Supplementary Materials for

Antibody responses against SARS-CoV-2 variants induced by four different SARS-CoV-2 vaccines

Marit J. van Gils^{1*}, A. H. Ayesha Lavell^{2#}, Karlijn van der Straten^{1,3#}, Brent Appelman^{4#}, Ilja Bontjer¹, Meliawati Poniman¹, Judith A. Burger¹, Melissa Oomen¹, Joey H. Bouhuijs¹,
Marleen A. Slim⁵, Michiel Schinkel⁴, Lonneke A. van Vught^{3,6}, Elke Wynberg^{1,5}, Hugo D.G. van Willigen¹, Marloes Grobben¹, Khadija Tejjani¹, Jacqueline van Rijswijk¹, Jonne Snitselaar¹, Tom G. Caniels¹, Amsterdam UMC COVID-19 S3/HCW study group, Alexander P. J. Vlaar⁶, Maria Prins^{3,5}, Menno D. de Jong¹, Godelieve J. de Bree⁴, Jonne J. Sikkens^{2,4*}, Marije K. Bomers^{2*}, Rogier W. Sanders^{1,7*}

Correspondence to: r.w.sanders@amsterdamumc.nl, m.bomers@amsterdamumc.nl, j.sikkens@amsterdamumc.nl, m.j.vangils@amsterdamumc.nl

This PDF file includes: Figure S1 to S3 Table S1 to S5

Figure S1: Binding and neutralization titer decline. Binding titers to wild-type S protein (BAU/ml) of 1:100,000 diluted sera (A) and neutralization titers (IU/ml) of D614G pseudovirus (B) collected post complete vaccination and pre-booster for the four vaccination groups. The lower cutoff for binding was set at 30 BAU/ml (grey shading) for binding titers and at 2 IU/ml for neutralization titers. Lines connect the GMT of four weeks post complete vaccination and GMT of pre-booster titers per group. Vaccine groups are indicated by colors with BNT162b2 in green, mRNA-1273 in purple and AZD1222 in orange.

Figure S2: Binding and neutralization titers post-vaccination against the VOCs. (A) Paired binding titers to wild-type and VOCs S protein (BAU/ml) of 1:100,000 diluted sera collected post complete vaccination for the four vaccination groups (upper plot). The lower cut-off for binding was set at a 30 BAU/ml (grey shading). Mean \pm SEM fold reductions in binding titers against the VOCs in comparison to wild-type (lower plot). (B) Mean \pm SEM fold reductions in neutralization IC₅₀ titers against the VOCs pseudoviruses in comparison to neutralization IC₅₀ titers against D614G pseudovirus.

Figure S3: Binding and neutralization post-vaccination titers against VOCs correlated. Correlation between wild-type (A) and Beta (B) binding (BAU/ml) and neutralization titers (IU/ml). Spearman's rank correlation coefficients with p-values are indicated. (C) GMT (BAU/ml) of wild-type and VOCs plotted against the average reported vaccine efficacy against symptomatic infection (Table S4). Vaccine groups are indicated by colors with BNT162b2 in green, mRNA-1273 in purple, AZD1222 in orange and Ad26.COV2.S in blue. Circles represent WT data, squares for Alpha, diamond for Beta, nabla triangle for Gamma and delta triangle for Delta. Spearman's rank correlation coefficients with p-values are indicated. (D) Mean \pm SEM fold reductions in neutralization IC₅₀ titers for the serum pools combined against the VOCs and VOIs pseudoviruses in comparison to IC₅₀ titers against D614G pseudovirus.

Table S1: Protein and pseudovirus S constructs contain the following mutationscompared to the WT (Wuhan Hu-1; GenBank: MN908947.3).

VOC S proteins						
Alpha	Beta	Gamma	Beta		Omicron	
B.1.1.7	B.1.351	P.1	B.1.351		3.1.1.529	
Δ69-70	L18F	L18F	T19R	A67V	S375F	Y505H
Δ144	D80A	T20N	G142D	Δ69-70	K417N	T547K
N501Y	D215G	P26S	E156G	T95I	N440K	D614G
A570D	∆242-244	D138Y	Δ157-158	G142D	G446S	H655Y
D614G	K417N	R190S	L452R	∆143-145	S477N	N679K
P681H	E484K	K417T	T478K	Δ211	T478K	P681H
T716I	N501Y	E484K	D614G	L212I	E484A	N764K
S982A	D614G	N501Y	P681R	ins214EPE	Q493K	D796Y
D1118H	A701V	D614G	D950N	G339D	G496S	N856K
		H655Y		S371L	Q498R	Q954H
		T1027I		S373P	N501Y	

