
Novel discoveries and enhanced genomic prediction from modelling genetic risk
of cancer age-at-onset

Sven E. Ojavee1,2,†, *, Ekaterina S. Maksimova3,†, Kristi Läll4, Marie C. Sadler1,2,5, Reedik Mägi4, Zoltan
Kutalik1,2,5, Matthew R. Robinson3,*

1 Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
2 Swiss Institute of Bioinformatics, Lausanne, Switzerland
3 Institute of Science and Technology Austria, Klosterneuburg, Austria.
4 Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
5 University Center for Primary Care and Public Health, Lausanne, Switzerland

† These authors contributed equally to this work.
*corresponding authors: svenerik.ojavee@unil.ch and matthew.robinson@ist.ac.at

Abstract 1

Genome-wide association studies seek to attribute disease risk to DNA regions and facilitate 2

subject-specific prediction and patient stratification. For later-life disease, inference from 3

case-control studies is hampered by the uncertainty that control group subjects might later 4

be diagnosed. Time-to-event analysis treats controls as right-censored, making no additional 5

assumptions about future disease occurrence and representing a more sound conceptual al- 6

ternative for more accurate inference. Here, using data on 11 common cancers from the UK 7

and Estonian Biobank studies, we provide empirical evidence that discovery and genomic pre- 8

diction are greatly improved by analysing age-at-diagnosis, compared to a case-control model 9

of association. We replicate previous findings from large-scale case-control studies and find 10

an additional 59 previously unreported independent genomic regions, out of which 16 repli- 11

cated in independent data (an increase of 18% and 6% over current findings). Our novel 12

discoveries provide new insights into underlying cancer pathways, and our model yields a bet- 13

ter understanding of the polygenicity and genetic architecture of the 11 tumours. We find 14

that heritable germline genetic variation plays a vital role in cancer occurrence, with risk at- 15

tributable to many thousands of underlying genomic regions. Finally, we show that Bayesian 16

modelling strategies utilising time-to-event data increase prediction accuracy. As sample size 17

increases, incorporating time-to-event data should be commonplace, improving case-control 18

studies by using richer information about the disease process. 19

Introduction 20

Cancer has broad medical importance and a high global health burden, with 19.3 million new cancer cases 21

and almost 10 million cancer deaths occurring in 2020 [1]. Genome-wide association studies (GWAS) aim to 22

attribute risk to regions of the DNA [2] and facilitate polygenic risk score (PRS) calculation [3] to predict 23

subject-specific risk, which may then enable targeted and improved healthcare [4–6]. There is currently 24

evidence for only 450 genomic regions associated with increased risk of 18 common cancers [2], despite 25

recent results showing significant non-zero heritability across a range of cancer occurrences [7]. Current PRS 26

calculated from these findings stratify risk for several cancers, including breast, colon, and prostate cancer, 27

but often add negligible additional predictive information compared to existing non-genomic predictors [8]. 28

Increasing sample size yields increased statistical power for discovery, with extensive recent case-control 29

studies for breast cancer [9], prostate cancer [10,11], ovarian cancer [12], or testicular cancer [13] showing 30

improved results, but this remains a challenging endeavour. Biobanks provide an additional resource, essential 31

for modern-day medical genetics; however, individuals within these studies have not all reached old age and 32

the number of cancer cases is not high, with recent studies combining biobank cohorts for 18 cancer types [7] 33

to limited effect. 34
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Increased statistical power can also stem from tailored modelling choices, and one factor behind limited 35

predictive performance could be the choice of the genome-wide analysis method. Although most association 36

studies use methods that account for the impact of other genetic regions (fastGWA [14], GMRM [15], 37

BoltLMM [16], REGENIE [17]), it is sometimes still preferred to resort to the basic association testing. 38

In addition, most genome-wide analyses have been performed using a case-control phenotype rather than 39

utilising the cancer diagnosis age as a phenotype, and there is some evidence that analysing data using 40

time-to-event informed methods can have more power for detecting associations [18–21]. 41

Here, we provide empirical evidence using data on 11 common tumours from the UK and Estonian Biobank 42

studies that GWAS discovery and genomic prediction are greatly improved by analysing age-at-diagnosis, 43

compared to a case-control model of association. We extend our recently presented BayesW approach [20], a 44

Bayesian modelling framework that enables joint effect size estimation for time-to-event data, to provide 45

marginal leave-one-chromosome-out mixed-linear age-at-onset adjusted association estimates, in contrast 46

to using Cox mixed model [22] or age-at-onset informed genomic reconstruction of the phenotype [21]. We 47

focus on a re-analysis in the UK Biobank data alone, and we replicate previous findings from large-scale 48

case-control GWAS and find an additional 59 previously unreported independent genomic regions, out of 49

which 16 replicated in independent data (a respective increase of 18% and 6% over current findings). Our novel 50

discoveries provide new insights into underlying cancer pathways, and our model yields a better understanding 51

of the polygenicity and genetic architecture of the 11 tumours. We find substantial SNP-heritability, implying 52

that heritable germline genetic variation plays a vital role in cancer occurrence, with risk attributable to 53

many thousands of underlying genomic regions. Finally, we show that Bayesian modelling strategies that 54

utilise time-to-event data give increased prediction accuracy for all analysed tumours and suggest clinically 55

relevant discrimination rules within the Estonian Biobank study. We argue that it is possible to use existing 56

data more thoughtfully and that a re-analysis of case-control study data exploiting age-at-onset information 57

will lead to novel discoveries and enhanced genomic prediction. 58

Results 59

Novel and replicated associations 60

We analysed data from the UK Biobank on the timing or occurrence of diagnosis of 11 different tumours 61

(see Supplementary Information) using 458,747 individuals of European ancestry and a very weakly LD 62

pruned set of 2,174,071 SNP markers (see Methods and descriptive statistics in Table S1). We present 63

a mixed-linear age-at-onset adjusted association model that mimics the behaviour of recently developed 64

leaving one chromosome out (LOCO) linear mixed models [15, 17] and uses age-at-diagnosis information 65

(GMRM-BayesW, see Methods). We compare the results obtained to a recently proposed more classical 66

case-control information mixed-linear association model that uses the same prior structure for the LOCO 67

adjustment but no age-at-onset information (GMRM-BayesRR-RC [15]). We find that this approach of 68

adjusting the phenotypes with either BayesW or BayesRR-RC predictors results in enhanced statistical power 69

(Figure S1), with GMRM-BayesW resulting in higher power gain as compared to GMRM-BayesRR-RC for 70

most cancer sites. Applying GMRM-BayesW or GMRM-BayesRR-RC to the UK Biobank data, we replicate 71

previously reported findings, with 266 previously identified significant independent trait-marker associations 72

at p < 5 · 10−8 (Supplementary data). We also find an additional 59 independent previously unreported 73

variants significant at p < 5 · 10−8, of which 16 replicate in independent data of either the Estonian Biobank 74

or previous non-UK Biobank case-control studies (Figure 1a, Table 1, see Methods). The replication analysis 75

demonstrates that the z-scores for 59 previously unreported associations are correlated between the replication 76

and discovery data sets (Fisher’s exact test for z-score sign p = 0.002, Supplementary figure S3). Furthermore, 77

we observe that the 59 previously undiscovered variants had small but not genome-wide significant p-values 78

in the unadjusted analysis (see Methods), and using GMRM-BayesRR-RC or GMRM-BayesW reduced their 79

p-values below a genome-wide significance threshold (Table S3). We discover novel or replicate previous 80

discoveries slightly better when we account for age-at-onset as compared to the case-control model with 83% 81

and 78% of the markers discovered, respectively, especially for traits that have higher case counts such as 82

breast or prostate cancer (Figure S2). 83
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To map novel associations to functional annotations, we conducted a number of follow-up analyses. SNPs 84

from the previously unreported 16 genomic regions (lead SNPs and those in LD r2 > 0.6, see Methods) 85

lie predominantly in intergenic parts of the genome, with slightly more enrichment than the reference 86

population (enrichment 1.2, p = 5.0 · 10−5). We observe substantially higher enrichment in downstream (7.4, 87

p = 4.3 · 10−21) and upstream (5.0, p = 2.4 · 10−10) regions (the respective values for all significant SNPs are 88

1.5, p = 6.9 · 10−9 and 1.7, p = 5.4 · 10−14) (Figure 1b). Majority of SNPs from these novel regions could be 89

linked to regulatory variation. Namely, 11 out of 16 genomic regions contain expression quantitative trait loci 90

(eQTLs) (maximum p < 1.8 · 10−20 from FUMA eQTL mapping, see Methods); 6 novel regions have SNPs 91

that fall into RegulomeDB categories [23] that are likely to affect binding, or are linked to expressions of a 92

gene target (Figure 1d). In addition, 5 novel genetic regions include methylation QTLs (mQTLs) associated 93

with other cancers from the Pancan-meQTL database [24]. Moreover, 15 out of 16 novel genomic regions 94

are in open chromatin state in at least 1 of 127 tissue/cell types predicted by ChromHMM [25] (Figure 1d), 95

while for 7 regions, active chromatin state is the most common (Supplementary data). 96

We confirmed the regulatory effects of novel regions on a wide range of chromatin features using DeepSEA, 97

a deep learning-based model that predicts chromatin effects of sequence variants and priorities regulatory 98

variants [26, 27]. The DeepSEA functionality score median for SNPs in novel genomic regions is 0.18 and one 99

region (index SNP rs804172, associated with prostate cancer) has maximum mean log e-value (MLE) > 2 100

(Figure 1d), indicating a higher likelihood of regulatory effects than a reference distribution of 1000 Genomes 101

variants. Moreover, 3 novel regions have maximum disease impact score (DIS) > 2 (Figure 1d), highlighting 102

likely disease-associated mutations. We also used the CADD tool that predicts deleterious, functional, and 103

disease causal variants by integrating multiple annotations into one deleteriousness metric [28]. The average 104

CADD score is 4.34, with two novel lead SNPs with CADD score > 12.37, and 9 regions containing SNPs 105

with max CADD score > 12.37 (Figure 1d), a deleteriousness threshold suggested by Kircher et al. [28]. Thus, 106

most novel associations can be attributed to regulatory, intronic, open chromatin functional regions. 107

To infer whether SNPs from the novel genomic regions impact cancer risk through altering DNA methylation 108

(DNAm) or gene expression levels, we performed Mendelian randomisation (MR) analyses (see Methods). 109

First, we applied single-instrument two-sample summary Mendelian randomisation (SMR) analysis together 110

with heterogeneity in dependent instruments (HEIDI) testing [29] on tissue-specific gene expression data 111

from GTEx (v8) (N = 65-573, European ancestry, [30]) and whole blood-derived eQTLs from eQTLGen 112

(N =31,684, [31]). We could map novel regions to 57 tissue-specific mechanisms involving 29 genes (Figure S5, 113

Supplementary data). For example, CDC42 expression in muscle skeletal tissue (β̂ = 0.033, p = 5.2 · 10−6), 114

colon sigmoid tissue (β̂ = 0.039, p = 1.0 · 10−5), and whole blood (β̂ = 0.066, p = 1.1 · 10−11) showed a 115

risk-increasing effect on cervical cancer development (Supplementary figure S5). Second, we analysed mQTL 116

data from the GoDMC consortium (N =32,851) [32] using SMR with HEIDI testing (see Methods). The 117

analyses provided evidence for 225 pleiotropic associations between DNAm probes and BCC, cervical and 118

prostate cancers in the 16 novel regions (Bonferroni-correction at p < 0.05/2380, HEIDI filtering at p > 0.05, 119

Supplementary data). Among these 225 associations, we found that 44 probes overlap with probes linked 120

to 23 other cancers from the Pancan-meQTL database [24]; and 3 of these 44 probes were differentially 121

methylated by means of the same mQTLs (Figure 1c). This colocalisation analysis shows that our novel 122

discoveries, in part, overlap with regions previously found to be methylated in tumour cells, implying that 123

previous methylation differences in tumour cells are driven by germline variation. 124

We further extended the MR analysis to multivariable MR (MVMR) to jointly estimate whether cancer 125

SNP associations could be mapped to regulatory mechanisms of the scheme DNAm → gene expression → 126

cancer in a genome-wide screen (see Methods). To maximise statistical power, we used mQTL and eQTL 127

derived from whole blood as provided by the GoDMC and eQTLGen consortia, respectively, and conducted 128

MVMR analyses to quantify mediation between DNAm (exposure E) and cancer traits (outcome Y ) through 129

gene expression (mediatorM). Among the novel regions, the risk for cervical cancer was found to be increased 130

by increased CDC42 expression (M → Y effect α̂MY = 0.040, p = 2.4 · 10−8) through methylation at the 131

cg15582954 probe (chr1:22’470’343; E → Y total effect θ̂T = 0.046, p = 3.8 · 10−8; Supplementary figure S4) 132

corroborating findings from the tissue-specific MR analyses. CDC42 has been shown to be overexpressed 133

in a number of human cancers and found to be a promising drug target in preclinical studies [33]. The 134

GWAS signal physically locates closer to WNT4 than CDC42 (Table 1), however, a putative causal role of 135
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WNT4 in addition to CDC42 could not be assessed due to a lack of corresponding eQTLs for this gene [31]. 136

Additional DNAm-to-gene expression mechanisms for previously identified cancer regions are listed in Table 2 137

and include mediation through genes well known to be implicated in cancer such as PDK1 [34], LYNX1 [35] 138

and NEK10 [36]. 139

Finally, we assessed shared molecular functions of these genes and nearest to the novel SNPs genes 140

using FUMA GENE2FUNC [37] software and the KEGG database [38]. The methylation and expression 141

