statistics
Netherlands (CBS) allowed us to distinguish 170,721 agents (with roughly 17 million residents, this means
that each agent represents about 100 of them) with demographic details (SI A.1). For each agent, we
determine movements by drawing from mobility distributions computed from the mobile phone signal data,
in which we distinguish frequent from incidental and regular movements by making assumptions about
the reasons of moving (work and school versus other activity). More specifically, the generated mobility
distributions are Dirichlet distributions, using the (normalized) movements data as shape parameters.
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From these distributions, we independently draw fractions of the day spent in each municipality (i.e.,
resulting in 380 fractions for each of the 380 municipalities), that are subsequently converted into integer
hours spent in municipalities. More detailed information on the computing of the agents’ movements can
be found in ST A.2 and SI A.3.

Pathogen transmission

Transmission from susceptible (S) to exposed (F) in this stochastic SEIR-based model is based on a
“force of infection” A, which is translated to an hourly infection probability. The idea behind A exerted on
a susceptible agent is that each demographic category contributes to the chance of transmission of the
pathogen to this agent, weighted by the expected mixing between the agent and this category, as well as
on the fraction infected in this category. The full equation for A for people from demographic group ¢ in
municipality m at time ¢, involving a summation over all demographic groups g’ adding to the force of
infection, is as follows.

g, m,t) = @ . B - 5(t) : Z Ng,g' m (1)

Susceptibility of ¢ Phase & daily cycle Group g’

Mixing with groups g’

The first part on the right hand side of the equation involves a parameter h(g) that reflects the
susceptibility of an agent belonging to demographic group g to the disease (see SI A.1). The second
part (0 - 5(t)) contains the behavioral parameter 8; (such as wearing face masks and maintaining social
distance) depending on the phase of the wave (leading to (1-f4, see Table 1) and a daily cycle parameter
3(t) (see SI A.6); e.g., ensuring that agents barely have any contacts in the middle of the night. The
third part involves the mixing with the eleven different demographic groups: ng ¢ is the expected number
of contacts that group g has with group ¢’, based on the mixing matrix that reflects the situation (i.e.,
I(g’,m,1)
N(g',m,t)
agents belonging to group ¢’ in municipality m that are infectious (7).

The time scales of transitions from exposed (E) to infected (I) and from infected (I) to recovered (R)
— expressed in an incubation and an infection time scale, respectively — differ per case and are drawn from
Weibull distributions with mean time scales of 4.6 and 5 days, respectively [18] (SI A.5).

‘home’; ‘school’, ‘work’ or ‘other’). The fraction is the fraction of the total number (N) of

Phase | Start End Travel Mixing Behavior Schools
1 Feb 27  Mar 11 - - 81 =0.135 Open
2 Mar 12 Mar 22 | -31.7% Reduced as per Apr 2020 (32 =0.11 Closed halfway*
3 Mar 23 May 10 | -42.4% Reduced as per Apr 2020 (83 = 0.09 Closed*
4 May 11 Jun 1 | -20.1% Reduced as per Jun 2020 (; = 0.11 Open

Table 1: Overview of how the four phases in the first wave of COVID-19 in the Netherlands are implemented in our analysis.
*Schools were closed in the period March 16 — May 10, which is also what we use in our analysis.

National-level interventions

The first COVID-19 wave in the Netherlands lasted over the period February 27 (first reported case)
to June 1, 2020. Based on the interventions that took place, we split this period into four phases, for
which we analyze the epidemiological impacts of changes in mobility, mixing, behavior and school closure.
Details about these phases are shown in Table 1.

In our analysis, we capture these changes in the following manner. First, we reduce inter-municipality
mobility as reported by Google [34] in the four phases of the first wave in the Netherlands. The dominant
contribution to this travel reduction, by far, was due to a working-from-home policy recommended by
the Dutch government; we implement it in our analysis by placing the reported percentage of agents,
randomly drawn from the working categories, at home. Secondly, we address changes in mixing patterns
by determining percentage changes in the mixing among different age groups from Dutch survey data [17]
in the months February, April and June 2020, and applying these changes element-wise to the mixing
matrices used in our analysis. Thirdly, we represent behavioral changes by variations in 5; in Eq. (1) across
the four phases of the first wave. Fourth and finally, we implement school closing by placing school-going
agents (i.e., primary school children, secondary school children and students) as well as the parents of
primary school children at home, both in terms of the home locations of the agents and in terms of its
implications on mixing (see SI A.7).
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