		VOC pseudovirus						
D614G	Alpha	Alpha +E484K	Beta	Beta +242-244	Gamma	Delta	Omic	ron
B.1	B.1.1.7	B.1.1.7	B.1.351	B.1.351	P.1	B.1.617.2	B.1.1.52	9 BA.1
D614G	Δ69-70	Δ69-70	L18F	L18F	L18F	T19R	A67V	Q498R
	Δ144	Δ144	D80A	D80A	T20N	G142D	∆69-70	N501Y
	N501Y	E484K	D215G	D215G	P26S	E156G	T95I	Y505H
	A570D	N501Y	∆242-244	L242H	D138Y	Δ157-158	G142D	T547K
	D614G	A570D	K417N	R246I	R190S	L452R	Δ143-145	D614G
	P681H	D614G	E484K	K417N	K417T	T478K	Δ211	H655Y
	T716I	P681H	N501Y	E484K	E484K	D614G	L212I	N679K
	S982A	T716I	D614G	N501Y	N501Y	P681R	ins214EPE	P681H
	D1118H	S982A	A701V	D614G	D614G	D950N	G339D	N764K
		D1118H		A701V	H655Y		S371L	D796Y
					T1027I		S373P	N856K

VOI pseudovirus						
Epsilon	Zeta	lota	Карра	Lambda	Mu	
B.1.429	P.2	B.1.526	B.1.617.1	C.37	B.1.621	
S13I	E484K	L5F	T95I	G75V	Δ69-70	
W152C	D614G	T95I	G142D	T76I	T95I	
L452R	V1176F	D253G	E154K	∆246-252	Y144S	
D614G		E484K	L452R	D253N	Y145N	
		D614G	E484Q	L452Q	R346K	
		A701V	D614G	F490S	E484K	
			P681R	D614G	N501Y	
			Q1071H	T859N	A570D	
					D614G	
					P681H	
					T716I	
					D950N	
					S982A	

014ZD	13471
∆143-145	D614G
Δ211	H655Y
L212I	N679K
ins214EPE	P681H
G339D	N764K
S371L	D796Y
S373P	N856K
S375F	Q954H
K417N	N969K
N440K	L981F
G446S	
S477N	
T478K	
E484A	
Q493K	
G496S	

Table S2: Reported vaccine efficacy (References; [2,3,5,14–18,20,22-24,36–52]).

Vaccine	VOC	VE	Reference
BNT162b	WT	96%	Thomas et al
BNT162b	WT	95%	Polack et al
BNT162b	WT	91%	Chung et al
BNT162b	WT	92%	Nasreen et al
BNT162b	Alpha	68%	Meyer et al
BNT162b	Alpha	89%	Pilishvili et al
BNT162b	Alpha	98%	Glatman-Freedman et al
BNT162b	Alpha	95%	Andrews et al 2022-2
BNT162b	Alpha	97%	Katz et al
BNT162b	Alpha	87%	Kissling et al
BNT162b	Alpha	94%	Lopez Bernal et al
BNT162b	Alpha	82%	Martínez-Baz et al
BNT162b	Alpha	90%	Public Health England
BNT162b	Alpha	97%	Angel et al
BNT162b	Alpha	90%	Abbu-Raddad et al
BNT162b	Alpha	88%	Nasreen et al
BNT162b	Alpha	92%	Sheikh et al
BNT162b	Alpha	73%	Sheikh et al
BNT162b	Beta	75%	Abbu-Raddad et al
BNT162b	Beta	86%	Nasreen et al
BNT162b	Gamma	90%	Nasreen et al
BNT162b	Delta	90%	Prunas et al
BNT162b	Delta	87%	Kissling et al https://osf io/3nhps/
BNT162b	Delta	03%	Powell et al
BNT162b	Delta	9370	Andrews et al 2022 1
BNT162b	Delta	03%	Pais at al
BNT162b	Delta	93%	Nordstrom at al
BNT162b	Delta	92/0	Androws at al 2022
BNT162b	Delta	1/1%	Tang et al
BNT162b	Delta	88%	Lonez Bernal et al
BNT162b	Delta	0204	Nosroon et al
BNT162b	Omicron	62%	Chempitelly et al
BNT162b	Omicron	71%	Powell et al
BNT162b	Omicron	66%	Andrews et al 2022 2
mRNA 1273	WT	Q1%	Raden et al
mRNA 1273	WT	9470	Chung et al
mRNA-1273	WT	08%	Nesreen et al
mRNA-1273	Alpha	96%	Pilichvili et al
mRNA 1273	Alpha	90%	Nasreen et al
mRNA 1273	Delta	92/0	Kissling et al https://osf io/3nhps/
mRNA 1273	Delta	95%	Andrews et al 2022 1
mRNA-1273	Delta	95%	Nordstrom at al
mRNA-1273	Delta	90%	Androws at al 2022 2
mRNA-1273	Delta	7 40/	Tang at al
mRNA-1273	Delta	040	Negreen et el
mRNA-1273	Omieron	94%	Chamaitally at al
mDNA 1272	Omicron	43%	Andrews at al 2022 2
111KINA-1275	WT	/0%	Andrews et al 2022-2
AZD1222	VV I	02% 820/	Androws at al 2022 2
AZD1222	Alpha	02% 790/	Hitshings at al
AZD1222	Alpha	/0%	Long Dornel et el
AZD1222	Alpha	/ 3%	Dyblic Health Expland
AZD1222	Alpha	89%	Public Health England
AZD1222	Alpha	8/%	Nasreen et al

