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ABSTRACT

Study Objectives: Wearable sleep technology has rapidly expanded across the consumer market

due to advances in technology and increased interest in personalized sleep assessment to improve

health and mental performance. In this study, we tested the performance of a novel device, the

Happy Ring, alongside other commercial wearables, against in-lab polysomnography (PSG) and

an at-home EEG-derived sleep monitoring device, the Dreem 2 Headband.

Methods: 36 healthy adults with no diagnosed sleep disorders and no recent use of medications

or substances known to affect sleep pattern were assessed across 77 nights while wearing the

Happy Ring, as well as a set of other consumer wearable devices. Subjects participated in a

single night of in-lab PSG and 2 nights of at-home data collection. The Happy Ring includes

sensors for skin conductance, movement, heart rate, and skin temperature. The Happy Ring

utilized two machine-learning derived scoring algorithms: a “generalized” algorithm that applied

broadly to all users, and a “personalized” algorithm that adapted to individual subjects’ data.

Epoch-by-epoch analyses compared the wearable devices to both in-lab PSG and to the Dreem 2

EEG Headband (“Dreem 2 Headband”) at home.

Results: Compared to in-lab PSG, the “generalized” and “personalized” algorithms demonstrated

good sensitivity (94% and 93%, respectively) and specificity (70% and 83%, respectively).

Accuracy was 91% for “generalized” and 92% for “personalized” algorithms. The generalized

algorithm demonstrated an accuracy of 67%, 85%, and 85% for light, deep, and REM sleep,

2

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 28, 2022. ; https://doi.org/10.1101/2021.12.22.21268267doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.22.21268267


respectively. The personalized algorithm was 81%, 95%, and 92% accurate for light, deep, and

REM sleep, respectively.

Conclusions: The Happy Ring performed well at home and in the lab, especially regarding sleep

detection. The personalized algorithm demonstrated improved detection accuracy over the

generalized approach and other devices, suggesting that adaptable, dynamic algorithms can

enhance sleep detection accuracy.
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INTRODUCTION

Personal sleep health is increasingly recognized as an important factor in physical and mental health,

affecting one’s performance, response to stressors, and emotional regulation throughout the day1–6.

Wearable technology provides opportunities to assess sleep health in real-world situations so that

associations with relevant health and performance outcomes can be examined in the context of reliable,

objective recordings in naturalistic settings7–11. This has proven useful, as wearable technology to assess

sleep has been used to explore associations with cardiovascular disease12,13, metabolic dysregulation12,14,

inflammation15,16, mental health17,18, physical performance19, and other outcomes, including mortality20.

As the technology develops, there is an increasing proliferation of wearable devices aimed at the

consumer market21,22. Initially, these devices offered a high degree of scalability, but presented significant

limitations on accuracy23–25. However, this gap has been closing recently, as studies increasingly

demonstrate that newer consumer sleep-tracking devices can reliably estimate sleep-wake states with at

least as much accuracy as standard scientific devices26–29. Improved sleep-wake prediction performance in

consumer devices is likely related to the increased capabilities of physiologic signals in wearable

technology27,30. Additionally, scoring algorithms have advanced, and now frequently include complex

machine learning algorithms that may also improve sleep detection31–33.

For these reasons, standards for the validation9,34 and implementation10,35 of new technologies have been

put forward for sleep predictions. Further, the concept of evaluating the performance of devices for sleep

prediction has emerged as a strategy for addressing the limitations of more traditional validation

approaches10,36. With the establishment of these standards, applications of novel sensors and scoring

strategies have been called for11.
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Accordingly, the present study evaluates the performance of a novel device both in the laboratory and at

home, relative to a gold-standard comparator (in-lab polysomnography; PSG), an at-home EEG device

(Dreem 2 Headband), and several other commercially available wearable devices. Specifically, this study

aims to (1) quantify the accuracy of sleep detection relative to in-lab and at-home sleep assessment by

evaluating sensitivity and specificity, (2) quantify the accuracy of sleep stage classification compared to

in-lab and at-home sleep assessment by evaluating sensitivity and specificity, (3) quantify the relative

performance of the investigational device compared to existing devices that have previously demonstrated

good performance, and (4) evaluate the relative performance of two different machine learning approaches

for sleep scoring.

