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Summary 

Background 

The rate at which COVID-19 vaccine effectiveness wanes over time is crucial for vaccination policies, but is 

incompletely understood with conflicting results from different studies.  

Methods 

This cohort study, using the OpenSAFELY-TPP database and approved by NHS England, included individuals 

without prior SARS-CoV-2 infection assigned to vaccines priority groups 2-12 defined by the UK Joint 

Committee on Vaccination and Immunisation. We compared individuals who had received two doses of 

BNT162b2 or ChAdOx1 with unvaccinated individuals during six 4-week comparison periods, separately for 

subgroups aged 65+ years; 16-64 years and clinically vulnerable; 40-64 years and 18-39 years. We used Cox 

regression, stratified by first dose eligibility and geographical region and controlled for calendar time, to 

estimate adjusted hazard ratios (aHRs) comparing vaccinated with unvaccinated individuals, and quantified 

waning vaccine effectiveness as ratios of aHRs per-4-week period. The outcomes were COVID-19 

hospitalisation, COVID-19 death, positive SARS-CoV-2 test, and non-COVID-19 death.  

Findings 

The BNT162b2, ChAdOx1 and unvaccinated groups comprised 1,773,970, 2,961,011 and 2,433,988 

individuals, respectively. Waning of vaccine effectiveness was similar across outcomes and vaccine brands: 

e.g. in the 65+ years subgroup ratios of aHRs versus unvaccinated for COVID-19 hospitalisation, COVID-19 

death and positive SARS-CoV-2 test ranged from 1.23 (95% CI 1.15-1.32) to 1.27 (1.20-1.34) for BNT162b2 

and 1.16 (0.98-1.37) to 1.20 (1.14-1.27) for ChAdOx1. Despite waning, rates of COVID-19 hospitalisation 

and COVID-19 death were substantially lower among vaccinated individuals compared to unvaccinated 

individuals up to 26 weeks after second dose, with estimated aHRs <0.20 (>80% vaccine effectiveness) for 

BNT162b2, and <0.26 (>74%) for ChAdOx1. By weeks 23-26, rates of SARS-CoV-2 infection in fully 

vaccinated individuals were similar to or higher than those in unvaccinated individuals: aHRs ranged from 

0.85 (0.78-0.92) to 1.53 (1.07-2.18) for BNT162b2, and 1.21 (1.13-1.30) to 1.99 (1.94-2.05) for ChAdOx1. 

Interpretation 

The rate at which estimated vaccine effectiveness waned was strikingly consistent for COVID-19 

hospitalisation, COVID-19 death and positive SARS-CoV-2 test, and similar across subgroups defined by age 

and clinical vulnerability. If sustained to outcomes of infection with the Omicron variant and to booster 

vaccination, these findings will facilitate scheduling of booster vaccination doses. 
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Introduction 
Effectiveness of COVID-19 vaccines, first demonstrated in randomised trials,1,2 has been confirmed with 

longer follow-up in observational studies.3–5 However, neutralising antibody titres decrease with time since 

vaccination,6–8 and vaccine effectiveness against infection wanes over time.5,9–16 The extent of waning 

vaccine effectiveness against severe COVID-19 is less clear: studies have found no evidence of,9,10,17 

modest,5,11 or substantial12 waning. Clarification of rates of waning effectiveness is needed to determine 

the frequency with which booster doses are needed and whether booster vaccination should be targeted at 

groups defined by age, clinical vulnerability or brand of primary vaccination. 

 

Examination of waning COVID-19 vaccine effectiveness is difficult. The success of vaccine rollouts in many 

countries means that only a small and selected proportion of the population remains unvaccinated. 

Continuing uptake of vaccination further depletes this unvaccinated group over time. Vaccines were 

offered in priority order determined by age and clinical vulnerability, so that the longest follow up is in 

people at highest risk of severe COVID-19. Rapid changes in rates of SARS-CoV-2 infection over time, 

related to pandemic control measures and introduction of new variants, make it essential to account for 

the calendar date on which events occurred. 