AZD1222	Delta	72%	Kissling et al https://osf.io/3nhps/
AZD1222	Delta	83%	Andrews et al 2022-1
AZD1222	Delta	68%	Nordstrom et al
AZD1222	Delta	64%	Andrews et al 2022-2
AZD1222	Delta	67%	Lopez Bernal et al
AZD1222	Delta	88%	Nasreen et al
AZD1222	Delta	79%	Sheikh et al
AZD1222	Delta	60%	Sheikh et al
AZD1222	Omicron	50%	Andrews et al 2022-2
Ad26.COV2.S	WT	67%	Sadoff et al
Ad26.COV2.S	Alpha	77%	Martínez-Baz et al
Ad26.COV2.S	Beta	64%	Sadoff et al
Ad26.COV2.S	Gamma	51%	Ranzani et al
Ad26.COV2.S	Delta	50%	Kissling et al https://osf.io/3nhps/
Ad26.COV2.S	Delta	42%	Martínez-Baz et al

Table S3: Number of participants included in the binding or neutralization assay per time point per vaccine group.

		Binding	Neutralization
	pre-vac	50	0
	post-V1	46	45
BNT162b2	post-V2	50	50
	+9m V2	42	36
	post-V3	37	34
	pre-vac	25	0
	post-V1	40	30
mRNA-1273	post-V2	39	29
	+6m V2	31	24
	post-V3	28	20
	pre-vac	19	0
	post-V1	42	34
AZD1222	post-V2	34	30
	+6m V2	32	29
	post-V3	26	23
	pre-vac	7	0
	post-V1	13	13
Ad26.COV2.S	+2m V1	13	13
	+7m V1	19	17
	post-V2*	18	16

Table S4: Uni- and multivariable linear regression analysis.

	Post 1 vaccination		Post complete initial vaccination±		Pre-booster		Post-booster	
	Univariable	Multivariable¥	Univariable	Multivariable¥	Univariable	Multivariable	Univariable	Multivariable¥
BNT162b2	417 (324-536)	394 (280-554)	2967 (2419-3638)	2603 (1958-3460)	192 (138-268)	340 (120-964)	2840 (2321-3475)	2756 (2071-3668)
mRNA-1273	875 (666-1150)	781 (512-1191)	3461 (2739-4374)	2857 (1973-4137)	595 (404-876)	386 (211-705)	3138 (2488-3958)	2993 (2097-4271)
AZD1222	79 (61-103)***	95 (60-150)***	219 (171-281)***	202 (136-301)***	37 (25-54)***	27 (13-55)***	1487 (1117-1892)***	1480 (997-2196)**
								1484 (1029-
Ad26.COV2.S	169 (105-271)	169 (96-296) ••	169 (113-252)***	146 (91-234)***	107 (65-175)**	90 (49-165)*	1541 (1153-2058)***	2140)***
 * significantly different from AZD1222 and BNT162b2 (p<0.05) and from mRNA-1273 (p<0.001) ** significantly different from AZD1222 (p=0.001) and mRNA-1273 (p<0.001) *** significantly different from both mRNA vaccines (p<0.001) •• significantly different from both vector vaccines and BNT162b2 (p<0.001) •• significantly different from AZD and BNT162b2 (p<0.01) and mRNA-1273 (p<0.001) •• significantly different from BNT162b2 (p<0.01) and mRNA-1273 (p<0.001) •• significantly different from BNT162b2 (p<0.01) and mRNA-1273 (p<0.001) 								
 ± complete vaccination is 2 doses of BNT162b2, mRNA-1273 or AZD1222 of 1 dose of Ad26.COV2.S, for Ad26.COV2.S the same time point as post 1 vaccination ¥ corrected for age and sex, geometric means and %95 CI represent median age of the cohort (47 years) and female gender ¶ corrected for age, sex and time between full vaccination and pre-booster serum sampling, geometric means and %95 CI represent median age of the cohort (47 years), female gender and median time between full vaccination and pre-booster serum sampling (28 weeks) 								