METHODS

Participants

Participants were recruited through multiple strategies, including emailing past research study

participants, and using word of mouth. Participants were eligible to participate if they: fell within the age

range of 20 to 65 years of age, had no known or diagnosed sleep, mental health or significant medical

disorders, were not pregnant, had no regular nicotine use within the past month, no habitual use of

antidepressants, beta-blockers, stimulant medications, prescription pain medications, or anti-seizure

medications within the past three months, had not used THC products within the past two weeks, and had

a habitual sleep window and average nightly sleep within a normal range. A normal sleep window was

defined as average bedtime after 9 pm and before 2 am and average wake-up time after 5 am and before

10 am. The study protocol was approved by the Solutions Institutional Review Board.

Measures
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The study device (“Happy Ring”) consisted of a finger-worn device that includes sensors for: (1)

electrodermal activity (EDA), (2) 3-axis accelerometry, (3) photoplethysmography (PPG) -derived heart

rate, and (4) skin temperature. EDA was measured using a medical grade 3-electrode impedance sensor,

with data collected at 8 Hz.  Raw data collected from the Happy Ring were streamed to an associated

digital application through a data download process conducted each day of the study period, and sleep

outcomes for each night of sleep were calculated offline using Python.

Accelerometry was measured using a smartphone-class microelectromechanical, multiaxial accelerometer

embedded within the device, with data collected at 104 Hz. Data collected at 100 Hz from the PPG sensor

provided the opportunity to assess heart rate, computed using a proprietary algorithm. Skin temperature

was collected from the Happy Ring using a medical grade +/- 0.1 °C accuracy temperature sensor, data

were collected at 1 Hz. Lastly, the internal clock of the unit computed time elapsed since the start and end

of each sleep period. From these signals, data were merged into 30-sec epochs across all channels. Key

metrics obtained from the device included epoch-by-epoch sleep and wake estimations, as well as time in

bed (TIB), sleep latency (SL), wake after sleep onset (WASO), and total sleep time (TST; computed as

TIB – SL – WASO). In addition, a proprietary algorithm was used to detect sleep stages, further

classifying sleep as either “Deep” (Non-rapid eye movement (NREM); stage N3), “Light” (NREM stage

N1 or N2), or REM. Sleep stages were determined based on a machine learning algorithm.

In-lab polysomnography (PSG) was accomplished using a Respironics Alice 6 diagnostic sleep system,

with Natus Neurology Gold Cups as leads. The system used electroencephalogram (EEG;

F3-A2,F4-A1,C3-A2,C4-A1,O1-A2,O2-A1), electromyogram amplifier module (EMG; chin) and

electrooculogram (EOG; LOC-A2, ROC-A2) channels. In addition to 3 electrocardiogram (EKG) patches,

chest and abdomen belts, and a thermistor and a nasal cannula. Scoring was performed by a certified

polysomnographic technician, following the standard American Academy of Sleep Medicine scoring

rules37.
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At-home sleep assessment was performed using the Dreem 2 Headband to record electroencephalographic

and other signals. The Dreem 2 Headband includes 5 dry-EEG sensors (O1, O2, FpZ, F7, F8), in addition

to a 3D accelerometer to monitor movement and head position38. Participants wore the Dreem 2 Headband

on two consecutive nights at home. Data were scored using the standard Dreem settings. Sleep stage

predictions using the Dreem 2 Headband are provided automatically, with demonstrated accuracy in the

range of individual scorers using PSG data38. Although the Dreem 2 Headband does not completely

replace standard in-laboratory PSG, it does approximate laboratory PSG better than sleep wearables that

use only peripheral signals28,39.

In addition to the Happy Ring, participants were also asked to wear up to four other sleep-tracking

devices. First, participants were asked to wear the Actiwatch 2 from Philips Respironics. The Actiwatch is

a gold-standard actigraphy device, with well-characterized validation data7. The Actiwatch uses a 3-axis

accelerometer and scores sleep based on movement data. Data were extracted from the wristband at the

conclusion of each trial using the computer-based Actiware software, and were scored using the standard

algorithm, without additional hand-scoring. Second, participants were asked to wear a Fitbit device (Fitbit

Charge 2, Fitbit Inc.). This commercially available device uses both accelerometry and PPG heart rate

data to estimate sleep and wake30. Previous studies have shown that the Fitbit device is a valid and reliable

tool for assessment of sleep, with strong agreement compared with PSG (sleep-wake sensitivity