MR analyses identified cancer-specific gene targets whose regulation was changed by SNPs from the novel 142

genomic regions, with a full list of potential novel genes given in Supplementary table S4. The genes 143

were enriched in pathways of linoleic acid metabolism, interferon-gamma signalling, human papillomavirus 144

infection, proteoglycans in cancer, axon guidance and viral carcinogenesis. Besides these pathways, the genes 145

prioritised by FUMA using positional, eQTL, and chromatin mapping showed enrichment in lipids, steroids, 146

and cholesterol metabolism, pathways in cancer, Kaposi sarcoma-associated herpesvirus infection, alcoholic 147

liver disease, chemokine and Rap1 signalling pathway, microRNAs in cancer, as well as interferon signalling 148

and antigen presentations pathways related to MHC-complex. Notable genes driving these discoveries are 149

KRAS, CDC42, and WNT4, part of pan-cancer pathways, and the FADS complex associated with metabolism. 150

Moreover, we closer examined the effects of exonic mutations from the novel genomic loci: 7 SNPs map 151

to exons representing 5 nonsynonymous (HLA-A (3), TFAP4, ZBED2 genes) and 2 synonymous (ATG7, 152

SLC6A18 genes) substitutions. We mapped 3 of these nonsynonymous mutations to the 3D protein structure 153

of the HLA-A complex, where all substitutions fall into alpha-3 domains that form the binding groove that 154

holds a peptide for presentation to CD8+ T-cells (Supplementary figure S11). In summary, our novel findings 155

confirm previous pathways, highlight tumour associated methylation patterns that likely stem from germline 156

variation, and provide additional potential mechanisms through which germline variation can affect cancer 157

risk. 158

Genetic architecture of 11 cancers 159

We then aimed at estimating the genetic heritability of the 11 cancers using LD score regression on the 160

marginal associations [39]. When correcting for the discrete nature of the trait (see Methods), the liability- 161

scale heritability estimates were similar or higher and more precise than array-based assays except for 162

non-Hodgkin’s lymphoma (Table 3), indicating that heritable genetic variation is a leading risk factor for 163

underlying risk of cancer. The pattern holds even if we use an approach tailored for estimating liability scale 164

heritability for rare traits [40] resulting in slightly more conservative estimates (Table S6). Interestingly, we 165

find that the GMRM-BayesW analysis leads to nominally higher heritability estimates for many cancers than 166

the GMRM-BayesRR-RC estimates, suggesting a better description of genetic architecture when including 167

the timing information in the analysis. The joint Bayesian models for occurrence also enable SNP heritability 168

estimation and comparative inference across cancers of the underlying distribution of genetic effects. The 169

liability scale heritability estimates from the joint Bayesian model are similar to the LD score regression 170

analysis estimates for more prevalent cancers. However, more remarkable differences between the estimates 171

and wider credibility intervals occur for the less prevalent cancers, supporting suggestions [40] that rare 172

traits require extra care as they could be subject to ascertainment bias, sampling bias, and their effective 173

sample size is low. We further used cross-trait LD score regression on the BayesW or BayesRR-RC adjusted 174

marginal associations to estimate the genetic correlation between the traits (see Methods). There is a sizable 175

genetic correlation between melanoma and basal cell carcinoma (BayesW estimate 0.51, 95%CI 0.34-0.68), 176

and we replicate [7] a previous result of negative genetic correlation between endometrial and testicular cancer 177

(BayesW estimate -0.38, 95%CI -0.68 - -0.07) (Supplementary table S5). Interestingly, BayesW-based genetic 178

correlations have a narrower confidence interval than BayesRR-RC based genetic correlation estimates for 179

each significant cancer trait pair. 180

We find that all traits are highly polygenic, with most of the h2
SNP attributed to SNPs that contribute an 181

average of 0.1% and 0.01% of the group genetic variance for BayesRR-RC and BayesW models, respectively 182

(Figure 2a). We find some differences across cancers, notably melanoma (10%), basal cell carcinoma (13%), 183

breast (8.0%), cervical (5.1%), and prostate (5.4%) cancers; and for age-at-diagnosis of non-Hodgkin’s 184

lymphoma (7.0%), bladder (6.0%) and ovarian (5.3%) cancers where at least 5% of the h2
SNP can be 185

attributable to a small number of large effects (mixture 10−2) (Figure 2a). In general, the analysis of 186
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time-to-event phenotypes results in more of the genetic variance assigned to the smallest mixture component 187

(Figure 2a). The result is in line with the number of LD-independent regions required to explain a proportion 188

of the SNP heritability, where time-to-event analysis results in a more polygenic architecture compared to 189

the case-control analysis (Figure 2b). Each curve reaches a plateau with 80-90% of the genetic variance 190

attributable to a small number of genomic regions, and the remaining 10-20% attributable to 10,000 to 20,000 191

LD-independent regions. The number of remaining regions required to capture all of the association signals 192

varies greatly across cancers, from 13,600 for ovarian and testicular cancer to 22,500 for basal cell carcinoma 193

(Figure 2b). Additionally, we find that the 11 cancers differ in how rare and common variants contribute to 194

the SNP heritability (Figure 2c). We further observe that genetic variance often positively correlates with 195

variants’ MAF structure. For example, the largest proportion of genetic variance is consistently attributable 196

to common variants in the fourth MAF quartile for both time-to-event (TTE) or case-control (CC) models 197

on basal cell carcinoma (TTE 66%, CC 68%), melanoma (TTE 32%, CC 36%), breast (TTE 44%, CC 70%), 198

colon (TTE 43%, CC 36%), and prostate cancers (TTE 40%, CC 57%) (Figure 2c). In contrast, testicular 199

cancer, non-Hodgkin’s lymphoma and ovarian cancer have 61%, 54%, 63% of the genetic variance explained 200

by the rarest effects in the first MAF quartile according to the case-control model. Thus, our MAF-LD 201

stratified h2
SNP estimation approach suggests: (i) strong differences in the underlying genetic architecture 202

across these 11 cancers, (ii) that only a limited number of genomic regions are required to capture most 203

of the risk for all cancers, and (iii) that mapping further associations will be extremely difficult as a small 204

amount of variance is attributable to a large number of independent regions of the DNA. 205

Genomic prediction of 11 cancers 206

Next, we used BayesW SNP marker estimates to predict the occurrence of cancer in 195,432 individuals 207

within the Estonian Biobank data (Figure 3, see Methods). We compared our results to those obtained 208

by a baseline BayesRR-RC model, and also to SNP marker effect estimates obtained by Rashkin et al. [7] 209

which combine the UK Biobank (408,786 European ancestry individuals; 48,961 cancer cases) and the Kaiser 210

Permanente Genetic Epidemiology Research on Adult Health and Aging cohorts (66,526 European ancestry 211

individuals; 16,001 cancer cases) to obtain a larger sample size. Additionally, we also compare our prediction 212

estimates to the results obtained by Kachuri et al. [41] where they combined GWAS summary statistics across 213

many cancer studies to achieve a much larger sample size. We provide a comparison of applying Bayesian 214

models on either self-reported or medical record data (see Methods), showing that medical record data models 215

outperform models using self-reported data. Thus, we resorted to using only medical record data (Figure 216

S10), which illustrates the importance of high data quality and accurate measurement to facilitate phenotype 217

linking across studies. 218

We find that Bayesian models for individual-level data, especially those utilising age-at-onset information, 219

yield substantially improved genomic prediction for cancer occurrence, and the benefit is amplified as case 220

count increases. Except for a few cancers for which none of the models gives significantly useful predictors, we 221

find that conducting the analysis using an age-at-onset phenotype (BayesW) yields a nominally higher odds 222

ratio (of having one standard deviation higher PRS) than a case-control phenotype (BayesRR-RC) for basal 223

cell carcinoma (BayesW: 1.66, BayesRR-RC: 1.65), bladder cancer (BayesW: 1.36, BayesRR-RC: 1.24), colon 224

cancer (BayesW: 1.19, BayesRR-RC: 1.16), melanoma (BayesW: 1.29, BayesRR-RC: 1.25), non-Hodgkin’s 225

lymphoma (BayesW: 1.19, BayesRR-RC: 1.13), prostate cancer (BayesW: 1.86, BayesRR-RC: 1.85), and 226

testicular cancer (BayesW: 1.55, BayesRR-RC: 1.44) (Figure 3a). A similar trend can be observed when 227

using C-statistic or hazards ratio for comparison (Supplementary figure S9, see Methods). At least one of the 228

Bayesian methods consistently outperforms previous analyses with a larger sample size that combine the 229

biobank cohorts of the UK Biobank and Kaiser Permanente studies (UKB-KP) (see Methods). More notably, 230

UKB-KP score has at least nominally smaller odds ratios (of standard deviation PRS difference) for testicular 231

cancer (UKB-KP: 1.30), prostate cancer (UKB-KP: 1.51), breast cancer (UKB-KP: 1.23) and non-Hodgkin’s 232

lymphoma (BayesW: 1.19, BayesR: 1.12, UKB-KP: 1.04). For the latter case of non-Hodgkin’s lymphoma, 233

the UKB-KP score did not yield a significantly predictive score. The PRSs suggested by Kachuri et al. [41] 234

combining multiple studies from a far more significant number of underlying cancer cases (Total marginal), 235

yield mostly similar results to the BayesW and BayesRR-RC predictors using only UK Biobank data (Figure 236

3, Supplementary figure S9). For example, for breast cancer, where the previous study had 119,000 total 237
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cancer cases [9] as compared to our 17,000 cases (Supplementary table S1), we achieved similar odds ratios 238

for standard deviation PRS change (BayesRR-RC: 1.59, Total marginal: 1.61). Bayesian scores outperform 239

Total marginal PRS for prostate cancer (Total marginal: 1.77) and cervical cancer (Total marginal: 0.96), 240

and Bayesian scores offer a marginal improvement for melanoma (Total marginal: 1.23) and non-Hodgkin’s 241

lymphoma (Total marginal: 1.13). Testicular cancer stands out as both Bayesian scores perform noticeably 242

worse compared to the Total marginal estimate, but here, our analysis resorted to only 886 cases whereas the 243

previous risk score is combining more than 10,000 cases [13,42] and thus the power in the UK Biobank in 244

likely simply too low. 245

We observe that the highest 5% PRS quantile discriminates well for the disease occurrence (Figure 3c). 246

Whereas the risk to develop prostate cancer by age 85 is estimated to be 11% (Supplementary table S7) among 247

the top 5% highest PRS individuals, nearly 55% will develop prostate cancer according to the BayesRR-RC 248

model. In comparison, UKB-KP PRS finds that 46% of the top 5% PRS develop prostate cancer. The top 249

5% polygenic risk score yields a useful discrimination rule for most other cancers as well, notably for breast 250

cancer for which 19% of the top 5% BayesW PRS gets diagnosed with by age 85 (12% in the population, 251

Supplementary table S7) and basal cell carcinoma for which 39% of the top 5% BayesRR-RC PRS gets 252

diagnosed by age 85 (31% in the population, Supplementary table S7). The share of individuals getting a 253

cancer diagnosis before age 50 is disproportionately higher among individuals with top 5% or 10% of the 254

PRS across many cancers and risk score types (Figure 3b). For example, 23% out of all basal cell carcinoma 255

cases and 30% out of all prostate cancer cases have the top 10% highest genetic risk according to BayesW 256

risk score suggesting that the BayesW risk score discriminates well the early onset of prostate cancer or basal 257

cell carcinoma. Our results suggest that the top 5% highest Bayesian polygenic risk scores could serve as a 258

rule to detect individuals who should not only receive earlier communication about their risks but it could 259

also result in a cost-effective screening model for this subset of individuals. 260

Discussion 261

Our results demonstrate the advantages of using joint Bayesian modelling and age-at-onset phenotypes 262

for genomic prediction and GWAS discovery, highlighting how these approaches can be used to improve 263

utilisation of existing data. Biobanks are becoming increasingly common worldwide, size and numbers of 264

biobanks are increasing and improved links to electronic health record data enable information to be obtained 265

regarding the age-at-diagnosis. Thus, we expect that our approach of incorporating age-at-onset data in the 266

analysis will become commonplace, improving case-control studies by using richer information about the 267

disease process. 268

One of the fundamental problems of analysing cancer phenotypes in a case-control fashion is the uncertainty 269

that the control group subjects might later be diagnosed with cancer. Many cancers often become more 270

prevalent only at later ages (Figure 3c), and as biobanks primarily consist of young, healthy individuals, 271

it could distort the inference. That issue can be mitigated, for example, by introducing age thresholds to 272

eliminate younger individuals who have been at risk only for a limited amount of time, or by age-matching 273

individuals. However, this will always be somewhat arbitrary, it would reduce the sample size, and there is 274

no guarantee that older individuals would not develop cancer in their later life. In contrast, time-to-event 275

analysis treats these individuals as right censored, making no additional assumptions about the cancer 276

occurrence in future. Therefore, time-to-event analysis suggests an alternative with a more sound conceptual 277

background to yield more accurate inference. Interestingly, time-to-event adjustment tends to yield higher 278

power than the case-control adjustment once the case count is high enough. Hence, time-to-event analyses 279

could become more statistically powerful for future studies with potentially many added cases than their 280

case-control counterparts at a high fixed case count. 281

Our PRS results remain limited as our work represents a re-analysis of a single biobank study, with the 282

aim of demonstrating the methodological improvements that can be obtained. However, there is nothing 283

preventing BayesW being run across different studies and posterior mean SNP effects being combined to 284

improve the effectiveness of the PRS, providing predictors with the potential to stratify individuals for 285

screening programs. For example, prostate cancer screening has been found to be only moderately useful 286

for the general population with 17-40% [43,44] reduction in cancer-specific deaths but as the mortality rate 287
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is low (in USA stage I-III 5-year survival rate >95%, stage IV 5-year survival rate 30% [45]) and as there 288

are potential complications following the treatment, a general screening program has not been commonly 289

implemented. Nevertheless, there are recommendations for stratified risk communication. For example, the 290