 

Many studies of waning COVID-19 vaccine effectiveness have used “test-negative case-control” (TNCC) 

designs, restricted to people tested for infection with SARS-CoV-2 and comparing those testing positive 

(cases) and negative (controls),5,9,17,18 or reported indirect evidence such as changing rates of COVID-19 with 

time since vaccination.11,12 The extent to which TNCC designs control bias due to confounding, or are biased 

because of the restriction to people who were tested, remains unclear.19,20 

 

We conducted a cohort study within the OpenSAFELY-TPP database (https://opensafely.org), which 

includes detailed linked data on 24 million people registered with an English general practice (GP) using TPP 

SystmOne electronic health record (EHR) software. We compared rates of COVID-19 hospitalisation, COVID-

19 and non-COVID-19 mortality, and infection with SARS-CoV-2, between adults fully vaccinated with the 

Pfizer-BioNTech BNT162b2 mRNA vaccine (BNT162b2) and the Oxford-AstraZeneca ChAdOx1 nCoV-19 

AZD1222 (ChAdOx1), and those who were unvaccinated. 

 

Methods 

Data source 

OpenSAFELY-TPP includes detailed pseudonymized primary care data linked (via National Health Service 

(NHS) number) with accident and emergency attendance, inpatient hospital spell records (NHS Digital’s 

Hospital Episode Statistics dataset), national SARS-CoV-2 testing records (Second Generation Surveillance 
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System), and national death registry records. Vaccination status (National Immunisation Management 

System (NIMS)) is available in the primary care record. Healthcare worker status (recorded for vaccine 

recipients at the time of vaccination) is provided by NHS Digital’s COVID-19 data store. 

Study design 

Individuals eligible for this cohort study, which was approved by NHS England, were adults who had been 

assigned to UK Joint Committee on Vaccination and Immunisation (JCVI) priority groups 2 to 12 

(Supplementary Table 1) and registered with a primary care GP for ≥1 year before eligibility for their first 

vaccine dose (the “eligibility date”, based on JCVI group and age, Supplementary Table 2). Individuals were 

assigned to JCVI groups based on information in their linked EHR. They were excluded if their sex, 

geographical region, ethnicity or index of multiple deprivation were unknown; or they were resident in a 

care home at six weeks after their eligibility date. Full details are in Supplementary Figure 1. 

 

We defined three groups who: (1) received two doses of BNT162b2; (2) received two doses of ChAdOx1; (3) 

were unvaccinated. Eligibility for the vaccinated groups was restricted to those who received their second 

vaccine dose during a 4-week “second vaccination period” (SVP) within analysis strata defined by JCVI 

group, eligibility date (for groups within which eligibility was based on age (Supplementary Table 2)), and 

English NHS region, defined using individuals’ GP address). The SVP was defined as the 28-day period during 

which the greatest number of individuals in the stratum received their second dose. Individuals were 

excluded from the vaccine groups if they: received their first dose before their eligibility date; had an 

interval between first and second dose of <6 or >14 weeks; or were flagged as a healthcare worker on their 

vaccination record. Individuals were assigned to the unvaccinated group if they had received no COVID-19 

vaccine at the start of the SVP for their analysis stratum. Individuals were excluded from any group if they 

had: evidence of previous SARS-CoV-2 infection by the start of their SVP; ever been recorded as being 

resident in a care home; or evidence of having started an end-of-life care pathway.  

 

Figure 1 depicts the study design. The analysis timescale was calendar time, which ensured that vaccinated 

and unvaccinated individuals were compared on the calendar day on which each outcome event occurred. 