≥0.93)28,30,40,41. Third, participants were asked to wear a Whoop device (Whoop 3.0, Whoop Inc.). This

device is also commercially available and uses both movement and PPG data to estimate sleep42,43. Some

previous studies have demonstrated that this device is accurate when compared to PSG (sleep-wake

sensitivity ≥0.90)42. Finally, participants were asked to wear an Oura Ring (model V2). Like the Happy

Ring, the Oura Ring is worn on the finger, and includes sensors for accelerometry and PPG heart rate data

for the estimation of sleep44. Due to inventory constraints and a desire to maintain participant compliance

to the study protocol, not all participants wore all devices during the three nights of data collection.
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Devices were rotated between users to make sure the same number of nights of data were available for all

devices. Data were collected from Fitbit Charge 2, Whoop Wristband, and Oura Ring devices through

device-associated digital applications downloaded to an iPhone SE provided to the participant. All

systems output hypnograms in 30 second windows, except for Oura, which outputs in 5 minute windows.

Sleep windows for each device were auto-detected, with participants being instructed to put on the

devices at least one hour before their anticipated bedtime.

Device placements for finger-based wearables were determined by best fit. Several device sizes were

provided at the sleep lab to select the optimal size, and best fit fingers were selected for both the Happy

Ring and the Oura Ring, prioritizing placement of both rings on the non-dominant hand. Additionally, the

Actiwatch was placed on the right wrist, and the Whoop and Fitbit devices were both placed on the left

wrist, with the Whoop placed proximal, and the Fitbit placed distal from the hand.

Procedure

All participants participated in a three-night study which included one night in a sleep laboratory and two

subsequent nights at home. Data were collected from participants over the course of two months between

March 2021 and May 2021. In the lab, the sleep period was defined as lights off and lights on according to

the PSG labels for the lab trials. Lights off were enforced by the lab technician based on a 60-minute

window of each participant’s self-reported normal weekday bedtime. Lights on were marked based on

each participants’ natural wake up, but were enforced if the wake up had not occurred by 7:00 AM local

time. At home, participants were instructed to adhere to their regular sleep schedule, and the sleep period

was defined as the start and end of the Dreem 2 Headband recordings. The start of each Dreem 2

headband recording was user-initiated within the associated digital application, and recording end was

initiated by removing the device.
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Preprocessing of Happy Ring signals included linear interpolation of missing data when the gap was less

than 3 seconds. When the gap was larger, null /missing values were used. Signals were interpolated to 52

Hz, 8 Hz, 1 Hz, and 1 Hz for acceleration, EDA, heart rate, and temperature, respectively. The sleep lab

and at-home sleep datasets were analyzed separately.

All data from the Happy Ring were analyzed in 30-second epochs. From these data, 211 features were

extracted: 55 features from acceleration, 26 features from EDA, 103 features from heart rate, 26 features

from temperature, and 1 feature from time elapsed. Examples of features are mean, standard deviation,

range, and frequency of values and variables. To standardize values, they were converted to z-scores for

each data sample, defined as a night of sleep.

Determining Sleep-Wake and Sleep Stage Data with the Happy Ring

Personalized Happy algorithms were developed by being trained only on Happy Ring data to tailor output

to the individual. A central part of the analysis was how the train-test split was defined., In other words,

determining what time snippets of the data were used to learn the parameters of the classifier, and what

snippets were used to infer sleep stages45,46. Two sets of metrics were used to quantify sleep stage

prediction accuracy:

1. “Happy Generalized” was developed by doing a leave-one-out cross-validation45,46 at the level of the

nights. This approach involved training on all but one subject’s data and then testing on that user,

repeating across users. This approach tests the generalization ability of the sleep stage classifier across

subject nights, with learning and inference done on different subject nights.

2. “Happy Personalized” was developed by training and testing on all subjects for different

non-overlapping time windows, allowing for learning and inference on identical groups of subjects.

This included a cross-validation where 80% of the data were used for training, and 20% of the data
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were reserved for testing. For testing, the segments for each night were stitched back together. This

approach evaluates the personalization of the sleep stage classification.

If the data contained many subjects that had a wide range of physiological responses, both approaches

would yield similar results. However, if the data were based on a small subset of subjects or nights, both

approaches can give different results reflecting the data sampling bias, and not the inference quality45,46.

Therefore, the Happy Generalized approach could underestimate the sleep stage prediction accuracy

because training and testing data may be very different, whereas the Happy Personalized scoring method

would give a more accurate representation of the prediction accuracy because the classifier learns from

each subject night.