American Cancer Society suggests that men with a first-degree relative with prostate cancer before age 65 291

should be informed about screening and its risks already at age 45, and men with multiple relatives with 292

prostate cancer before 65 should be informed about screening even at age 40 [46]. Moreover, it has been found 293

that even if screening is not cost-effective for men at average risk of prostate cancer, it is still cost-effective 294

for men at very high risk (five times higher risk than the average) [44]. Our results suggest that the top 5% 295

highest Bayesian polygenic risk scores could serve as a rule to detect those who should be screened and whose 296

risk should be communicated. 297

There are important caveats to this study. Firstly, the discovery and training set of our study is limited 298

to UK Biobank individuals with European ancestry whereas many other recent studies that have rather 299

focused on merging and meta-analysing multiple data sets from various backgrounds. However, we replicate 300

our findings on an independent data set and despite having a smaller discovery set we show that there are 301

discoveries yet to be made on existing data set simply by using enhanced methodology for timing-related 302

traits rather than occurrence-related traits. Secondly, the number of cancer cases is very low for some of our 303

cancers such as testicular, ovarian or endometrial cancer leading to sub-optimal prediction accuracy, while 304

cancers with higher case counts (prostate, breast) yielded good prediction accuracy. Hence, in future these 305

analysis should be replicated with greater case counts for the cancers with smaller case counts. Thirdly, our 306

current analysis combines both prevalent and incident cases to maximise the statistical power. However, 307

it has been shown [7] that effect sizes are in general very similar even if we restrict the analysis only to 308

incident cases. Future time-to-event analyses could also benefit from using information about left truncation 309

by including entry date to the analysis, although the gain might be marginal as long as the phenotypic 310

information is derived from the medical records and the onset happens later in life. 311

In summary, we have shown random effect models, especially those which utilise time-to-event data, 312

maximise the use of existing data, for h2
SNP estimation, genomic prediction and GWAS discovery of 11 313

common cancers. 314

Methods 315

UK Biobank Data 316

We restricted our discovery analysis in the UK Biobank to a sample of European-ancestry individuals. To 317

infer ancestry, we used both self-reported ethnic background (UK Biobank field 21000-0) selecting coding 1 318

and genetic ethnicity (UK Biobank field 22006-0) selecting coding 1. We also took the 488,377 genotyped 319

participants and projected them onto the first two genotypic principal components (PC) calculated from 320

2,504 individuals of the 1,000 Genomes project with known ancestries. Using the obtained PC loadings, 321

we then assigned each participant to the closest population in the 1000 Genomes data: European, African, 322

East-Asian, South-Asian or Admixed, selecting individuals with PC1 projection < absolute value 4 and PC 2 323

projection < absolute value 3. Samples were also excluded if in the UK Biobank quality control procedures 324

they (i) were identified as extreme heterozygosity or missing genotype outliers; (ii) had a genetically inferred 325

gender that did not match the self-reported gender; (iii) were identified to have putative sex chromosome 326

aneuploidy; (iv) were excluded from kinship inference; (v) had withdrawn their consent for their data to be 327

used. We used genotype probabilities from version 3 of the imputed autosomal genotype data provided by 328

the UK Biobank to hard-call the genotypes for variants with an imputation quality score above 0.3. The 329

hard-call-threshold was 0.1, setting the genotypes with probability ≤ 0.9 as missing. From the good quality 330

markers (with missingness less than 5% and p-value for Hardy-Weinberg test larger than 10−6, as determined 331

in the set of unrelated Europeans) we selected those with minor allele frequency (MAF) > 0.0002 and rs 332

identifier, in the set of European-ancestry participants, providing a data set 9,144,511 SNPs. From this we 333

took the overlap with the Estonian Biobank data described below to give a final set of 8,430,446 markers. 334

This provides a set of high quality SNP markers present across both discovery and prediction data sets. For 335

computational convenience when conducting the joint Bayesian analysis we created an additional subset of 336
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markers by removing markers in very high LD, through the selection of the highest MAF marker from any 337

set of markers with LD R2 ≥ 0.8 within a 1Mb window. These filters resulted in a data set with 458,747 338

individuals and 2,174,071 markers. 339

We used the recorded measures of individuals to generate the phenotypic data sets for 11 most common 340

types of cancer: bladder, breast, cervix, colon, endometrium, ovary, prostate, testis, basal cell carcinoma, 341

melanoma, and non-Hodgkin’s lymphoma. Then, we created time-to-event phenotypes using either self- 342

reported data or the linked electronic medical records data. For the medical record data, we used UK Biobank 343

field 40008 to get the earliest age at each cancer diagnosis together with fields 40006 and 40013 to indicate 344

the ICD10 or ICD9 cancer type (Table S2). Individuals without an entry on those fields were considered 345

censored and their time was set to their last known age alive (exact birth date imputed to day 15 of a month 346

as only month and year are known) without a cancer diagnosis. Each individual i was therefore assigned a 347

censoring indicator Ci that was defined Ci = 1 if the person had the event before the end of the follow-up 348

period and Ci = 0 otherwise. For self-reported time-to-event phenotypes, we created a pair of last known 349

time (averaged between assessments) without an event and censoring indicator Ci. Similarly to the medical 350

record phenotypes, if the event had not happened, then the last time without having the event was defined 351

as the last date of assessment centre or date of death visit minus date of birth. For creating the self-reported 352

phenotypes, we used UK Biobank field 20001 for the presence or absence of certain cancer type and UK 353

Biobank field 20007 for interpolated ages of individuals when the disease was first diagnosed; we excluded 354

from the self-reported phenotype analysis individuals who said that they had cancer, but there was no record 355

of the diagnosis age. In an attempt to further increase power and to account for potential missingness, for 356

each individual who had self-reported data about cancer timing but no medical record data, we used used the 357

self-reported age-at-diagnosis instead of treating the individual as censored. However, this approach only 358

yielded marginal improvements compared to using purely medical record information (Supplementary figure 359

S10). Finally, the case-control-phenotypes corresponding to the time-to-event phenotypes were defined as the 360

censoring indicators Ci. 361

The analyses were adjusted for the following covariates: sex for sex-unspecific cancers, age in case-control 362

analyses, UK Biobank recruitment center, home location, genotype batch and 20 first principal components 363

(UK Biobank field 22009) to account for the population stratification in a standard way. For the analyses 364

that used age-at-diagnosis as phenotypes we did not include any covariates of age or year of birth because 365

these are directly associated to our phenotypes. 366

Estonian Biobank Data 367

For the Estonian Biobank data, 195,432 individuals were genotyped on Illumina Global Screening (GSA) 368

arrays and we imputed the data set to an Estonian reference, created from the whole genome sequence data 369

of 2,244 participants [47]. From 11,130,313 markers with imputation quality score > 0.3, we selected SNPs 370

that overlapped with those selected in the UK Biobank, resulting in a set of 8,430,446 variants out of which 371

2,174,071 variants were used in the prediction analysis. The 60 previously unreported variants that were 372

found significant in the marginal association analysis of UK Biobank (Table S3) were used in a replication 373

analysis using the same Estonian Biobank individuals. 374

We created the phenotypes for the Estonian Biobank individuals using the respective medical record 375

information. The occurrence of each of the cancers was defined by using the respective ICD10 codes exactly 376

as it was defined for the UK Biobank medical record phenotypes (Supplementary table S2) by first defining 377

the last known time person did not have a respective diagnosis. Individuals with a respective cancer diagnosis 378

received a censoring indicator Ci = 1 and 0 otherwise that then defined the case-control phenotypes adjusted 379

for covariates such as sex for sex-unspecific cancers and age. 380

Analysis with joint Bayesian models 381

We estimated the hyperparameters such as genetic variance and prior inclusion probability by grouping 382

markers into MAF-LD bins as recent theory suggests this yields improved estimation [48–50]. We ran the 383

BayesW model on the UK Biobank data with 8 MAF-LD groups that were defined as first splitting markers 384

by MAF quartiles and then splitting each of those MAF quartiles into two LD score blocks (MAF quartiles 385
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are 0.007, 0.020, 0.102; median LD score in each quartile are 2.32, 3.33, 5.69, 9.25, from the lowest MAF 386

quartile respectively). We decided not to split these groups further as the potentially low statistical power 387

of cancer-related phenotypes could lead to many groups with zero genetic variance. Both BayesW and 388

BayesRR-RC models were executed with mixture components (0.0001, 0.001, 0.01, 0.1) for each of the groups, 389

reflecting that the markers allocated into those mixtures explain the magnitude of 0.01%, 0.1%, 1% or 10% of 390

the group-specific genetic variance. We ran the BayesW model using the timing of cancers as the phenotype 391

while treating individuals without cancer as censored, and we ran the BayesRR-RC type model using the 392

occurrence of cancer as the phenotype. In the BayesW analyses we took the covariates into account by 393

estimating the effects of the covariates within the BayesW model while in the BayesRR-RC we regressed out 394

the covariates from the phenotype prior to the analysis. 395

We specified the hyperparameters for the models such that they would be weakly informative. For BayesW 396

model, the choice of hyperparameters and quadrature points was exactly the same as in [20]; for BayesRR-RC 397

model the choice was exactly the same in [50]. We ran the chains for each of the cancer types twice for 6000 398

iterations, discarding the first 2000 iterations as a burn-in and using a thinning step of 5, leaving us with a 399

final of 1600 samples of the posterior distribution. As estimation is done in parallel, the run time will depend 400

on the degree of parallelisation. For example, for basal cell carcinoma we used 11 nodes and 12 tasks per 401

node (total 132 tasks) for BayesW and 7 nodes and 12 tasks per node (total 84 tasks) for BayesRR-RC. This 402

resulted in a total run time of 67.5 hours (40.5s per iteration) for BayesW and 79.7 hours (47.8s per iteration) 403

for BayesRR-RC. Although BayesW was faster in the absolute time, adjusted for the number of tasks in the 404

example, BayesW requires 33% more time per iteration than BayesRR-RC. Other choices for parallelisation 405

(for example synchronisation rate) were set the same as described in [20]. 406

Association testing with adjusted marginal models 407

For association testing, we used binary case-control phenotypes of cancer occurrences as a baseline. From 408

those binary phenotypes we regressed out sex, (if applicable for the cancer), age, UK Biobank assessment 409

centre, coordinates of birth place, genotype chip, and the leading 20 PCs of the SNP data. In addition, when 410

testing each chromosome we regressed out from the phenotype the genetic effects of all the other chromosomes 411

and the genetic effects were calculated using either the BayesRR-RC or BayesW models. That is, for every 412

chromosome k, the phenotype was defined as 413

ỹk = ỹ−
∑
l 6=k

ĝl, (1)

where gl = Xl
UKβ̄l, Xl

UK : N ×Ml matrix of SNPs in the lth chromosome, β̄l is the vector of average 414

effect sizes from joint Bayesian analysis in chromosome l, ỹ is the binary phenotype that has been adjusted 415

for covariates. Then, at each chromosome k we fitted the linear model for every marker j 416

ỹk = Xk
UKj

βj + ε, (2)

where Xk
UKj

is the vector of jth marker values, βj is the jth SNP effect that we are estimating, ε ∼ 417

N(0, σ2
eIN ) is the error term with an error variance σ2

e . Therefore, we estimated the effect size and standard 418

error for each of the SNPs and we tested the significance using two-sided Wald test with a null hypothesis of 419

βj = 0. For comparison, we also estimated the conventional unadjusted models where we did not adjust the 420

phenotype for the genetic effects of other chromosomes, that is 421

ỹ = XUKj
βj + ε. (3)

We used the full overlap of UK Biobank and Estonian Biobank markers giving us a total of 8,433,421 422

markers to be analysed. We used p-value threshold of 5 · 10−8 to determine the significance of each marker. 423

We applied the following steps on the association results to filter out independent and potentially previously 424

undiscovered markers. Firstly, we LD clumped the results such that the index SNPs would have a p-value 425

below 5 ·10−8 and SNPs could be added to a clump if they were 1Mb from the index SNP, they were correlated 426

with r2 > 0.05 and they were nominally significant (P < 0.05). Next, we used COJO method [51] from 427
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GCTA software [52] to find clumps with independent signals by conducting stepwise selection of index SNPs 428

in 1Mb window and we considered SNPs independent if they had a p-value below 5 · 10−8 in the joint model. 429

To determine novelty, we first removed all markers that were significantly associated in the unadjusted model 430

(eq. 3). We then removed all the markers that had a correlation of r2 > 0.1 with a marker that had been 431

previously found associated with a cancer of interest using GWAS Catalog (published until July 2021) and 432