Follow-up time for fully vaccinated individuals was split into six consecutive 4-week “comparison periods”, 

starting 2 weeks after receipt of second dose. Because each SVP was 4 weeks long and each vaccinated 

individual was followed up for 4 weeks per comparison period, there were 8 calendar weeks during which 

vaccinated individuals were followed in each comparison period. Vaccinated individuals entered and 

finished follow-up on the calendar dates corresponding to the start and end of their comparison period.  

 

To avoid overlap in follow-up of unvaccinated individuals between comparison periods, follow up time for 

unvaccinated individuals was assigned at random to start follow up either 2 or 6 weeks after the start of the 
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SVP, and split into the three consecutive 8-week calendar periods during which vaccinated individuals were 

followed in each comparison period. Unvaccinated individuals assigned to start at 2 weeks were followed 

during comparison periods 1, 3 and 5, while those assigned to at 6 weeks were followed during comparison 

periods 2, 4 and 6. 

Outcomes 

The outcomes were COVID-19 hospitalisation (identified using HES inpatient hospital records), COVID-19 

death, positive SARS-CoV-2 test, and non-COVID-19 death. We also investigated test-seeking behaviour by 

comparing rates of testing for SARS-CoV-2 between the vaccine groups. COVID-19 and non-COVID-19 

deaths (death certificates with and without a COVID-19 code) were based on death registry data from the 

Office for National Statistics. SARS-CoV-2 tests were identified using SGSS records and based on swab date. 

Both polymerase chain reaction (PCR) and lateral flow tests were included, without differentiation between 

symptomatic and asymptomatic infection. All outcomes were defined by the date of their first occurrence 

during the comparison follow-up period. Where there was no positive SARS-CoV-2 test, but a record of 

COVID-19 hospitalisation and/or COVID-19 death, the date of positive SARS-CoV-2 test was imputed as the 

date of COVID-19 hospitalisation or date of COVID-19 death.  

Potential confounding factors 

The following potential confounders were defined at a single time (typically the day before the start of 

comparison period 1; full details in Supplementary Table 3): age; sex (male or female); English Index of 

Multiple Deprivation (IMD, grouped by quintiles); ethnicity (Black, Mixed, South Asian, White, Other, as per 

the UK census); number of SARS-CoV-2 tests between 18 May 2020 (when widespread testing became 

available) and eligibility for first vaccine dose; and receipt of one or more flu vaccines in the five years prior 

to COVID-19 vaccine eligibility. The other potential confounders were updated at the start of each 

comparison period: body mass index (BMI); current pregnancy; care home residence; housebound; 

shielding; history of chronic heart disease, kidney disease, liver disease, neurological disease or respiratory 

disease; history of diabetes, learning disability, serious mental illness; current immunosuppression or 

history of permanent immunosuppression; and number of conditions in the clinically “at risk” classification 

(according to national prioritisation guidelines). After exclusions for missing values in demographic 

variables, there were no missing values in the remaining variables as they were defined as presence or 

absence of codes in the EHR. 

Statistical analysis 

For each comparison period we estimated hazard ratios (HRs) comparing: (1) BNT162b2 vs unvaccinated; 

(2) ChAdOx1 vs unvaccinated; (3) BNT162b2 vs ChAdOx1. HRs for comparison periods with <3 events in 

either group were not estimated. For each individual, follow-up ended at the earliest of the outcome of 

interest, deregistration from the GP, death, or 15th December 2021. However, for SARS-CoV-2 test, follow-
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up ended at the “outcome of interest” only when the test result was positive. Fully vaccinated individuals 

who received a booster dose, and unvaccinated individuals who received a first dose, were excluded from 

subsequent comparison periods, but follow-up within comparison periods was not censored after these 

events.  