Geometric means of binding levels against S wild type, BAU/ml (95% CI)

	Post 1 vaccination		Post complete initial vaccination±		Pre-booster		Post-booster	
	Univariable	Multivariable¥	Univariable	Multivariable¥	Univariable	Multivariable¶	Univariable	Multivariable¥
BNT162b2	16 (12-20)	15 (10-20)	197 (160-243)	152 (113-204)	24 (18-33)	42 (15-113)	1154 (881-1511)	1192 (817-1738)
mRNA-1273	32 (24-42)**	28 (18-43) [°]	313 (239-409)**	220 (149-325) ⁿ	117 (79-172)	92 (53-160)	1106 (778-1572)	1160 (717-1878)
AZD1222	13 (10-18)	13 (8-22)••	26 (20-34)***	19 (12-29)***	8 (6-12)***	10 (5-19)•	445 (321-617)***	379 (221-650)***
Ad26.COV2.S	14 (9-22)••	13 (8-23)••	14 (9-21)*	10 (6-16)*	21 (13-33)	20 (11-35)***	700 (473-1037)"	735 (445-1213)°

Geometric means of neutralizing antibodies against D614G, IC₅₀ in IU/ml (95% CI)

* significantly different from AZD1222 (p<0.05) and both mRNA vaccines (p<0.001)

** significantly different from BNT162b2 (p<0.01)

*** significantly different from both mRNA vaccines (p<0.001)

• significantly different from BNT162b2 (p<0.05)

^{oo} significantly different from AZD1222 (p<0.01) and mRNA-1273 (p<0.001)

^{nun} significantly different from BNT162b2 (p<0.001)

• significantly different from BNT162b2 (p<0.05) and mRNA-1273 (p<0.001)

•• significantly different from mRNA-1273 (p<0.01)

••• significantly different from mRNA-1273 (p<0.001)

• significantly different from AZD1222 and BNT162b2 (p<0.05)

± complete vaccination is 2 doses of BNT162b2, mRNA-1273 or AZD1222 of 1 dose of Ad26.COV2.S

¥ corrected for age and sex, geometric means and %95 CI represent median age of the cohort (47 years) and female gender

¶ corrected for age, sex and time between full vaccination and pre-booster serum sampling, geometric means and %95 CI represent median age of the cohort (47 years), female gender and median time between full vaccination and pre-booster serum sampling (28 weeks)

Comparison post initial vaccination series with convalescent cohort (COSCA)

	Geometric means of binding levels	Geometric means of neutralizing				
Post complete initial	against S wild type, BAU/ml (95%	antibodies against D614G, IC50 in IU/ml				
vaccination±, univariable	CI)	(95% CI)				
BNT162b2	2967 (2212-3979)	197 (149-260)				
mRNA-1273	3461 (2472-4847)	313 (218-448)*				
AZD1222	219 (153-313)***	26 (18-37)***				
Ad26.COV2.S	169 (95-300)***	14 (8-25)***				
Convalescent	ivalescent 3463 (2630-4559) 175 (138-223)000					
*** significantly different from both mRNA vaccines and convalescent (p<0.001)						
* significantly different from BNT162b2 (p=0.047)						
^{ooo} significantly different from both vector vaccines (p<0.001) and mRNA-1273 (0.009)						
\pm complete vaccination is 2 dos	es of BNT162b2, mRNA-1273 or AZD	1222 of 1 dose of Ad26.COV2.S				

Table S5: Individual binding and neutralization titers per vaccine group.

Can be found in a separate extended data file