LDtrait tool with the British in England and Scotland population. We then again used COJO to condition 433

the remaining markers on the previously identified associations for each cancer of interest and SNPs that did 434

not fall below 5 ·10−8 in the joint model were eliminated. For the remaining SNPs we conducted an additional 435

literature review using Phenoscanner database [53, 54] to find any previous associations with variants of 436

interest or variants in LD. The remaining candidates of novel associations were concatenated across BayesW 437

or BayesRR-RC adjusted analyses and then included in the replication analysis using the largest available 438

studies conducted for each specific cancer type. We were able to use studies with around 80,000 prostate 439

cancer cases [11], 120,000 breast cancer cases [9]. We also checked findings for replication in the Estonian 440

Biobank. Replication was defined as Benjamini-Hochberg corrected p-value being lower than 0.05 and the 441

direction of the effect size same in both the original analysis and the replication analysis. 442

Liability scale heritability and genetic correlation 443

We used the summary statistics from the marginal association analysis in LD score regression [39] to 444

calculate the observed scale heritability. We used the LD scores from the 1000 Genomes European data 445

https://alkesgroup.broadinstitute.org/LDSCORE/ and the summary statistics were taken from either 446

BayesW-adjusted or BayesRR-RC-adjusted association analysis. The conversion of the heritability to the 447

liability scale was done using the formula by Lee et al. [55] (Table 3) and using the risks from SEER 2016-2018 448

(Table S7) [56] using the risks of having cancer diagnoses between ages 0 to 85 for non-hispanic white people 449

providing similarity with the study population (European ancestry, UK Biobank, oldest person age 86). We 450

further provide an alternative liability scale transformation [40] designed for rare traits. Using the alternative 451

rare trait liability scale transformation we also present the heritability estimates from the joint Bayesian 452

case-control model (Table S6). In addition, we used cross-trait LD score regression [57] to calculate the 453

genetic correlations using results from BayesW or BayesRR-RC adjusted analyses, again using LD scores 454

from the 1000 Genomes European data. 455

Discovery follow-up analyses 456

We conducted a number of follow-up analyses using the mixed-linear age-at-onset adjusted association model 457

(GMRM-BayesW) and the baseline mixed-linear age-at-onset adjusted association model summary statistics. 458

Functional annotation analysis 459

We used FUMA (Functional Mapping and Annotation) [37] platform to functionally characterise novel 460

replicated variants and prioritise genes. We defined a threshold for independent significant novel SNPs 461

and corresponding novel genetic regions as LD r2 = 0.6 on the reference panel UKB/release2b. When 462

performing gene mapping, we used 10kb maximum distance for positional mapping, all available tissue types 463

and maximum p-value threshold of 5 · 10−8 for eQTL mapping, and builtin chromatin interaction data with 464

1 · 10−6 FDR threshold for chromatin interaction mapping. 465

We annotated SNPs by function and identified nearest genes using ANNOVAR [58], performing a two-sided 466

Fisher’s exact test for quantification of functional classes enrichment. We obtained RegulomeDB categorical 467

score [23], eQTL information, 15-core chromatin state [25], and CADD deleteriousness score [28] from 468

SNP2GENE analysis of FUMA. We considered markers as deleterious if their CADD score exceeded the 12.37 469

threshold suggested by Kircher et al. (2014) [28] and chromatin state as open/active for SNPs with 15-core 470

chromatin score ≤7 predicted by ChromHMM [25] based on 5 chromatin marks for 127 epigenomes. We 471

annotated the SNPs with DeepSEA, a deep learning-based model that predicts chromatin effects of sequence 472

variants and priorities regulatory variants, and we report here the functional significance score [26], maximum 473

mean log e-value (MLE), and disease impact score (DIS) [27]. We calculated all of the mentioned parameters 474
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for each significant independent novel SNP as well as minimum/maximum/common values within the novel 475

genetic regions. 476

We visualised the location of the exonic SNPs on a 3D protein structure by identifying amino acid 477

substitutions in the gnomAD database [59], aligning proteins using Protein BLAST [60], and visualising with 478

iCn3D Structure Viewer [61]. 479

Mendelian randomisation analysis 480

We applied two-sample summary-data-based Mendelian Randomisation (SMR) and heterogeneity in dependent 481

instruments (HEIDI) method [29] to assess genetic colocalisation between the 16 novel regions identified 482

by our mixed-linear model BayesW analyses and DNA methylation (DNAm) as well as tissue-specific gene 483

expression. DNAm levels were instrumented by mQTL data derived from whole blood provided by the 484

GoDMC consortium (N =32,851, [32]). Tissue-specific eQTL data came from the GTEx consortium (v8) for 485

49 tissue types (N = 65-573, European ancestry, [30]). Additionally, we used whole blood-derived eQTLs 486

from the eQTLGen consortium (N =31,684, [31]). We selected cis-m/eQTLs (< 1Mb of associated probe, 487

p < 1 · 10−6 ) from the novel regions (if available in the investigated tissue) and conducted SMR-HEIDI 488

tests using the top m/eQTL for each DNAm/gene probe, respectively. Given that most tissue-specific 489

gene expression levels cannot be instrumented by multiple independent instrumental variables (IVs), the 490

SMR-HEIDI approach was chosen over other MR methods that need multiple IVs to test for robust causal 491

associations [62]. SMR outputs were also filtered based on a stringent HEIDI threshold of p > 0.05 [29]. 492

Significance of gene-cancer SMR pleiotropic associations was defined at a Bonferroni-corrected threshold 493

accounting for 1,825 (p < 2.7 · 10−5) tests summing across different tissues and instruments. 494

We further conducted multivariable MR (MVMR) to dissect significant DNAm-to-cancer causal effects 495

(θT ) into direct (θD) and indirect effects through transcript levels following the methodology outlined in [63]. 496

While the previous SMR analysis was restricted to the 16 novel regions, the MVMR framework was applied 497

on genome-wide GMRM-BayesW estimates across the 11 cancers. MVMR necessitates multiple IVs and we 498

based the analysis on mQTLs and eQTLs from the GoDMC and eQTLGen consortium, respectively. 499

First, we conducted univariable inverse-variance weighting MR (MR-IVW) analyses for every exposure E 500

DNAm probe with at least 5 near-independent instrumental variables (r2 < 0.05, p < 1 · 10−6, < 1 Mb from 501

DNAm probe, ∼50,000 DNAm probes) accounting for correlated instruments [64] to obtain DNAm-to-trait 502

total causal effect estimates (E → outcome Y effect (θ̂T )). DNAm-trait pairs with an associated Bonferroni- 503

corrected significant causal effect (pT < 0.05/50,000 = 1 · 10−6) were retained and distance-pruned (> 1 Mb) 504

based on pT to be independent of each other. 505

Second, MVMR analyses were performed to estimate the direct effect θ̂D by including transcript mediators 506

(M) and their associated genetic instruments (p < 1 · 10−6). Transcripts were required to be in cis (< 500kb 507

away from the DNAm probe) and causally associated to the DNAm probe. This latter condition was verified 508

by calculating univariable MR-IVW effects from the DNAm probe on the transcript to estimate a causal effect 509

α̂EM and associated p-value pEM (significance was defined at pEM < 0.01). Analogously to the total causal 510

effect estimation, direct effects θ̂D were then calculated in an MVMR regression accounting for correlation 511

among IVs [65]. The mediation proportion (M̂P ) was then estimated as 1− θ̂D/θ̂T . Causal effect estimates 512

from the transcript mediator on the outcome trait (α̂MY ) were obtained from univariable MR-IVW analyses. 513

To ascertain that MVMR estimates did not suffer from heterogeneity, which could point towards horizontal 514

pleiotropy, we computed heterogeneity tests based on Cochran’s Q-statistic [66]. Homogeneity within the 515

genetic instrument set was assured at pHET > 0.01. 516

We compared the significantly associated methylation probes from the novel regions with the Pancan- 517

meQTL database [24] which provides meQTLs across 23 cancer types from The Cancer Genome Atlas. For 518

this comparison, we used the probes identified by SMR (2,380 tests). The significance threshold was adjusted 519

for the total number of tests (p < 0.05/2, 380 = 2.1 · 10−5). 520

For pathway analyses, we derived a list of genes whose differential expression was found to be associated 521

with cancer risk based on the eQTL and mQTL MR analyses. For this, we combined results from the following 522

analyses: single-instrument SMR on GTEx (v8) (1680 tests), eQTLGen (145 tests), and GoDMC (2380 tests) 523

datasets and multi-instrument MR-IVW on eQTLGen (61 tests) and GoDMC (998 tests) datasets. The 524
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overall significance threshold on combined data was Bonferroni-corrected p < 0.05/5264 = 9.5 · 10−6. We 525

used both the cis- and trans-meQTL datasets across 23 cancer types from the Pancan-meQTL database to 526

identify methylation-related genes whose expression is affected by the SNPs from the novel regions. Finally, 527

we extended the resulting list of genes by adding the nearest to the novel SNPs genes identified by ANNOVAR 528

and protein coding genes from FUMA positional, eQTL, and chromatin interaction mapping. We then tested 529

pathway enrichment with FUMA GENE2FUNC software [37] and KEGG Mapper [38]. 530

Genomic prediction in the Estonian Biobank 531

The predictors based on BayesW or BayesRR-RC models into Estonian Biobank ĝ were obtained by multiplying 532

the standardised genotype matrix with the average SNP effect across iterations 533

ĝ = XEstβ̂1 = XEstβ̄, (4)

where XEst is NEst ×M matrix of standardised Estonian genotypes (each column is standardised using the 534

mean and the standard deviation of the Estonian data), β̂ is the M × I matrix containing the posterior 535

distributions for M marker effect sizes across I iterations, β̄ is the average SNP effect. We calculated the 536

average predictor from BayesW and BayesRR-RC models using for each cancer using 1600 iterations (see 537

Analysis with joint Bayesian models). We compared our Bayesian risk scores with the ones provided by 538

Kachuri et al. [41] (Total marginal) and the ones provided by Rashkin et al. [7] (UK Biobank - Kaiser 539

Permanente). Total marginal estimate combines summary statistics from several studies (total 543 SNPS 540

were used in total for 11 cancer scores, each score having an individual subset of SNPs) and they calculate 541

the PRS using inverse variance weights that showed the best predictive performance. The PRS was thus 542

calculated as the sum of standardised SNP dosage values in Estonian Biobank time inverse variance weighted 543

SNP effects. Using the same idea of inverse variance weights, we combined 314 SNPs with weights from [7] to 544

also get PRS for each Estonian Biobank individual. 545

We evaluated the performance of the 4 types of genetic predictors for each cancer phenotype by comparing 546

them to the true phenotype case-control status using logistic regression and true phenotype timing using Cox 547

proportional hazards (PH) model. The 4 predictors were compared using the top 5% PRS with the rest, the 548

top 10% PRS with the rest and the comparing the effect of one standard deviation increase in PRS. From 549

the logistic regression we calculated odds ratios for the top 5%, top 10% and scaled change effect. From 550

the Cox PH model we calculated hazards ratios and Harrell’s C-statistics [67] for the top 5%, top 10% and 551

scaled change effect. In addition to the predictor, gender (if applicable) and age-at-entry were included in 552

the logistic regression and Cox PH model that was calculating the hazards ratio. Harrell’s C-statistic was 553

calculated from the Cox PH model where the true phenotype was regressed only one the predictor. The 554

results of odds ratios, hazards ratios and Harrell’s C-statistics are shown in Figure 3a and Supplementary 555

figure S9. We further used the top 5% and top 10% PRS individuals to see what percentage of them develop 556

a cancer (Figure 3b). 557

Across all the cancers and 4 predictive scores we calculated the respective cumulative incidence curves 558

for the top 5% highest PRS individuals (Figure 3c) adjusting the analysis for the competing risks. The 559

calculation was done using R package cmprsk [68,69]. 560
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Data availability 568

This project uses UK Biobank data under project 35520. UK Biobank genotypic and phenotypic data is 569

available through a formal request at (http://www.ukbiobank.ac.uk). The UK Biobank has ethics approval 570

from the North West Multi-centre Research Ethics Committee (MREC). For access to be granted to the 571

Estonian Biobank genotypic and corresponding phenotypic data, a preliminary application must be presented 572

to the oversight committee, who must first approve the project, ethics permission must then be obtained from 573

the Estonian Committee on Bioethics and Human Research, and finally a full project must be submitted and 574

approved by the Estonian Biobank. This project was granted ethics approval by the Estonian Committee on 575

Bioethics and Human Research (https://genomics.ut.ee/en/biobank.ee/data-access). 576

Code availability 577

The BayesW model was executed with the software Hydra, with full open source code available at https: 578