Both approaches inform on different aspects of sleep stage prediction. Happy Generalized can be

interpreted as a generalized approach that does not take into consideration the evaluated subject. On the

other hand, Happy Personalized used the evaluated subject for learning, providing a more individualized

sleep prediction that adapts and learns from the user over time. In the context of our research, Happy

Generalized validated the models by setting a baseline, and Happy Personalized improved upon the

baseline by personalizing the sleep stage prediction process.

The training data exhibited a strong class imbalance (22% deep, 41% light, 27% REM and 10% awake

samples across all nights). To overcome this, the training data were randomly under-sampled. A random

forest classifier was trained and determined the optimal number of estimators as 10 using a cross-validated

grid search. The classifier provided a probability-of-class membership for each sample in the unbalanced

testing set. Then, post-processing of interpolation and Gaussian smoothing was applied to this probability

distribution before making a categorical prediction by finding the location of the maximum of this

probability distribution. Finally, ad hoc heuristics were used to avoid unlikely changes in sleep stages, for

example, from awake to deep sleep. Those heuristics included removing short deep sleep stages if they
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occurred right after an awake period, removing short awake periods if they occurred right after deep

periods, and removing all short periods in any of the sleep stages, regardless of the previous sleep stage.

Data Analyses

First, to determine whether sleep continuity (asleep vs. awake) and sleep architecture (sleep staging)

significantly differed between the Happy Ring and both in-laboratory polysomnography and at-home

Dreem 2 Headband recordings at time, linear models evaluated mean differences between the values

obtained by the Happy Ring and either laboratory PSG or Dreem 2 Headband results, separately. Sleep

continuity was evaluated by determining total sleep time and wake after sleep onset. Sleep architecture

was defined as time in each of the following sleep stages: deep, light, REM and wake.

Second, classification accuracy was assessed using a confusion matrix, separately evaluating the Happy

Generalized and Happy Personalized against both laboratory PSG for the first night of data collection in

the lab, and the Dreem 2 Headband for data collected during the two subsequent nights at home. Accuracy

was defined as the percent of agreement between each individual investigational device, and the

comparison reference (in-lab PSG or at-home Dreem 2 Headband).

Third, accuracy of both the Happy Generalized and Happy Personalized algorithms for sleep versus

awake, as well as for individual sleep stages relative to laboratory PSG and Dreem 2 Headband was

compared to similar values obtained from Fitbit, Whoop, and Oura devices. Sensitivity, specificity,

negative predictive values (NPV) and positive predictive values (PPV) were compared across Happy

Generalized, Happy Personalized, Fitbit, Whoop, Oura, and Actiwatch for sleep-wake detection and sleep
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stage classification separately, using either laboratory PSG or Dreem 2 Headband as the true state for

reference.

Fourth, mean differences for TST and WASO, and sleep stages between PSG or Dreem 2 Headband as

compared to the wearables (Happy Generalized, Happy Personalized, Fitbit, Whoop, Oura, and

Actiwatch) were evaluated for all devices except Actiwatch, which does not provide sleep staging results.

RESULTS

Data were collected from 40 participants who met inclusion criteria, over the course of 122 nights. After

removing data where device failure or data quality issues occurred, data were ultimately analyzed for 36

adults across 77 nights of sleep. The mean age of the sample was 33.8 years (SD=7.8 years, range= 22

years – 51 years). The sample was 56% female, mean body mass index was 23.4 (SD=3.8). The sample

was 30.6% non-Hispanic White. A full breakdown of sample characteristics is reported in Table 1.

When polysomnographic values from the laboratory and home references were compared, small, nominal

differences were observed. Overall, no significant difference was observed between TST and WASO;

mean TST was 432 minutes (SD = 38 minutes) in the lab and 442 minutes (SD = 50 minutes) at home.

Mean WASO was 24 minutes (SD = 16 minutes) in the lab and 24 minutes (SD = 14 minutes) at home.

The sleep stage distribution was different between lab and home data recordings, with a greater relative

percentage of the night in light sleep in the laboratory and greater relative percentages of deep and REM

sleep at home. A figure depicting observed values for sleep stages across both in-lab and at-home settings

can be found in Supplemental Figure 1. Figure 1 depicts examples of Generalized and Personalized
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Happy Ring outputs superimposed over in-lab PSG-derived sleep stages and at-home Dreem-derived

sleep stages, separately for nights where the Happy Ring performed well, moderately and poorly.