 

To estimate hazard ratios, we fitted Cox regression models with baseline hazards stratified by JCVI group, 

eligibility date and region used to define the SVPs, and with the covariates described above. To avoid issues 

with model convergence, binary covariates were excluded from the model if there were <3 events in any 

cell of the table defined by cross tabulating the covariate with vaccine group and comparison period. For 

categorical covariates with more than two levels, levels were merged until either all levels had greater than 

three events, or there was only one level, in which case the variable was excluded. This process was carried 

out independently for each outcome. Age within strata was modelled as linear, with quadratic terms 

additionally included for strata with age range >5 years. We used meta-regression to quantify waning 

effectiveness as estimated ratios of HRs per comparison period. 

 

All analyses were done independently in four vaccine priority subgroups: (A) aged ≥65 years and in JCVI 

groups 2-5 (“65+”); (B) aged 16-64 years and clinically vulnerable (JCVI groups 4 or 6; “16-64 CV”); (C) aged 

40-64 years (JCVI groups 7-10; most people in this subgroup received ChAdOx1; “40-64”) and (D) aged 18-

39 years (JCVI groups 11-12; this subgroup only received BNT162b2; “18-39”). The 65+ subgroup included 

individuals who were clinically vulnerable, while the 40-64 and 18-39 subgroups did not. 

 

This study followed STROBE-RECORD reporting guidelines. Any counts below six were redacted or rounded 

for disclosure control. The funders had no role in the study design, collection, analysis, and interpretation 

of data; in the writing of the report; and in the decision to submit the article for publication. 

Results 

Of 13,923,580 individuals satisfying initial eligibility criteria (Supplementary Figure 2), 4,780,020 received 

second doses of BNT162b2 or ChAdOx1 during the SVP for their stratum (Supplementary Figures 3-17) and 

2,596,920 were unvaccinated at the start of their SVP. Of these, 1,773,970, 2,961,011 and 2,433,988 were 

included in the first comparison period BNT162b2, ChAdOx1 and unvaccinated groups respectively. Table 1 

and Supplementary Table 4 show summary statistics for these three groups by subgroup. Compared to 

vaccinated individuals, unvaccinated individuals were less likely to be white; live in a more affluent area; 

have had a flu vaccine in the previous five years or have tested for SARS-CoV-2 before their eligibility date. 

The distribution of other characteristics between vaccine groups differed according to subgroup. For 

example, in the 65+ subgroup, those vaccinated with BNT162b2 were older than those vaccinated with 
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ChAdOx1 (74 years [IQR 11] versus 71 years [IQR 5], while the converse was true in the 40-64 subgroup (44 

years [IQR 9] versus 55 years [IQR 9])  

 

The cumulative incidence of first dose by weeks 23-26 in previously unvaccinated individuals was 17%, 27%, 

12% and 13% in the 65+, 16-64 CV, 40-64 and 18-39 subgroups respectively (Supplementary Figure 18). The 

UK vaccination programme initially offered third doses only 6 months (23-26 weeks) after the second 

dose,21 but among the 18-39 subgroup 35% and 26% of those in the BNT162b2 and ChAdOx1 groups 

respectively had received a third dose by week 20, because the required time since second dose was 

reduced to three months in mid-December 2021 due to concerns about the Omicron variant.22,23  

 

Unadjusted and adjusted hazard ratios (aHRs) are shown in Supplementary Tables 6 and 7, respectively, 

and compared in Supplementary Figures 19-24 with aHRs for each covariate shown in Supplementary 

Tables 9-18. For the models comparing individuals fully vaccinated with BNT162b2 and ChAdOx1 to 

unvaccinated individuals, the unadjusted and adjusted HRs were generally similar. Where they differed, 

patterns were outcome- and subgroup-specific. Unadjusted and adjusted HRs were similar for comparisons 

of BNT162b2 with ChAdOx1. 

 

Figure 2 shows aHRs (with 95% CI) for BNT162b2 or ChAdOx1 vaccination versus no vaccination across the 

six comparison periods. The slopes of the dashed lines correspond to ratios of aHRs per comparison period 

(also shown in Supplementary Table 8). The missing aHRs could not be estimated because there were too 

few events in one or both groups (Supplementary Table 5). 