//github.com/medical-genomics-group/hydra [70]. Summary MR-HEIDI tests were conducted using 579

the SMR software (version 1.03) [29]. The multivariable MR analyses were carried out with SMR-IVW 580

extension software https://github.com/masadler/smrivw. plink version 1.9 is available at https://www. 581

cog-genomics.org/plink/. R version 4.0.3 is available at https://www.r-project.org/. 582
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Eff/ Effect
SNP Cancer Chr Position Nearest gene Oth MAF size Model p-value
rs8154 Basal cell carcinoma 3 11596302 ATG7 C/T 0.32 -0.013 BW,BRR-RC 3.31 × 10−8

rs140813608 Basal cell carcinoma 3 181981570 RP11-338L18.1* A/G 0.018 0.045 BW,BRR-RC 4.00 × 10−8

rs174570 Basal cell carcinoma 11 61597212 FADS2 T/C 0.128 -0.021 BW,BRR-RC 1.16 × 10−10

rs113537654 Basal cell carcinoma 16 68939047 TANGO6 C/T 0.179 -0.016 BW 4.09 × 10−8

rs35661976 Breast cancer 5 1243699 SLC6A18 T/C 0.02 0.062 BW 1.71 × 10−9

rs10842546 Breast cancer 12 25525513 RNU4-67P* A/G 0.49 -0.017 BW 1.28 × 10−8

rs4654783 Cervical cancer 1 22439520 WNT4* T/C 0.299 0.022 BW,BRR-RC 2.56 × 10−12

rs111842003 Ovarian cancer 3 111306354 CD96 A/T 0.005 0.12 BRR-RC 6.12 × 10−9

rs12142017 Prostate cancer 1 154980341 ZBTB7B C/T 0.075 -0.033 BW 1.83 × 10−8

rs68003823 Prostate cancer 4 74325956 AFP* G/A 0.137 -0.026 BW 1.53 × 10−8

rs2523761 Prostate cancer 6 29818726 MICF* G/A 0.202 -0.024 BW,BRR-RC 9.14 × 10−10

rs3829734 Prostate cancer 12 48379810 COL2A1 A/G 0.317 0.022 BW,BRR-RC 1.07 × 10−10

rs9543212 Prostate cancer 13 73624100 KLF5* T/C 0.304 0.019 BW 3.25 × 10−8

rs804172 Prostate cancer 16 4349751 GLIS2* C/G 0.477 -0.018 BW,BRR-RC 5.90 × 10−9

rs35539606 Prostate cancer 18 76709587 CTD-2382H12.1* T/C 0.152 0.026 BW,BRR-RC 2.89 × 10−9

rs73140002 Prostate cancer 20 52175811 RP4-724E16.2 C/T 0.031 0.059 BW,BRR-RC 7.35 × 10−11

Table 1. Novel and replicated discoveries using mixed-linear association models that either
adjust for age-at-onset (GMRM-BayesW), or not (GMRM-BayesRR-RC). Mixed-linear association
model results were LD clumped such that the index SNPs would have a p-value below 5 · 10−8 and SNPs could be added to a
clump if they were 1Mb from the index SNP, they were correlated with r2 > 0.05 and they were nominally significant (p < 0.05).
We then used the COJO method from the GCTA software (see Methods) to find clumps with independent signals by conducting
stepwise selection of index SNPs in 1Mb window and we considered SNPs independent if they had a p-value below 5 · 10−8 in the
joint model. To determine novelty, we first removed all markers that were significantly associated in the unadjusted model (eq.
3). We then removed all the markers that had a correlation of r2 > 0.1 with a marker that had been previously found associated
with a cancer of interest using GWAS Catalog (published until July 2021) and LDtrait tool with the British in England and
Scotland population. We then again used COJO to condition the remaining markers on the previously identified associations for
each cancer of interest and SNPs that did not fall below 5 · 10−8 in the joint model were eliminated. For the remaining SNPs,
we conducted an additional literature review using Phenoscanner database (see Methods) to find any previous associations with
variants of interest or variants in LD. The remaining candidates of novel associations were concatenated across GMRM-BayesW
or GMRM-BayesRR-RC adjusted analyses and then replicated in the largest available studies conducted for each specific cancer
type and the Estonian Biobank. Replication was defined as Benjamini-Hochberg corrected p-value being lower than 0.05 and the
direction of the effect size same in both the original analysis and the replication analysis. The column Nearest gene is mapped
from the SNP using ANNOVAR software, * in that column denotes intergenic regions.

591

Gene Total Gene → Trait DNAm → Gene Mediation
Cancer Probe mediator Chr effect (SE) effect (SE) effect (SE) proportion
Basal cell carcinoma cg21169611 SMC2 9 0.03 (0.005) 0.31 (0.059) 0.05 (0.010) 0.41
Bladder cancer cg13446199 LYNX1 8 0.01 (0.002) -0.13 (0.021) -0.03 (0.010) 0.53
Breast cancer cg03895047 NEK10 3 0.03 (0.005) -0.04 (0.012) -0.34 (0.051) 0.31
Cervical cancer cg15582954 CDC42 1 0.05 (0.008) 0.70 (0.172) 0.04 (0.007) 0.80
Cervical cancer cg19083407 PAX8 2 -0.02 (0.003) -0.54 (0.001) 0.04 (0.006) 0.84
Prostate cancer cg20240347 PIK3C2B 1 -0.02 (0.003) 0.10 (0.019) -0.03 (0.018) 0.28
Prostate cancer cg06639874 COL6A3 2 -0.04 (0.006) 0.11 (0.016) -0.04 (0.035) 0.73
Prostate cancer cg03779937 PDK1 2 0.04 (0.007) 0.28 (0.055) 0.06 (0.014) 0.35
Prostate cancer cg09757087 TMEM204 16 0.02 (0.004) -0.98 (0.043) -0.02 (0.003) 0.56
Prostate cancer cg01799818 FAM57A 17 0.03 (0.005) -0.09 (0.017) -0.20 (0.046) 0.25

Table 2. Mediation of DNAm effect on cancer through gene expression. Estimates from multivariable
Mendelian randomisation (MR, see Methods), which was used to quantify mediation through gene expression for significant
DNAm-to-cancer MR total effects. This provides a list of genes through which germline variation alters altering methylation,
which changes gene expression, and in turn influences cancer risk. The mediation proportion quantifies the proportion of
mediated causal effect (DNAm → Gene → cancer) relative to the total effect (DNAm → cancer).
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Array-based Family-based
BayesW BayesRR-RC estimatea estimateb

Basal cell carcinoma 0.25 (0.19-0.31) 0.25 (0.19-0.31) 0.17 (0.07-0.27)c 0.43 (0.26-0.59)
Bladder cancer 0.08 (0.01-0.16) 0.09 (0.01-0.17) 0.08 (0.04–0.12) 0.30 (0.00–0.67)
Breast cancer 0.20 (0.15-0.24) 0.16 (0.13-0.20) 0.10 (0.08–0.13) 0.31 (0.11–0.51)
Cervical cancer 0.05 (0.03-0.07) 0.05 (0.03-0.06) 0.07 (0.02–0.12) 0.13 (0.06–0.15) d

Colon cancer 0.08 (0.04-0.12) 0.08 (0.04-0.12) 0.07 (0.04–0.10) 0.15 (0.00–0.45)
Endometrial cancer 0.14 (0.06-0.22) 0.08 (0.00-0.16) 0.13 (0.07–0.18) 0.27 (0.11–0.43)
Melanoma 0.11 (0.06-0.16) 0.11 (0.06-0.16) 0.08 (0.04–0.11) 0.58 (0.43–0.73)
Non-Hodgkin’s lymphoma 0.03 (0.00-0.09) 0.03 (0.00-0.10) 0.13 (0.03–0.23) 0.10 (0.08–0.10)d

Ovarian cancer 0.05 (0.00-0.13) 0.02 (0.00-0.10) 0.07 (0.01–0.13) 0.39 (0.23–0.55)
Prostate cancer 0.30 (0.23-0.37) 0.25 (0.19-0.31) 0.16 (0.13–0.20) 0.57 (0.51–0.63)
Testicular cancer 0.38 (0.19-0.58) 0.29 (0.11-0.47) 0.26 (0.15–0.38) 0.37 (0.00–0.93)

Table 3. SNP-heritability estimates. Estimates with 95% CI from LD Score regression, using mixed linear association
model estimates adjusting for age-at-onset (GMRM-BayesW) or not (GMRM-BayesRR-RC), as compared with previous array
or family based estimates. a - estimate from Rashkin et al. [7]; b - estimate from Mucci et al. [71]; c - estimate from Kilgour et
al. [72]; d - estimates from Czene et al. [73].
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Figure 1. SNP discovery and properties of replicated novel discoveries. (a) Count of previously
reported discoveries, previously unreported discoveries and previously unreported replicated discoveries using a mixed-linear
age-at-onset adjusted association model (GMRM-BayesW) and mixed-linear association model (GMRM-BayesRR-RC). (b)
Proportion of SNPs from the novel genetic regions per functional consequences on genes annotated using ANNOVAR; enrichment
of functional consequences of SNPs are tested using a two-sided Fisher’s exact test. (c) Overlap of methylation probes affected
by SNPs from the novel genetic regions with probes that are differentially methylated across 23 cancers from the Pancan-
meQTL database; the probes that are differentially methylated by means of the same SNP are marked dark blue (BLCA -
Bladder Urothelial Carcinoma, BRCA - Breast invasive carcinoma, CESC - Cervical squamous cell carcinoma and endocervical
adenocarcinoma, CRC - Colon adenocarcinoma + Rectum adenocarcinoma, ESCA - Esophageal carcinoma, HNSC - Head and
Neck squamous cell carcinoma, KIRC - Kidney renal clear cell carcinoma, KIRP - Kidney renal papillary cell carcinoma, LAML
- Acute Myeloid Leukemia, LGG - Lower Grade Glioma, LIHC - Liver hepatocellular carcinoma, LUAD - Lung adenocarcinoma,
LUSC - Lung squamous cell carcinoma, PAAD - Pancreatic adenocarcinoma, PCPG - Pheochromocytoma and Paraganglioma,
PRAD - Prostate adenocarcinoma, SARC - Sarcoma, SKCM - Skin Cutaneous Melanoma, STAD - Stomach adenocarcinoma,
TGCT - Testicular Germ Cell Tumors, THCA - Thyroid carcinoma, THYM - Thymoma, UCEC - Uterine Corpus Endometrial
Carcinoma). (d) Properties of novel replicated genetic regions. CADD - maximum CADD score of the region is above 12.37,
DIS - maximum DeepSEA disease impact score (DIS) of the genetic region is above 2, MLE - maximum DeepSEA mean log
e-value (MLE) of the region is above 2, eQTL - an SNP from the the genetic region is an eQTL with p-value < 5 · 10−8, OChS
- open/active chromatin state (minimum 15-core chromatin score of the lead SNP is less or equal than 7), RDB - minimum
RegulomeDB category of the genetic region is 1 or 2.
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Figure 2. Genetic architecture and polygenicity of 11 cancers. (a) Mean proportion of genetic variance
explained by each of the mixtures components using either case-control or age-at-onset phenotype. We find evidence that
age-at-onset is highly polygenic with most of the genetic variance attributable to SNPs contributed by markers in the 10−4

mixture group, while the majority of the case-control phenotype genetic variance is explained by the markers from the 10−3

mixture group. (b) Number of LD-independent regions (see Methods) needed to explain total genetic variance. The contributions
of LD-independent regions were sorted ascendingly such that the smallest contributing regions were added first. (c) Median
proportion of genetic variance explained by each mixture class and MAF quartile combination, with 95% CI. For both case-control
and age-at-onset models, most of the genetic variance is attributable to the small effect common variants (MAF quartile 4),
however rare variants from the first MAF quartile contribute significantly to the variance for bladder, endometrial, ovarian,
testicular cancers, non-Hodgkin’s lymphoma for the BayesR model. BCC indicates basal cell carcinoma.
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Figure 3. Predictive validation of different polygenic risk scores (PRS) in the Estonian Biobank
data. (a) Odds ratio for diagnosis of a tumour given one standard deviation increase in PRS, with 95% confidence intervals.
(b) Percent of individuals diagnosed with cancer before age 50 having a top 10% or top 5% highest PRS; (c) cumulative incidence
curves adjusted for competing risk for individuals with the top 5% highest PRS. The number of Estonian Biobank individuals
used in the validation was N =195,432. BayesRR-RC and BayesW estimates were obtained by running the corresponding
models on UK Biobank using either case-control or age-at-onset data. Total marginal estimates were obtained by using the
marginal estimates that were concatenated from different GWA studies by Kachuri et al [41]. UKB-Kaiser Permanente estimates
were obtained from the meta-analysis that combined analyes of UK Biobank and Kaiser Permanente cohorts [7]. We see that
although BayesW and BayesRR-RC have the smallest sample sizes along with the smallest numbers of cases, the predictors
uniformly perform better than a marginal analysis conducted on a slightly larger data set (UKB-Kaiser Permanente), and with a
few exceptions it achieves similar or better predictive accuracy compared to the total marginal estimates that use effectively up
to 10 times more tumour cases than BayesW and BayesRR-RC analyses. For all cancers except breast, cervical, endometrial and
ovarian cancer, BayesW predictor gives a nominally higher odds ratios compared to BayesRR-RC predictor.
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Supplementary material 592

Supplementary tables 593

All Females Males
Cases (%) Mean (sd) Median (Range) Cases (%) Mean (sd) Median (Range) Cases (%) Mean (sd) Median (Range)

Basal cell 26758 (5.8%) 60.6 (9.42) 62.1 (7.5-80.6) 13277 (5.3%) 59.5 (9.73) 61 (7.5-80.6) 13481 (6.4%) 61.8 (8.96) 63.3 (22.2-79.7)
carcinoma
Bladder cancer 2470 (0.5%) 61.3 (9.38) 62.9 (19.1-77.8) 608 (0.2%) 60.8 (9.50) 62.1 (24.7-76.9) 1862 (0.9%) 61.5 (9.34) 63.1 (19.1-77.8)
Breast cancer 16972 (6.8%) 55.7 (9.20) 55.6 (18.8-80.9) 16972 (6.8%) 55.7 (9.20) 55.6 (18.8-80.9)
Cervical cancer 8680 (3.5%) 38.0 (9.27) 36.8 (13.5-76.6) 8680 (3.5%) 38.0 (9.27) 36.8 (13.5-76.6)
Colon cancer 4463 (1.0%) 60.9 (9.13) 62.3 (11.2-78.8) 2009 (0.8%) 60.2 (9.53) 61.4 (11.2-78.0) 2454 (1.2%) 61.5 (8.76) 62.7 (14.0-78.8)
Endometrial 2227 (0.9%) 56.5 (11.22) 58.3 (13.0-76.9) 2227 (0.9%) 56.5 (11.22) 58.3 (13.0-76.9)
cancer
Melanoma 5778 (1.3%) 54.1 (12.16) 55.8 (0.5-77.5) 3243 (1.3%) 52.1 (12.36) 53.3 (1.5-77.5) 2535 (1.2%) 56.6 (11.41) 58.5 (0.5-77.5)
Non-Hodgkin’s 2298 (0.5%) 58.7 (11.36) 61.0 (3.5-79.1) 1026 (0.4%) 58.8 (10.97) 60.9 (5.3-78.1) 1272 (0.6%) 58.7 (11.67) 61.0 (3.5-79.1)
lymphoma
Ovarian cancer 1573 (0.6%) 54.6 (12.38) 56.0 (10.1-79.6) 1573 (0.6%) 54.6 (12.38) 56.0 (10.1-79.6)
Prostate cancer 9824 (4.7%) 64.6 (5.87) 65.2 (22.9-80.2) 9824 (4.7%) 64.6 (5.87) 65.2 (22.9-80.2)
Testicular cancer 886 (0.4%) 40.5 (11.08) 40.0 (0.5-76.0) 886 (0.4%) 40.5 (11.08) 40.0 (0.5-76.0)

Table S1. UK Biobank data composition for the cancer cases and their timings used within
the study.