Sleep detection and sleep staging performance in a laboratory setting

Table 2 presents the performance of sleep detection in a laboratory setting for the Happy Personalized and

Happy Generalized algorithms, along with that of the other studied devices: Oura, Whoop, Fitbit, and

Actiwatch, as compared to the gold standard of laboratory polysomnography. The overall sleep detection

accuracy for the Happy devices was 0.92 (SD = 0.04) using the Happy Personalized algorithm, and 0.91

(SD = 0.04) using the Happy Generalized algorithm. Sleep detection accuracy values for other devices fell

between 0.84 and 0.88. Table 2 also reports sensitivity, specificity, positive predictive value (PPV) and

negative predictive value (NPV) for these devices. Significance of the differences between the

Personalized algorithm and the other devices were calculated using paired two-tailed t-tests. In the

laboratory environment, the Happy Personalized algorithm demonstrated significantly higher values for

accuracy and specificity for sleep detection compared to all other devices studied (P<.001).

The performance of sleep stage predictions for light, deep, REM and wake were also evaluated. For light,

deep, and REM sleep, Happy Personalized demonstrated comparable values for sensitivity, specificity, and

accuracy to other devices studied. Values for accuracy, sensitivity, specificity, PPV and NPV for all study

devices compared to the lab PSG can be found in Supplemental Table 1. For data collected in the sleep

laboratory, total sleep time estimates, WASO, and sleep stages, relative to PSG values, are depicted in

Figure 2A, 2B, and 2C, respectively for each of the devices studied.
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Bland-Altman plots comparing the Happy Generalized and Happy Personalized algorithms were

computed. Data comparing these algorithms relative to sleep continuity and sleep stages are reported in

Figure 3A and Figure 3B, presenting Happy Generalized and Happy Personalized, respectively.

Sleep detection and sleep-staging performance in a home setting

The sleep detection performance at-home of the Happy Personalized and Happy Generalized algorithms,

along with those of Oura, Whoop, Fitbit, and Actiwatch devices are presented in Table 2. The overall

accuracy for the Happy devices was 0.92 (SD = 0.04) for the Happy Personalized algorithm and 0.91 (SD

= 0.04) for the Happy Generalized algorithm when compared to the Dreem 2 Headband. Values for sleep

detection accuracy at home for other devices feel between 0.89 and 0.92. Specificity, sensitivity, positive

predictive value and negative predictive values for sleep detection for these devices are also reported in

Table 2.

For data collected at home, TST estimates, relative to Dreem 2 Headband values, are depicted in Figure

2D, and differences in WASO across devices are reported in Figure 2E. Figure 2F shows differences for

sleep stages across devices. Bland-Altman plots comparing the Happy Generalized and Happy

Personalized algorithms were computed. Data comparing these algorithms relative to sleep continuity and

sleep stages are reported in Figure 3C and Figure 3D.

Confusion Matrices

Confusion matrices are depicted in Figure 4. Figure 4A depicts the 4-stage confusion matrix comparing

Happy Generalized and in-lab polysomnography. Figure 4B depicts the confusion matrix for Happy

Personalized and in-lab polysomnography. Figures 4C and 4D depict the confusion matrices for Happy
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Generalized and Happy Personalized at home, respectively. Due to unbalanced classes, values presented

are each prediction’s normalized detection frequency with regards to the reference (PSG or Dreem 2

Headband), including mean, standard deviation, and confidence interval. The color indicates the scaled

probability of occurrence of a specific pair, hence artificially removing class imbalance. The title in each

plot shows the average classification accuracy across all sleep stages.

DISCUSSION

The present study evaluated the performance of the Happy Ring for the evaluation of sleep continuity and

sleep architecture among healthy working-age adults, using two different scoring approaches –

Generalized and Personalized. Compared to both laboratory polysomnography and at-home Dreem 2

Headband, the Generalized scoring strategy demonstrated sensitivity and specificity for sleep-wake

detection similar to other comparable devices that have been previously empirically evaluated. The

Personalized scoring strategy maintained similar sensitivity to the Generalized approach, but also

demonstrated improved specificity relative to the other devices studied for sleep-wake detection (P<.001).