 

Follow up in the 65+ subgroup began on 24 February 2021 (when the Alpha variant was dominant) and 

ended on 17 November 2021. Follow-up for the 16-64 CV, 40-64 and 18-39 subgroups began on 2 May, 15 

May and 29 July 2021 respectively: the Delta variant was dominant in England by 1 June 2021. The latest 

follow up was on 15 December 2021, before the Omicron variant became dominant. 

 

There were 1,731, 4,611 and 9,154 COVID-19 hospitalisations in BNT162b2 recipients, ChAdOx1 recipients 

and unvaccinated individuals, respectively (Supplementary Table 5). Estimated aHRs comparing BNT162b2 

and ChAdOx1 with unvaccinated in the 65+ subgroup were 0.09 (95% CI 0.05-0.14) and 0.13 (0.08-0.20) 

respectively during weeks 3-6 after second dose, waning to 0.20 (0.18-0.24) and 0.26 (0.23-0.30) 

respectively during weeks 23-26 (Figure 2). The ratios of aHRs per period were similar for BNT162b2 and 

ChAdOx1: 1.23 (1.15-1.32) and 1.20 (1.14-1.27) respectively. Estimated aHRs comparing BNT162b2 and 

ChAdOx1 with unvaccinated in the 16-64 CV subgroup were 0.04 (0.03-0.06) and 0.11 (0.09-0.13) 

respectively during weeks 7-10, waning to 0.13 (0.10-0.15) and 0.25 (0.22-0.29) respectively by weeks 23-

26. The ratios of aHRs per period were 1.34 (1.20-1.48) and 1.25 (1.19-1.30) for BNT162b2 and ChAdOx1 
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respectively. Estimated aHRs comparing ChAdOx1 with unvaccinated in the 40-64 subgroup waned from 

0.05 (0.04-0.07) during weeks 3-6 to 0.14 (0.12-0.17) during weeks 23-26 (ratio of aHRs 1.27 (1.16-1.38) per 

period). aHRs for BNT162b2 could not be estimated in the 40-46 subgroup because there were too few 

COVID-19 hospitalisations. Estimated aHRs comparing BNT162b2 with unvaccinated in the 18-39 subgroup 

waned from 0.04 (0.02-0.06) during weeks 3-6 to 0.20 (0.12-0.32) during weeks 19-22 (ratio of aHRs 1.39 

(1.15-1.68) per period). 

 

There were 265, 449, and 831 COVID-19 deaths in BNT162b2 recipients, ChAdOx1 recipients and 

unvaccinated individuals, respectively (Supplementary Table 5). Estimated aHRs comparing BNT162b2 and 

ChAdOx1 with unvaccinated in the 65+ subgroup were 0.06 (95% CI 0.03-0.12) and 0.10 (0.06-0.16) 

respectively during weeks 11-14, waning to 0.20 (0.18-0.24) and 0.26 (0.23-0.30) respectively by weeks 23-

26 (Figure 2). The ratios of aHRs per period were 1.26 (1.08-1.48) and 1.16 (.98-1.37) for BNT162b2 and 

ChAdOx1 respectively. Estimated aHRs comparing BNT162b2 and ChAdOx1 with unvaccinated in the 16-64 

CV subgroup were 0.04 (0.02-0.09) and 0.09 (0.06-0.14) during weeks 11-14, waning to 0.08 (0.04-0.14) and 

0.13 (0.08-0.19) respectively by weeks 23-26. The ratios of aHRs per period were 1.30 (0.77-2.18) and 1.18 

(0.97-1.43) for BNT162b2 and ChAdOx1 respectively. Estimated aHRs comparing ChAdOx1 with 

unvaccinated in the 40-64 subgroup waned from 0.03 (0.01-0.08) during weeks 11-14 to 0.08 (0.04-0.16) 

during weeks 23-26. (ratio of aHRs 1.53 (0.89-2.64) per period. 