ICD10 code ICD9 code
Basal cell C44.0, C44.1, C44.2, C44.3, C44.4, C44.5, C44.6, 173.0, 173.1, 173.2, 173.3, 173.4, 173.5, 173.6,
carcinoma C44.7, C44.8, C44.9, D04.0, D04.1, D04.2, D04.3, 173.7, 173.8, 173.9, 232.1, 232.2, 232.3,

D04.4, D04.5, D04.6, D04.7, D04.8, D04.9 232.4, 232.5, 232.6, 232.7, 232.8, 232.9
Bladder C67.0, C67.1, C67.2, C67.3, C67.4, C67.5, 188.0, 188.2, 188.4, 188.6,
cancer C67.6, C67.6, C67.7, C67.8, C67.9, D09.0 188.8, 188.9, 233.7
Breast C50.0, C50.1, C50.2, C50.3, C50.4, 174.0, 174.1, 174.2, 174.3, 174.4, 174.5,
cancer C50.5, C50.6, C50.7, C50.8, C50.9, 174.6, 174.7, 174.8, 174.9, 233.0

D05.0, D05.1, D05.7, D05.9
Cervical C53.0, C53.1, C53.8, C53.9, 180.0, 180.1, 180.8, 180.9, 233.1
cancer D06.0, D06.1, D06.7, D06.9
Colon C18.0, C18.1, C18.2, C18.3, C18.4, C18.5, 153.0, 153.1, 153.2, 153.3, 153.4, 153.5,
cancer C18.6, C18.7, C18.8, C18.9, D01.0 153.6, 153.7, 153.8, 153.9, 230.3
Endometrial C54.1, D07.0 182.0
cancer
Melanoma C43.0, C43.1, C43.2, C43.3, C43.4, 172.0, 172.1, 172.2, 172.3, 172.4,

C43.5, C43.6, C43.7, C43.8, C43.9 172.5, 172.6, 172.7, 172.8, 172.9
Non-Hodgkin’s C82.0, C82.1, C82.2, C82.7, C82.9, C83.0, C83.1, 202.8
lymphoma C83.2, C83.3, C83.4, C83.5, C83.6, C83.7,

C83.8, C83.9, C85.0, C85.1, C85.7, C85.9
Ovarian C56 183.0
cancer
Prostate C61, D07.5 185
cancer
Testicular C62.0, C62.1, C62.9 186.9
cancer

Table S2. Cancer-specific ICD10 and ICD9 codes used to select cases from the UK and
Estonian biobank studies. For each of the tumour types, the corresponding ICD10 and ICD9 codes are presented that
were used to define cancer occurrence.
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Eff/ p p p β̂ β̂ β̂
Site Chr SNP Oth (BayesW) (BayesRR-RC) (Unadj.) (BayesW) (BayesRR-RC) (Unadj.)
Basal cell carcinoma 1 rs501823 T/A 2.76 × 10−8 2.25 × 10−8 3.80 × 10−7 -0.016 -0.016 -0.015
Basal cell carcinoma 1 rs5011752 G/A 2.89 × 10−8 4.23 × 10−8 1.15 × 10−6 0.013 0.013 0.011
Basal cell carcinoma 2 rs11686655 G/A 2.26 × 10−8 2.47 × 10−8 2.83 × 10−7 -0.039 -0.039 -0.036
Basal cell carcinoma 3 rs8154 C/T 3.31 × 10−8 1.81 × 10−8 8.81 × 10−8 -0.013 -0.013 -0.012
Basal cell carcinoma 3 rs140813608 A/G 4.00 × 10−8 3.88 × 10−8 6.09 × 10−7 0.045 0.045 0.041
Basal cell carcinoma 3 rs17514215 G/T 2.57 × 10−8 3.23 × 10−8 1.77 × 10−7 0.016 0.016 0.015
Basal cell carcinoma 5 rs36137978 C/A 3.44 × 10−9 5.29 × 10−9 3.78 × 10−7 0.015 0.015 0.013
Basal cell carcinoma 10 rs3122367 C/G 4.42 × 10−8 6.43 × 10−8 3.65 × 10−7 -0.013 -0.013 -0.012
Basal cell carcinoma 11 rs174570 T/C 1.16 × 10−10 2.17 × 10−10 5.39 × 10−8 -0.021 -0.02 -0.018
Basal cell carcinoma 12 rs3819817 C/T 1.44 × 10−8 7.41 × 10−9 1.18 × 10−7 0.012 0.013 0.012
Basal cell carcinoma 14 rs12892576 G/A 4.39 × 10−9 6.44 × 10−9 1.62 × 10−7 0.019 0.019 0.017
Basal cell carcinoma 15 rs8023809 A/G 4.96 × 10−9 4.70 × 10−9 4.97 × 10−7 0.015 0.015 0.013
Basal cell carcinoma 16 rs55752638 A/T 6.98 × 10−10 6.90 × 10−10 1.65 × 10−7 0.017 0.017 0.015
Basal cell carcinoma 16 rs113537654 C/T 4.09 × 10−8 7.03 × 10−8 2.44 × 10−6 -0.016 -0.015 -0.013
Basal cell carcinoma 16 rs7206699 C/T 6.74 × 10−10 1.06 × 10−9 7.46 × 10−8 0.013 0.013 0.012
Bladder cancer 11 rs147529765 A/G 1.07 × 10−7 2.71 × 10−8 1.53 × 10−7 0.063 0.065 0.062
Bladder cancer 15 rs16969577 T/C 4.10 × 10−8 1.24 × 10−8 8.64 × 10−8 0.072 0.074 0.07
Breast cancer 5 rs35661976 T/C 1.71 × 10−9 7.92 × 10−8 1.94 × 10−6 0.062 0.055 0.049
Breast cancer 11 rs143173464 C/T 4.67 × 10−8 1.56 × 10−7 3.89 × 10−7 0.067 0.064 0.062
Breast cancer 12 rs10842546 A/G 1.28 × 10−8 9.92 × 10−8 3.85 × 10−6 -0.017 -0.016 -0.013
Breast cancer 16 rs7500465 A/G 1.40 × 10−9 2.46 × 10−8 5.26 × 10−7 0.018 0.016 0.015
Cervical cancer 1 rs4654783 T/C 2.56 × 10−12 3.21 × 10−8 3.79 × 10−6 0.022 0.017 0.015
Cervical cancer 11 rs182301918 G/A 7.46 × 10−9 1.53 × 10−7 3.14 × 10−6 0.124 0.112 0.1
Colon cancer 2 rs181425761 A/G 4.81 × 10−9 1.68 × 10−8 1.08 × 10−7 0.107 0.103 0.097
Colon cancer 10 rs149750027 A/G 6.49 × 10−8 4.49 × 10−8 2.97 × 10−7 0.098 0.099 0.093
Endometrial cancer 1 rs114357987 T/C 7.72 × 10−10 1.22 × 10−7 4.67 × 10−6 -0.053 -0.046 -0.04
Endometrial cancer 8 rs185211261 C/T 3.29 × 10−5 1.16 × 10−8 1.62 × 10−6 0.117 0.161 0.136
Endometrial cancer 10 rs183400920 T/C 2.56 × 10−8 5.21 × 10−7 2.93 × 10−6 0.151 0.136 0.127
Endometrial cancer 16 rs146032590 G/C 2.54 × 10−9 7.43 × 10−9 1.50 × 10−5 0.083 0.08 0.06
Non-Hodgkin’s lymphoma 2 rs144739970 C/T 3.74 × 10−8 1.15 × 10−7 1.80 × 10−7 0.071 0.068 0.067
Non-Hodgkin’s lymphoma 3 rs73113445 A/C 4.59 × 10−8 2.72 × 10−8 1.91 × 10−6 0.029 0.029 0.025
Non-Hodgkin’s lymphoma 8 rs181582553 A/G 2.71 × 10−7 2.16 × 10−8 1.01 × 10−6 0.084 0.092 0.08
Ovarian cancer 1 rs147207960 C/T 1.02 × 10−8 5.80 × 10−8 2.49 × 10−6 0.12 0.114 0.099
Ovarian cancer 3 rs111842003 A/T 1.62 × 10−5 6.12 × 10−9 5.45 × 10−7 0.089 0.12 0.104
Ovarian cancer 17 rs7210734 C/T 2.72 × 10−8 4.10 × 10−10 5.18 × 10−8 0.074 0.083 0.072
Ovarian cancer 20 rs77014550 T/C 1.04 × 10−7 6.33 × 10−9 4.49 × 10−7 0.11 0.121 0.105
Prostate cancer 1 rs12142017 C/T 1.83 × 10−8 2.69 × 10−7 3.40 × 10−5 -0.033 -0.03 -0.025
Prostate cancer 4 rs68003823 G/A 1.53 × 10−8 3.08 × 10−7 2.48 × 10−6 -0.026 -0.023 -0.022
Prostate cancer 5 rs62359313 A/G 3.32 × 10−9 6.21 × 10−8 6.79 × 10−6 -0.02 -0.019 -0.016
Prostate cancer 6 rs2523761 G/A 9.14 × 10−10 3.79 × 10−8 2.50 × 10−6 -0.024 -0.021 -0.018
Prostate cancer 6 rs6910025 T/C 9.35 × 10−9 6.99 × 10−7 4.78 × 10−6 -0.028 -0.024 -0.022
Prostate cancer 6 rs9397090 A/G 1.50 × 10−8 1.65 × 10−7 5.36 × 10−6 -0.026 -0.024 -0.021
Prostate cancer 8 rs77965869 T/C 2.07 × 10−9 4.52 × 10−7 1.12 × 10−5 -0.125 -0.105 -0.092
Prostate cancer 8 rs78653149 A/G 6.63 × 10−9 1.05 × 10−7 2.13 × 10−6 0.03 0.028 0.025
Prostate cancer 10 rs12774441 T/G 2.02 × 10−9 2.83 × 10−8 3.58 × 10−5 -0.025 -0.023 -0.017
Prostate cancer 12 rs3829734 A/G 1.07 × 10−10 4.37 × 10−8 1.23 × 10−5 0.022 0.019 0.015
Prostate cancer 13 rs9543212 T/C 3.25 × 10−8 8.23 × 10−8 4.75 × 10−7 0.019 0.018 0.017
Prostate cancer 16 rs804172 C/G 5.90 × 10−9 7.15 × 10−8 7.07 × 10−6 -0.018 -0.017 -0.014
Prostate cancer 16 rs9935422 T/C 2.82 × 10−10 2.47 × 10−8 1.35 × 10−6 -0.034 -0.03 -0.026
Prostate cancer 18 rs35539606 T/C 2.89 × 10−9 2.68 × 10−8 5.02 × 10−7 0.026 0.024 0.022
Prostate cancer 20 rs73140002 C/T 7.35 × 10−11 2.91 × 10−9 5.18 × 10−8 0.059 0.054 0.049
Prostate cancer 21 rs74503316 T/C 2.01 × 10−8 1.62 × 10−7 1.64 × 10−5 0.02 0.019 0.016
Testicular cancer 2 rs115509835 A/G 1.31 × 10−6 1.56 × 10−8 3.83 × 10−7 0.15 0.176 0.158
Testicular cancer 3 rs137897706 A/G 2.01 × 10−5 4.16 × 10−8 1.58 × 10−7 0.106 0.136 0.13
Testicular cancer 5 rs192275753 C/T 1.19 × 10−6 2.56 × 10−8 6.01 × 10−7 0.126 0.145 0.13
Testicular cancer 9 rs10960870 A/G 1.01 × 10−8 1.99 × 10−8 4.37 × 10−7 0.064 0.063 0.057
Testicular cancer 11 rs368211890 A/C 3.08 × 10−6 3.47 × 10−8 2.74 × 10−5 0.146 0.173 0.132
Testicular cancer 20 rs118074710 G/A 8.45 × 10−7 2.52 × 10−8 1.27 × 10−5 0.13 0.147 0.115
Testicular cancer 22 rs183880425 T/G 5.71 × 10−8 2.76 × 10−8 1.06 × 10−7 0.122 0.125 0.119