Regarding sleep staging, the rate of agreement between the Happy Ring and both the Dreem 2 Headband

and laboratory polysomnography for light, deep, and REM sleep was moderate, similar to other

sleep-tracking devices to which it was compared. The Personalized scoring approach, again, demonstrated

improved accuracy for discernment of sleep stages compared to other devices evaluated (P< 0.001). Taken

together, the Happy Ring and associated sleep scoring algorithms demonstrated good performance for the

detection of sleep versus wake, relative to both home and laboratory references, in line with other devices
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that also use movement and heart rate to evaluate sleep. Further, the Personalized scoring approach

consistently performed better than the Generalized approach.

The main finding from this work is that, among generally healthy adults, the Happy Ring performs

comparably in terms of discerning sleep versus wake when compared to other similar devices in both a lab

and an at-home setting. The degree of sensitivity (93-94%) was similar to the other devices that were

evaluated (89-94%). This is in line with previous work, which shows that these and similar devices

typically demonstrate sensitivity over 90%28,45. However, it should be noted that the sensitivity found for

some of the comparison devices in this study were a few percentage points below that seen in previously

published studies using those same devices. This finding could be a result of a myriad of factors, such as a

more diverse sample in the present study, the presence of an at-home component of the protocol, or may

be related to other unknown factors.

When evaluating sleep detection, specificity refers to the ability of a device to detect wakefulness in the

context of otherwise continuous sleep. This is the parameter for which current devices tend to perform

less well. A recent paper by Chinoy and colleagues compared 7 different devices and found specificity

values between 18-54%28. These findings are similar to those observed in the present study, which found

specificity values ranging from 19-54% across previously-studied devices relative to in-laboratory

polysomnography. The Happy Generalized algorithm performed nominally better, with 70% specificity

in-lab. The Happy Personalized approach demonstrated statistically significantly improved performance

over the other devices evaluated, with a mean specificity of 83% in-lab and 75% at home (P< 0.001). This

suggests that the personalized approach may be a strategy for improving sleep detection by improving the

ability of the device to discern wake epochs. This is especially important for the evaluation of relatively

healthy sleepers, as most healthy sleepers will achieve a sleep efficiency of over 90%48. If a device simply

scores every epoch as sleep, with no discernment or algorithm, it will appear to have 90% accuracy. In
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this case, it would have 100% sensitivity but 0% specificity. Therefore, for a consumer device that will

presumably be used to assess sleep in individuals with generally high sleep efficiency, higher specificity is

perhaps more important than overall accuracy because of the skewed nature of sleep-wake data in healthy

populations. For this reason, the improved specificity of the Happy Personalized scoring approach may

represent a significant innovation that can improve the utility of wearable sleep assessments.

Regarding sleep stages, the Happy Ring sleep scoring algorithms performed relatively well at discerning

light (stages N1 and N2), deep (stage N3) and REM sleep. Previous studies have shown that peripheral

data from heart rate and movement can be used to approximate sleep stages, but these algorithms are still

limited in providing more than a general approximation30,49. For this reason, peripherally scored sleep

staging data are still insufficient for replacing sleep stages derived from polysomnography. Regardless,

values from at-home sleep tracking devices can be useful, especially as they can be sampled over many

days and in large numbers of people, unlike polysomnography9,11. For sleep stage classification, the

performance of the Happy Generalized model performed about the same as other similar devices on the

market both in-lab and at-home. More importantly, the Happy Personalized model performed significantly

better than other comparable devices for classification of all sleep stages in regards to accuracy,

sensitivity, PPV, and NPV in the lab (P < 0.001).

We also evaluated the level of agreement between the Happy Ring (Personalized and Generalized) and

in-laboratory PSG as well as the Dreem 2 Headband via discrepancy analysis, graphically displayed as

Bland-Altman plots (Figure 3). Bland-Altman plots are considered to be a key method in analyzing the

agreement between two continuous medical measurements10. The majority of measures showed a negative

proportional bias, whose magnitude depended on the range of PSG or Dreem 2 Headband measures. In

other words, sleep continuity and staging tended to be underestimated by the Happy Ring for cases

showing higher PSG-derived or Dreem 2 Headband-derived measures. This was not always the case,
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however, as some measures showed very little bias. Such was the case with WASO and light sleep derived

from the Happy Ring relative to the Dreem 2 Headband, indicating close agreement. In general, the

Happy Personalized model demonstrated slightly better performance than the Generalized model,

reflected by an overall lower bias and more narrow limits of agreement across measures. Thus, the Happy

Ring compares relatively well to both PSG and the Dreem 2 Headband, although discrepancies of sleep

variables tended to be larger as “true” measures of sleep increased.