 

There were 60,171, 180,848 and 118,559 positive SARS-CoV-2 tests in BNT162b2 recipients, ChAdOx1 

recipients and unvaccinated individuals, respectively (Supplementary Table 5). For BNT162b2 compared 

with unvaccinated, estimated aHRs during weeks 3-6 ranged across subgroups from 0.19 (95% CI 0.14-0.26) 

to 0.27 (0.23-0.31) during weeks 3-6, waning to approximately 1 or greater than 1 by weeks 23-26 (Figure 2, 

Supplementary Table 7). For ChAdOx1 compared with unvaccinated, estimated aHRs ranged across 

subgroups from 0.47 (0.38-0.59) to 0.79 (0.76-0.82) and waned to 1.21 (1.13-1.30), 1.45 (1.40-1.50) and 

1.99 (1.94-2.05) in the 65+, 16-16 CV and 40-46 subgroups respectively. Rates of waning were similar to 

those for COVID-19 hospitalisation and COVID-19 death (Supplementary Table 8).  

 

There were 7,318, 7,646, and 3,237 non-COVID-19 deaths in BNT162b2 recipients, ChAdOx1 recipients and 

unvaccinated individuals, respectively (Supplementary Table 5). Across subgroups, estimated aHRs during 

weeks 3-6 ranged from 0.32 (95% CI 0.28-0.36) to 0.39 (0.30-0.50) for BNT162b2, and 0.34 (0.24-0.47) to 

0.48 (0.42-0.55) for ChAdOx1 (Figure 2, Supplementary Table 7). By weeks 23-26, these ranged from 0.57 

(0.51-0.64) to 0.61 (0.47-0.79) for BNT162b2, and 0.59 (0.44-0.79) to 0.66 (0.58-0.76) for ChAdOx1. Rates of 

waning were lower than for the other outcomes (maximum ratio of aHRs 1.13 (1.07-1.19), Supplementary 

Table 8). 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 23, 2022. ; https://doi.org/10.1101/2022.03.23.22272804doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.23.22272804
http://creativecommons.org/licenses/by/4.0/


 

 9 

There were 1,316,223, 2,762,572 and 681,674 SARS-CoV-2 tests in BNT162b2 recipients, ChAdOx1 

recipients and unvaccinated individuals, respectively (only the first test in each comparison period counted; 

Supplementary Table 5). Across subgroups, rates of testing during weeks 3-6 were broadly similar in 

vaccinated and unvaccinated individuals (aHRs ranged from 0.88 (95% CI 0.87-0.90) to 1.73 (1.69-1.78) for 

BNT162b2, and from 0.84 (0.82-0.85) to 1.40 (1.39-1.41) for ChAdOx1 (Supplementary Figure 25, 

Supplementary Tables 7 and 8). By weeks 23-26, rates of testing were substantially higher in vaccinated 

than unvaccinated individuals; aHRs ranged from 2.99 (2.94-3.05) to 7.05 (6.33-7.84) for BNT162b2 and 

from 3.80 (3.73-3.87) to 8.95 (8.80-9.09) for ChAdOx1. 

 

Estimated aHRs comparing BNT162b2 with ChAdOx1 recipients consistently favoured BNT162b2 (Figure 3 

and Supplementary Table 7, ratios of aHRs in Supplementary Table 8). For the earliest comparison period 

during which they were estimable, aHRs across subgroups ranged from 0.37 (95% CI 0.24-0.55) to 0.45 

(0.29-0.71) for COVID-19 hospitalisation during weeks 7-11; 0.35 (0.21-0.58) to 0.45 (0.19-1.05) for COVID-

19 death during weeks 15-18; and 0.35 (0.29-0.41) to 0.62 (0.47-0.81) for positive SARS-CoV-2 test during 

weeks 3-6. Because the rate of waning was slightly higher for BNT162b2 than ChAdOx1, the aHRs were 

attenuated by weeks 23-26 (range across subgroups from 0.47 (0.39-0.57) to 0.73 (0.65-0.83) for COVID-19 

hospitalisation; 0.59 (0.32-1.07) to 0.70 (0.53-0.94) for COVID-19 death; and 0.60 (0.55-0.67) to 0.76 (0.73-

0.79) for positive SARS-CoV-2 test). 