Table S3. Previously unreported discoveries from GMRM-BayesRR-RC or GMRM-BayesW
analyses in comparison with results from an unadjusted marginal association analysis. We observe
that for the 59 previously unreported variants, the p-value in the unadjusted association analysis is borderline significant
(5 · 10−8 < p < 10−4) and by using the BayesW or BayesRR-RC adjustments, we arrive at statistically significant test statistics.
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eQTL eQTL eQTL mQTL mQTL
(eQTLGen) (GTEx v8) (eQTLGen) (GoDMC) (GoDMC) Nearest gene

SNP Function Site MR-IVW SMR SMR SMR MR-IVW (bp)
rs10842546 intergenic Breast cancer KRAS(121643),

RNU4-67P(31709)
rs113537654 intronic Basal cell TANGO6

carcinoma
rs12142017 intronic Prostate cancer DCST1, DCST2 ZBTB7B
rs140813608 intergenic Basal cell RP11-416O18.2(121645),

carcinoma RP11-338L18.1(101365)
rs174570 intronic Basal cell RPLP0P2 FADS1, FADS2, FADS2

carcinoma FADS3,
RAB3IL1

rs2523761 intergenic Prostate cancer HCP5B, DDX39BP2, ZKSCAN3, ZNF192, ZSCAN12 HLA-G(19824),
HLA-A, HLA-V, HCG4P3, ZNF193, ZNF323, MICF(1414)
TRIM31 TRIM10, ZNF389, ZSCAN12
ZFP57 ZNRD1 ZSCAN16, ZSCAN23

rs35539606 intergenic Prostate cancer SALL3 CTD-2382H12.1(22146),
RP11-849I19.1(26968)

rs35661976 exonic Breast cancer SLC6A18
rs3829734 intronic Prostate cancer PFKM COL2A1, H1FNT, COL2A1, PFKM COL2A1

PFKM, RND1
rs4654783 intergenic Cervical cancer CDC42 CDC42 CDC42 WNT4 RP1-224A6.9(11667),

WNT4(4278)
rs68003823 intergenic Prostate cancer AFP AFP(4065), AFM(21444)
rs73140002 ncRNA Prostate cancer RP4-724E16.2, RP4-724E16.2, RP4-724E16.2

intronic ZNF217 ZNF217
rs804172 intergenic Prostate cancer TFAP4 TFAP4 TFAP4(26675),

GLIS2(15011)
rs8154 exonic Basal cell ATG7 ATG7, VGLL4 ATG7, HRH1 ATG7

carcinoma VGLL4
rs9543212 intergenic Prostate cancer PSMD10P3(13114),

KLF5(5014)
rs111842003 intronic Ovarian cancer CD96

Table S4. Mapping the 16 novel associations to genes. We combined results from the following analyses:
single-instrument SMR on GTEx (v8) (1680 tests), eQTLGen (145 tests), and GoDMC (2380 tests) datasets and multi-instrument
MR-IVW on eQTLGen (61 tests) and GoDMC (998 tests) datasets. The overall significance threshold on combined data
was Bonferroni-corrected p < 0.05/5264 = 9.5 · 10−6. The genes affected by differentiated methylation were taken from the
Pancan-meQTL database. Finally, we extended the resulting list of genes by appending the nearest to the novel SNPs genes and
protein coding genes from FUMA positional, eQTL, and chromatin interaction mapping.

BayesW (95% CI) BayesRR-RC (95% CI)
Basal cell carcinoma Cervical cancer 0.20 (0.06, 0.35) 0.18 (0.03, 0.33)
Basal cell carcinoma Melanoma 0.51 (0.34, 0.68) 0.51 (0.34, 0.67)
Breast cancer Endometrial cancer 0.23 (0.03, 0.44) 0.33 (0.03, 0.64)
Colon cancer Cervical cancer 0.33 (0.06, 0.60) 0.39 (0.11, 0.68)
Colon cancer Endometrial cancer 0.46 (0.09, 0.83) 0.45 (-0.05, 0.94)
Testicular cancer Endometrial cancer -0.38 (-0.68, -0.07) -0.57 (-1.00, -0.02)

Table S5. Statistically significant cross-trait genetic correlations from LD score regression
analysis. We calculate the genetic correlations between cancers with cross-trait LD score regression [57] applying it on the
results from BayesW or BayesRR-RC adjusted analyses. LD scores for the analysis were taken from the 1000 Genomes European
data. Both BayesRR-RC and BayesW based significant genetic correlations agree on the magnitude of the estimates but BayesW
based estimates result in narrower confidence interval than the BayesRR-RC based estimates.

Alternative LDSC bW-adjusted Full Bayesian BayesRR-RC
Basal cell carcinoma 0.15 (0.10-0.20) 0.22 (0.20-0.24)
Bladder cancer 0.06 (0.00-0.11) 0.29 (0.19-0.42)
Breast cancer 0.16 (0.11-0.21) 0.20 (0.17-0.23)
Cervical cancer 0.08 (0.05-0.12) 0.13 (0.08-0.20)
Colon cancer 0.07 (0.03-0.10) 0.19 (0.12-0.28)
Endometrial cancer 0.10 (0.03-0.16) 0.34 (0.23-0.47)
Melanoma 0.09 (0.04-0.14) 0.18 (0.13-0.24)
Non-Hodgkin’s lymphoma 0.02 (0.00-0.07) 0.32 (0.23-0.43)
Ovarian cancer 0.05 (0.00-0.13) 0.49 (0.37-0.61)
Prostate cancer 0.22 (0.16-0.29) 0.33 (0.28-0.40)
Testicular cancer 0.36 (0.15-0.56) 0.81 (0.73-0.87)

Table S6. Alternative liability scale heritability estimates with 95% CI. We use the observed scale
from LDSC estimates (summary statistics from BayesW-adjusted analysis) and the heritability estimates from the full Bayesian
model (BayesRR-RC). Transformation of the observed scale heritabilities are done with a more conservative approach (Ojavee et
al. [40]) better suited for rare diseases.
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Risk (age 0-85)
Basal cell carcinoma 0.3050
Bladder cancer 0.0224
Breast cancer 0.1248
Cervical cancer 0.0054
Colon cancer 0.0232
Endometrial cancer 0.0300
Melanoma 0.0269
Non-Hodgkin’s lymphoma 0.0161
Ovarian cancer 0.0093
Prostate cancer 0.1117
Testicular cancer 0.0051

Table S7. Cancer risk from birth to age 85, SEER estimate 2016-2018 To ensure that the lifetime
risk estimates were similar to the study population (European ancestry, UK Biobank, oldest individual age 86) we used
the estimates from SEER of non-hispanic white of getting diagnosed between ages (0-85). The explorer is accessible from
https://seer.cancer.gov/explorer/. The explorer had a joint estimate for colorectal cancer that we transformed to the
risk of colon cancer using the proportion of colon cancer cases among colorectal cases (70.3% , https://www.cancer.org/
cancer/colon-rectal-cancer/about/key-statistics.html, accessed 24.01.2022). For basal cell carcinoma we used lifetime
risk estimate from Miller et al. [74].
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Figure S1. Mean -log10 p-value from the marginal association analysis adjusted with either
BayesRR-RC, BayesW or without adjustment. We observe that in general BayesW or BayesRR-RC LOCO
adjustments result in decreased p-values suggesting an increase in statistical power. Furthermore, for most traits, BayesW
adjustment results in even lower p-values compared to the ones resulting from BayesRR-RC adjustment.
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Figure S2. Classification of previously reported, unreplicated previously unreported and repli-
cated previously unreported discoveries by each cancer type. Among previously reported variants both
case-control and age-at-onset adjustments most commonly discover same variants in our analysis. Time-to-event adjustment
suggests to give more associations than case-control adjustment and that mostly for cancers with high case count (prostate
cancer, breast cancer, basal cell carcinoma). The replication rate is slightly better for variants that had been discovered using
time-to-event adjustment.
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Figure S3. z-scores for the 59 previously unreported associations in the discovery and replica-
tion data sets. The discovery data set results are based on the UK Biobank analysis whereas replication for most traits was
done in the Estonian Biobank with the exception of prostate and breast cancers for which we used previously published results
combining larger sample sizes. Fisher’s exact test testing the independence of the signs of the replication/discovery z-scores
resulted in a p = 0.0016 indicating that the z-scores coming from replication or discovery sets are dependent.
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Figure S4. Possible regulatory mechanism between DNAm at cg15582954, CDC42 gene ex-
pression and cervical cancer. The first three rows display the genetic associations (-log10(p-values)) from top to
bottom with cervical cancer (blue), CDC42 transcript levels (pink) and DNAm probe cg15582954 (brown), respectively. The
solid diamond in the GWAS locus plot represents the top SNP in LD with the novel GWAS discovery. Red dashed horizontal
lines indicate the significance thresholds of the respective SNP associations and the vertical black dashed line represents the
DNAm probe position. The bottom row illustrates the positions and strand direction of the genes in the locus. On the right
side, a schematic of the regulatory mechanism with calculated MR effects and mediation proportion (MP) is shown.
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Figure S5. Tissue-specific genetic colocalisation analysis with SMR. We conducted SMR-HEIDI tests
using novel SNPs or the SNPs in LD with the novel SNPs as instruments. Plotted are the significant Bonferroni-corrected
associations that survived HEIDI filtering.
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Figure S6. Results from case-control association analysis of 11 tumours, unadjusted for predic-
tors in other chromosomes. The significance of each SNP was tested using binary (case-control) phenotype indicating
cancer occurrence that was adjusted only for covariates. Number of markers analysed was M =8,430,446, the number of
individuals and cases for each specific cancer are shown in the Supplementary information. For each of the markers a two-sided
Wald test was carried out with a null hypothesis of a marker having no effect on the adjusted phenotype. We present the
− log10(p-value), the dotted line indicates a significance threshold of p = 5 · 10−8.
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Figure S7. Results from case-control association analysis of 11 tumours, adjusted for BayesW
predictors in other chromosomes. The significance of each SNP was tested using binary (case-control) phenotype
indicating cancer occurrence that was adjusted for covariates and BayesW genetic predictor using the effects from all of the
other chromosome (leave out one chromosome). Number of markers analysed was M =8,430,446, the number of individuals and
cases for each specific cancer are shown in the Supplementary information. For each of the markers a two-sided Wald test was
carried out with a null hypothesis of a marker having no effect on the adjusted phenotype. We present the − log10(p-value), the
dotted line indicates a significance threshold of p = 5 · 10−8.
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Figure S8. Results from case-control association analysis of 11 tumours, adjusted for BayesRR-
RC predictors in other chromosomes. The significance of each SNP was tested using binary (case-control) phenotype
indicating cancer occurrence that was adjusted for covariates and BayesRR-RC genetic predictor using the effects from all of the
other chromosome (leave out one chromosome). Number of markers analysed was M =8,430,446, the number of individuals and
cases for each specific cancer are shown in the Supplementary information. For each of the markers a two-sided Wald test was
carried out with a null hypothesis of a marker having no effect on the adjusted phenotype. We present the − log10(p-value), the
dotted line indicates a significance threshold of p = 5 · 10−8.
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Figure S9. Predictive validation of different PRS on Estonian Biobank data using Harrell’s
C-statistic, hazards ratio or odds ratio with 95% CI. The statistics were calculated by finding the impact of
one standard deviation increase in the PRS (Scaled), by finding the impact of belonging to top 5% quantile of the PRS or by
finding the impact of belonging to the top 10% quantile of the PRS on the likelihood of having cancer. Harrel’s C-statistic was
calculated from Cox proportional hazards model without covariates, odds ratio was calculated from a logistic model using sex
and age-at-entry as covariates, hazards ratio was calculated from Cox proportional hazards model using sex and age-at-entry as
covariates.
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Figure S10. Prediction in Estonian Biobank using either medical record or self-reported phe-
notypic data in BayesW or BayesRR-RC models. The polygenic risk scores that are using medical record
data rather than self-reported data tend to be more predictive across all cancers. The odds ratios were calculated by finding the
impact of one standard deviation increase in PRS in a logistic model using sex and age-at-entry as covariates.
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Figure S11. HLA-A protein (NCBI identifier NP_002107.3) aligned to Chain F of HLA class I
histocompatibility antigen, A-3 alpha chain (PDB: 6ENY_F ). Three nonsynonymous mutations in
the HLA-A complex (p.Arg68Lys, p.V al91Met, p.Ala174V al) are marked with yellow colour: all substitutions
fall into alpha-3 domains that form the binding groove that holds a peptide for presentation to CD8+ T-cells.

33

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 31, 2022. ; https://doi.org/10.1101/2022.03.25.22272955doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.25.22272955
http://creativecommons.org/licenses/by-nc/4.0/


References
1. Sung, H. et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide

for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 71, 209–249 (2021).

2. Sud, A., Kinnersley, B. & Houlston, R. S. Genome-wide association studies of cancer: current insights
and future perspectives. Nature Reviews Cancer 17, 692–704 (2017).

3. Torkamani, A., Wineinger, N. E. & Topol, E. J. The personal and clinical utility of polygenic risk
scores. Nature Reviews Genetics 19, 581–590 (2018).

4. Mavaddat, N. et al. Polygenic risk scores for prediction of breast cancer and breast cancer subtypes.
The American Journal of Human Genetics 104, 21–34 (2019).