The first actigraphy scoring studies used hand scoring50. Soon afterwards, scoring algorithms were

introduced51 and subsequently refined52,53. These algorithms started as basic prediction equations that used

weighted values from the epoch of interest and multiple epochs in the past or future to determine, based

on movement, if an individual is awake or asleep52,53,54. Over time, and with the inclusion of other signals

like heart rate, these algorithms have become more complex28,41. A more recent advance is the use of

machine learning to not only derive an optimal scoring algorithm based on a specific signal, but also as

part of a strategy to combine multiple signals4,32,33. Although this approach has demonstrated

improvements over older approaches, there is still the limitation that the algorithm itself remains largely

static and generalized to the population, rather than to the individual. However, with the advent of

improved computing power, it is possible to develop an algorithm that is dynamic and changes based on

the users’ own data. This personalization is the difference between the Happy Generalized and

Personalized approaches. The Generalized approach, as evaluated in this study, represents a relatively

static algorithm that is universally applied to all records, which is the standard approach across other

devices. Since a generalized approach is functionally similar to the algorithms in the other studied

devices, it is unsurprising that this algorithm performs comparably well. The Personalized scoring

approach, however, represents a potential innovation, in that it starts with generalized parameters but

changes over time based on use. As the user wears the device over multiple subsequent recording periods,

the algorithm modifies itself in response to the parameters obtained by that user. Thus, the scoring
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algorithm is fluid and unique across users, based on their own data. This approach – a dynamic,

personalized algorithm – demonstrated the best performance both in the lab and at home, especially for

the key parameter of specificity. Future algorithm development for sleep wearables may be improved by

including an individualized scoring component.

This study had several unique strengths. Objective polysomnographic sleep was assessed both in the

laboratory and at home, under naturalistic conditions. Further, the performance of the Happy Ring was

assessed relative to other types of devices, including standard actigraphy (i.e., Actiwatch), wrist-worn

multisensory device (i.e., Fitbit, Whoop), and ring-worn multisensory device (i.e., Oura). The design of

the study and the subsequent analytic methods were aligned with recent guidelines and recommendations

for sleep-tracking device evaluation9,10.

However, the study did have some limitations. The sample size was relatively small and consisted of

generally healthy adults, which may limit generalizability of the findings. Future research in evaluation of

the Happy Ring and associated sleep algorithms will aim to collect data from a wider, more diverse

population. Additionally, the home-based comparison recordings were obtained using a commercial

device (i.e., Dreem 2 Headband) rather than traditional laboratory polysomnography. Lastly, the

algorithms underlying the Happy Generalized and Happy Personalized scoring strategies are considered

proprietary and rely on undisclosed factors.

In conclusion, the present study describes the initial development and assessment of the Happy Ring, a

novel device for the assessment of sleep continuity and sleep architecture. Overall, the device performed

well, demonstrating good sensitivity and moderate specificity, comparable to other consumer devices on

the market. When compared to other consumer sleep-tracking devices, the Happy Generalized scoring

procedure demonstrated similar performance for sleep detection and sleep stage classification; while the
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novel Happy Personalized algorithm demonstrated significant improvement in performance compared to

other devices studied.

Future research should examine the performance of this device in other contexts and larger samples. In

addition, future work should explore the value of additional peripheral signals to the assessment of sleep

in the context of overall health and wellbeing. Finally, the improved performance of the Happy

Personalized algorithm suggests that sleep assessment using wearables can be improved by developing

more dynamic and adaptable algorithms that leverage user data prospectively.
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Figure 1. Comparison of Hypnograms between Happy Algorithms and Both In-Lab and At-
Home Polysomnography References. In the Good and Typical examples, sleep stages for the 
Happy Ring display high degrees of overlap with the PSG and Dreem 2 Headband, while the Poor 
example shows more variation between the two. 
 
Figure 1A. Comparison of Hypnograms between Happy Algorithms and In-Lab 
Polysomnography Reference 
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Figure 1B. Comparison of Hypnograms between Happy Algorithms and Dreem 2 Headband  
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Figure 2. Comparison of Deviations from In-Lab and At-Home Polysomnography for Happy 
Algorithms and Other Studied Devices. Violin plots demonstrate the aggregation of data near to the line 
of no difference in measures, with positive values signifying over detection by the Happy Ring and negative 
values signifying under detection. The width of the plot signifies the density of values near a given value, 
and the tails extend to the full ranges of the outputs. The gray box plot inside the violin plot plots the median, 
interquartile range, and data range excluding outliers.  
 