Discussion 
This cohort study estimated the effectiveness and comparative effectiveness of the BNT162b2 and 

ChAdOx1 vaccines during six 4-week periods after receipt of second dose. Rates of COVID-19 hospitalisation 

and COVID-19 death were consistently and substantially lower among fully vaccinated individuals 

compared to those who remained unvaccinated, up to 26 weeks after second vaccination, and consistently 

lower among individuals fully vaccinated with BNT162b2 than ChAdOx1. However, by 23-26 weeks rates of 

SARS-CoV-2 infection (ascertained through freely available national routine testing) in fully vaccinated 

individuals were similar to or higher than those in unvaccinated individuals. Rates of non-COVID-19 death 

were consistently lower among fully vaccinated than unvaccinated individuals. 

 

When quantified as ratios of aHRs, the waning of estimated effectiveness was strikingly similar across risk 

groups, except that estimated effectiveness waned fastest in the 18-39 subgroup (those at lowest risk of 

severe COVID-19, all vaccinated with BNT162b2). In those subgroups in which the two vaccines could be 

compared, estimated effectiveness was initially greater for BNT162b2 than for ChAdOx1, but effectiveness 

waned somewhat faster for BNT162b2 than ChAdOx1, so that the two brands’ comparative effectiveness 

became more similar over time. Estimated aHRs for COVID-19 hospitalisation and COVID-19 death 
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remained <0.20 (at least 80% vaccine effectiveness) for BNT162b2 and <0.26 (at least 74% vaccine 

effectiveness) for ChAdOx1 during weeks 23-26 after second vaccination. 

 

A systematic review of the duration of effectiveness of COVID-19 vaccines13 included 18 studies, the 

majority of which evaluated BNT162b2 or Moderna-mRNA-1273 vaccines. Estimated vaccine effectiveness 

decreased by 10 percentage points (95% CI 6-15) for severe COVID-19 (hospitalisation or death due to 

COVID-19), and by 21 percentage points (95% CI 14-30) for SARS-CoV-2 infection, from 1 to 6 months after 

full vaccination. Estimates varied substantially between studies with reductions comparable to those in our 

study reported by only two studies.9,14 The review concluded that the decline in vaccine effectiveness 

against severe COVID-19 was less than for SARS-CoV-2 infection and symptomatic disease, whereas we 

found that rates of waning, quantified as ratios of HRs, were similar for both outcomes across the four 

subgroups and that estimated vaccine effectiveness against COVID-19 hospitalisation and COVID-19 death 

remained high 23-26 weeks after receipt of the second dose. 

 

As in this study, Andrews and colleagues analysed NHS England EHR data to investigate of the duration of 

protection by COVID-19 vaccines against symptomatic and severe COVID-19.5 They used a TNCC design, 

restricted to individuals who were tested for SARS-CoV-2 infection. In the 65+ and 40-64 CV subgroups, 

identically defined in the two studies, estimated vaccine effectiveness against COVID-19 hospitalisation and 

COVID-19 death was consistently 3-6% lower in this study than that of Andrews and colleagues, who 

concluded (by contrast with our study) that waning was greater for ChAdOx1 than BNT162b2, and greater 

among older adults and those in a clinical risk group. While those authors found continuing vaccine 

effectiveness against symptomatic COVID-19 up to 26 weeks since receipt of the second vaccine dose, we 

found rates of SARS-COV-2 infection to be similar to or higher than those in unvaccinated individuals by 

that time.  