5. Callender, T. et al. Polygenic risk-tailored screening for prostate cancer: A benefit–harm and cost-
effectiveness modelling study. PLOS Medicine 16, 1–13 (2019).

6. Pashayan, N. et al. Polygenic susceptibility to prostate and breast cancer: implications for personalised
screening. British Journal of Cancer 104, 1656–1663 (2011).

7. Rashkin, S. R. et al. Pan-cancer study detects genetic risk variants and shared genetic basis in two
large cohorts. Nature Communications 11, 4423 (2020).

8. Zhang, Y. D. et al. Assessment of polygenic architecture and risk prediction based on common variants
across fourteen cancers. Nature Communications 11, 3353 (2020).

9. Michailidou, K. et al. Association analysis identifies 65 new breast cancer risk loci. Nature 551, 92–94
(2017).

10. Conti, D. V. et al. Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies
new susceptibility loci and informs genetic risk prediction. Nature genetics 53, 65–75 (2021).

11. Schumacher, F. R. et al. Association analyses of more than 140,000 men identify 63 new prostate
cancer susceptibility loci. Nature genetics 50, 928–936 (2018).

12. Phelan, C. M. et al. Identification of 12 new susceptibility loci for different histotypes of epithelial
ovarian cancer. Nature genetics 49, 680–691 (2017).

13. Litchfield, K. et al. Identification of 19 new risk loci and potential regulatory mechanisms influencing
susceptibility to testicular germ cell tumor. Nature genetics 49, 1133–1140 (2017).

14. Jiang, L. et al. A resource-efficient tool for mixed model association analysis of large-scale data. Nature
genetics 51, 1749–1755 (2019).

15. Orliac, E. J. et al. Improving gwas discovery and genomic prediction accuracy in biobank data. bioRxiv
(2021). https://www.biorxiv.org/content/early/2021/11/08/2021.08.12.456099.full.pdf.

16. Loh, P.-R. et al. Efficient bayesian mixed-model analysis increases association power in large cohorts.
Nature genetics 47, 284–290 (2015).

17. Mbatchou, J. et al. Computationally efficient whole-genome regression for quantitative and binary
traits. Nature Genetics 53, 1097–1103 (2021).

18. Staley, J. R. et al. A comparison of cox and logistic regression for use in genome-wide association
studies of cohort and case-cohort design. European Journal of Human Genetics 25, 854–862 (2017).

19. Syed, H., Jorgensen, A. L. & Morris, A. P. Evaluation of methodology for the analysis of ‘time-to-event’
data in pharmacogenomic genome-wide association studies. Pharmacogenomics 17, 907–915 (2016).
PMID: 27248145.

34

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 31, 2022. ; https://doi.org/10.1101/2022.03.25.22272955doi: medRxiv preprint 

https://www.biorxiv.org/content/early/2021/11/08/2021.08.12.456099.full.pdf
https://doi.org/10.1101/2022.03.25.22272955
http://creativecommons.org/licenses/by-nc/4.0/


20. Ojavee, S. E. et al. Genomic architecture and prediction of censored time-to-event phenotypes with a
bayesian genome-wide analysis. Nature Communications 12, 2337 (2021).

21. Pedersen, E. M. et al. Accounting for age of onset and family history improves power in genome-wide
association studies. The American Journal of Human Genetics (2022).

22. He, L. & Kulminski, A. M. Fast Algorithms for Conducting Large-Scale GWAS of Age-at-Onset Traits
Using Cox Mixed-Effects Models. Genetics 215, 41–58 (2020).

23. Boyle, A. P. et al. Annotation of functional variation in personal genomes using regulomedb. Genome
research 22, 1790–1797 (2012).

24. Gong, J. et al. Pancan-meqtl: a database to systematically evaluate the effects of genetic variants on
methylation in human cancer. Nucleic acids research 47, D1066–D1072 (2019).

25. Ernst, J. & Kellis, M. Chromatin-state discovery and genome annotation with chromhmm. Nature
protocols 12, 2478–2492 (2017).

26. Zhou, J. & Troyanskaya, O. G. Predicting effects of noncoding variants with deep learning–based
sequence model. Nature methods 12, 931–934 (2015).

27. Zhou, J. et al. Deep learning sequence-based ab initio prediction of variant effects on expression and
disease risk. Nature Genetics 2018 50:8 50, 1171–1179 (2018).

28. Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic
variants. Nature genetics 46, 310–315 (2014).

29. Zhu, Z. et al. Integration of summary data from gwas and eqtl studies predicts complex trait gene
targets. Nature genetics 48, 481–487 (2016).

30. CONSORTIUM, T. G. The GTEx Consortium atlas of genetic regulatory effects across human tissues.
Science 369, 1318–1330 (2020).

31. Võsa, U. et al. Large-scale cis-and trans-eqtl analyses identify thousands of genetic loci and polygenic
scores that regulate blood gene expression. Nature genetics 1–11 (2021).

32. Min, J. L. et al. Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation.
Nature genetics 53, 1311–1321 (2021).

33. Maldonado, M. d. M. & Dharmawardhane, S. Targeting Rac and Cdc42 GTPases in Cancer. Cancer
Research 78, 3101–3111 (2018).

34. Gagliardi, P. A., Puliafito, A. & Primo, L. PDK1: At the crossroad of cancer signaling pathways. In
Seminars in cancer biology, vol. 48, 27–35 (Elsevier, 2018).

35. Upadhyay, G. Emerging role of lymphocyte antigen-6 family of genes in cancer and immune cells.
Frontiers in Immunology 10, 819 (2019).

36. Pavan, I. C. B. et al. On broken ne(c)ks and broken DNA: The role of human NEKs in the DNA
damage response. Cells 10 (2021).

37. Watanabe, K., Taskesen, E., Van Bochoven, A. & Posthuma, D. Functional mapping and annotation
of genetic associations with fuma. Nature communications 8, 1–11 (2017).

38. Kanehisa, M., Sato, Y. & Kawashima, M. KEGG mapping tools for uncovering hidden features in
biological data. Protein science : a publication of the Protein Society 31, 47–53 (2022).

39. Bulik-Sullivan, B. K. et al. Ld score regression distinguishes confounding from polygenicity in genome-
wide association studies. Nature genetics 47, 291–295 (2015).

35

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 31, 2022. ; https://doi.org/10.1101/2022.03.25.22272955doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.25.22272955
http://creativecommons.org/licenses/by-nc/4.0/


40. Ojavee, S. E., Kutalik, Z. & Robinson, M. R. Liability-scale heritability estimation for biobank studies
of low prevalence disease. medRxiv (2022). https://www.medrxiv.org/content/early/2022/02/04/
2022.02.02.22270229.full.pdf.

41. Kachuri, L. et al. Pan-cancer analysis demonstrates that integrating polygenic risk scores with
modifiable risk factors improves risk prediction. Nature Communications 11, 6084 (2020).

42. Wang, Z. et al. Meta-analysis of five genome-wide association studies identifies multiple new loci
associated with testicular germ cell tumor. Nature genetics 49, 1141–1147 (2017).

43. Keller, A. et al. A cost-utility analysis of prostate cancer screening in australia. Applied health economics
and health policy 15, 95–111 (2017).

44. Martin, A. J., Lord, S. J., Verry, H. E., Stockler, M. R. & Emery, J. D. Risk assessment to guide
prostate cancer screening decisions: a cost-effectiveness analysis. Medical Journal of Australia 198,
546–550 (2013).

45. Howlader, N. et al. Seer cancer statistics review, 1975–2013. Bethesda, MD: National Cancer Institute
19 (2016).

46. Wolf, A. M. et al. American cancer society guideline for the early detection of prostate cancer: update
2010. CA: a cancer journal for clinicians 60, 70–98 (2010).

47. Tasa, T. et al. Genetic variation in the estonian population: pharmacogenomics study of adverse drug
effects using electronic health records. European Journal of Human Genetics 27, 442–454 (2019).

48. Speed, D., Holmes, J. & Balding, D. J. Evaluating and improving heritability models using summary
statistics. Nature Genetics 52, 458–462 (2020).

49. Hou, K. et al. Accurate estimation of SNP-heritability from biobank-scale data irrespective of genetic
architecture. Nature Genetics 51, 1244–1251 (2019).

50. Patxot, M. et al. Probabilistic inference of the genetic architecture underlying functional enrichment of
complex traits. Nature Communications 12, 1–16 (2021).

51. Yang, J. et al. Conditional and joint multiple-snp analysis of gwas summary statistics identifies additional
variants influencing complex traits. Nature genetics 44, 369–S3 (2012). PMC3593158[pmcid].

52. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. Gcta: a tool for genome-wide complex trait
analysis. American journal of human genetics 88, 76–82 (2011). PMC3014363[pmcid].

53. Staley, J. R. et al. PhenoScanner: a database of human genotype–phenotype associations. Bioinformatics
32, 3207–3209 (2016).

54. Kamat, M. A. et al. PhenoScanner v2: an expanded tool for searching human genotype–phenotype
associations. Bioinformatics 35, 4851–4853 (2019).

55. Lee, S. H., Wray, N. R., Goddard, M. E. & Visscher, P. M. Estimating missing heritability for disease
from genome-wide association studies. The American Journal of Human Genetics 88, 294–305 (2011).

56. Surveillance Research Program, National Cancer Institute. SEER*Explorer: An interactive website for
SEER cancer statistics. URL https://seer.cancer.gov/explorer. Accessed: 2022-01-24.

57. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nature
genetics 47, 1236–1241 (2015).

58. Wang, K., Li, M. & Hakonarson, H. Annovar: functional annotation of genetic variants from high-
throughput sequencing data. Nucleic acids research 38, e164–e164 (2010).

36

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 31, 2022. ; https://doi.org/10.1101/2022.03.25.22272955doi: medRxiv preprint 

https://www.medrxiv.org/content/early/2022/02/04/2022.02.02.22270229.full.pdf
https://www.medrxiv.org/content/early/2022/02/04/2022.02.02.22270229.full.pdf
https://seer.cancer.gov/explorer
https://doi.org/10.1101/2022.03.25.22272955
http://creativecommons.org/licenses/by-nc/4.0/


59. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456
humans. Nature 581, 434–443 (2020).

60. Madden, T. The blast sequence analysis tool. The NCBI handbook (2003).

61. Wang, J. et al. icn3d, a web-based 3d viewer for sharing 1d/2d/3d representations of biomolecular
structures. Bioinformatics 36, 131–135 (2020).

62. Richardson, T. G., Hemani, G., Gaunt, T. R., Relton, C. L. & Davey Smith, G. A transcriptome-wide
Mendelian randomization study to uncover tissue-dependent regulatory mechanisms across the human
phenome. Nature communications 11, 1–11 (2020).

63. Sadler, M. C., Auwerx, C., Porcu, E. & Kutalik, Z. Quantifying mediation between omics layers and
complex traits. bioRxiv (2021). https://www.biorxiv.org/content/early/2021/10/01/2021.09.
29.462396.full.pdf.

64. Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian randomization analysis with multiple
genetic variants using summarized data. Genetic epidemiology 37, 658–665 (2013).

65. Burgess, S. et al. Dissecting causal pathways using Mendelian randomization with summarized genetic
data: application to age at menarche and risk of breast cancer. Genetics 207, 481–487 (2017).

66. Greco M, F. D., Minelli, C., Sheehan, N. A. & Thompson, J. R. Detecting pleiotropy in Mendelian
randomisation studies with summary data and a continuous outcome. Statistics in medicine 34,
2926–2940 (2015).

67. Harrell Jr, F. E., Lee, K. L. & Mark, D. B. Multivariable prognostic models: issues in developing models,
evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in medicine 15,
361–387 (1996).

68. Gray, B. cmprsk: Subdistribution Analysis of Competing Risks (2014). URL https://CRAN.R-project.
org/package=cmprsk. R package version 2.2-7.

69. Gray, R. J. A class of k-sample tests for comparing the cumulative incidence of a competing risk. The
Annals of statistics 1141–1154 (1988).

70. Robinson, M. hydra (version v1.0). Zenodo (2021). URL http://doi.org/10.5281/zenodo.4555238.

71. Mucci, L. A. et al. Familial risk and heritability of cancer among twins in nordic countries. Jama 315,
68–76 (2016).

72. Kilgour, J. M., Jia, J. L. & Sarin, K. Y. Review of the molecular genetics of basal cell carcinoma;
inherited susceptibility, somatic mutations, and targeted therapeutics. Cancers 13, 3870 (2021).

73. Czene, K., Lichtenstein, P. & Hemminki, K. Environmental and heritable causes of cancer among 9.6
million individuals in the swedish family-cancer database. International journal of cancer 99, 260–266
(2002).

74. Miller, D. L. & Weinstock, M. A. Nonmelanoma skin cancer in the united states: incidence. Journal
of the American Academy of Dermatology 30, 774–778 (1994).

37

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 31, 2022. ; https://doi.org/10.1101/2022.03.25.22272955doi: medRxiv preprint 

https://www.biorxiv.org/content/early/2021/10/01/2021.09.29.462396.full.pdf
https://www.biorxiv.org/content/early/2021/10/01/2021.09.29.462396.full.pdf
https://CRAN.R-project.org/package=cmprsk
https://CRAN.R-project.org/package=cmprsk
http://doi.org/10.5281/zenodo.4555238
https://doi.org/10.1101/2022.03.25.22272955
http://creativecommons.org/licenses/by-nc/4.0/