Figure 2A. In-Lab Total Sleep Time  

 
 
Figure 2B. In-Lab WASO 

 
 
Figure 2C. In-Lab Time in Each Sleep Stage 
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Figure 2D. At-Home Total Sleep Time 
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Figure 2E. At-Home WASO 
 

 
 
Figure 2F. At-Home Time in Each Sleep Stage 
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Figure 3. Bland-Altman Plots Comparing Happy Generalized to In-Laboratory 
Polysomnography and Dreem 2 Headband 
 
Figure 3A. Bland-Altman Plots Comparing Happy Generalized to In-Laboratory Polysomnography 
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Figure 3B. Bland-Altman Plots Comparing Happy Personalized to In-Laboratory Polysomnography  
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Figure 3C. Bland-Altman Plots Comparing Happy Generalized to Dreem 2 Headband 
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Figure 3D. Bland-Altman Plots Comparing Happy Personalized to Dreem 2 Headband  
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Figure 4. Confusion Matrices Comparing Happy Algorithms to In-Lab Polysomnography 
and Dreem 2 Headband References.  
Each box includes the Mean Accuracy and the (Standard Deviation) and [95% Confidence 
Interval]. 
 
Figure 4A. Confusion Matrix for Happy Generalized In-Lab 
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Figure 4B. Confusion Matrix for Happy Personalized In-Lab 
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Figure 4C. Confusion Matrix for Happy Generalized At-Home 
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Figure 4D. Confusion Matrix for Happy Personalized At-Home 
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Table 1. Characteristics of the Sample

Variable Category/Units Values
N Subjects N=36

Sex
Male 55.6%

Female 44.4%
Age Years 23.4 (SD=3.8)

Body Mass Index Kg/m2 23.4 (SD=3.8)

Race/Ethnicity

Non-Hispanic White 25 (69.4%)
Hispanic/Latino 3 (8.3%)

Asian/Asian American 6 (16.7%)
Other/Unknown 2 (5.6%)
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Table 2. Sleep Detection of Studied Devices Compared to In-Lab Polysomnography and
Dreem 2 Headband At Home

Sleep Detection of Studied Devices Compared to In-Lab Polysomnography
Personalized
Mean ± SD

Generalized
Mean ± SD

Oura
Mean ± SD

Whoop
Mean ± SD

Fitbit
Mean ± SD

Actiwatch
Mean ± SD

N
Successful

Uses
(Distinct
Subjects) 33 (33) 33 (33) 30 (30) 33 (33) 27 (27) 26 (26)
Accuracy 0.92±0.04 0.91±0.04† 0.88±0.05† 0.86±0.05† 0.84±0.07† 0.85±0.07†
Sensitivity 0.93±0.04 0.94±0.04 0.93±0.05 0.90±0.05* 0.89±0.09* 0.94±0.03
Specificity 0.83±0.11 0.70±0.18† 0.49±0.22† 0.54±0.18† 0.49±0.18† 0.19±0.12†

PPV 0.97±0.02 0.96±0.03† 0.94±0.04† 0.93±0.05† 0.92±0.05† 0.89±0.07†
NPV 0.61±0.23 0.61±0.25 0.48±0.20† 0.45±0.21† 0.39±0.18† 0.33±0.21†

Sleep Detection of Studied Devices Compared to Dreem 2 Headband
N

Successful
Uses

(Distinct
Subjects) 40 (26) 40 (26) 29 (19) 31 (20) 25 (17) 30 (20)
Accuracy 0.92±0.04 0.91±0.04† 0.92±0.03 0.89±0.08* 0.89±0.04* 0.89±0.03†
Sensitivity 0.93±0.04 0.94±0.05† 0.96±0.03* 0.91±0.09 0.92±0.05 0.94±0.02
Specificity 0.75±0.11 0.67±0.11 0.59±0.13† 0.59±0.21† 0.60±0.13† 0.41±0.12†

PPV 0.97±0.01 0.96±0.03 0.96±0.02† 0.96±0.02† 0.96±0.03* 0.93±0.04†
NPV 0.54±0.18 0.55±0.20† 0.59±0.18 0.49±0.20 0.44±0.16† 0.42±0.17†

*indicates significantly different from Personalized p-value <0.05
†indicates significantly different from Personalized p-value <0.001
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