 

Our study is based on whole-population data analysed within the OpenSAFELY Trusted Research 

Environment, which has stringent disclosure controls to protect patient privacy. The large study size and 

large numbers of outcome events led to precise estimates of vaccine effectiveness according to vaccine 

brand and time since second vaccine dose. We accounted for risk-dependent vaccine allocation by 

separating the cohort into subgroups based on JCVI group,26 and conducting analyses within strata defined 

by JCVI group, eligibility date for primary vaccination and geographical region. Our analyses also excluded 

individuals with a pre-vaccine rollout record of SARS-CoV-2 infection and accounted for rapid changes in 

COVID-19 incidence with calendar time, censoring due to occurrence of outcome events, and attenuation 

of comparison groups because receipt of receipt of first vaccine dose by unvaccinated individuals and third 

dose by fully vaccinated individuals. 
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Our study has several limitations. First, as in any observational study, our estimates could be affected by 

confounding by unmeasured factors. However, the detailed linked data analysed permitted adjustment for 

a wide range of potential confounding factors. Second, patients registered with a GP who have moved or 

emigrated (or whose death was not recorded)25 may contribute person-time but not events. Because the 

BNT162b2 and ChAdOx1 groups are defined by recent vaccination, these “ghost” patients are more likely to 

be present in the unvaccinated group, leading to bias in estimates of waning. Also, healthcare workers 

could be identified and excluded from the vaccinated groups because this information was recorded at the 

time of vaccination, but not from the unvaccinated group. This limitation should not affect results for the 

65+ subgroup, most of whom are retired, or comparisons between BNT162b2 and ChAdOx1. Third, 

consistent with an Australian survey,24 we found that unvaccinated individuals had tested less frequently 

than vaccinated individuals during the pre-vaccine rollout period when widespread testing was available, 

and were considerably less likely to be tested during follow-up. Fourth, differential depletion of susceptible 

people in the unvaccinated groups over time may lead to attenuation of HRs even when true vaccine 

effectiveness does not change. However, such bias is likely to be minimal when vaccine effectiveness is 

high.27 

 

Our results have immediate implications for COVID-19 vaccination policies. When quantified as ratios of 

HRs, the rate at which estimated vaccine effectiveness waned was strikingly consistent (there was little 

variation around the fitted rates of waning displayed in Figure 2) and (by contrast with other studies) 

similar across subgroups defined by age and clinical vulnerability. If sustained to outcomes of infection with 

the Omicron variant and to booster vaccination, these findings will facilitate scheduling of booster 

vaccination doses. By 26 weeks after second dose, rates of infection with SARS-CoV-2 were similar to or 

higher in fully vaccinated than unvaccinated individuals, implying that vaccination has only transient 

impacts on transmissibility of SARS-CoV-2. This may arise partly because a desirable consequence of 

vaccination is to facilitate greater social mixing because of the reduced risk of severe COVID-19. Protection 

against COVID-19 hospitalisation and COVID-19 death was substantial up to 26 weeks after second 

vaccination, even in older and clinically vulnerable individuals. Finally, cessation of freely-available 

population-based testing programmes is likely to limit applications of the TNCC design, which have to date 

provided rapid estimates of vaccine effectiveness. By contrast, cohort approaches based on detailed linked 

EHR data, such as were used in this study, should remain feasible for severe COVID-19 outcomes. 
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Table 1. Summary statistics for selected characteristics across subgroups and vaccination groups 
 

  ³ 65 years 16-64 years and clinically vulnerable 40-64 years* 18-39 years* 
Characteristic BNT162b2 ChAdOx1 Unvaccinated BNT162b2 ChAdOx1 Unvaccinated BNT162b2 ChAdOx1 Unvaccinated BNT162b2 Unvaccinated 
Total  653,435 841,239 152,294 374,137 651,574 310,445 62,652 1,463,607 623,998 683,746 1,347,251 

Age 
Median 
(IQR) 

74 (11) 71 (5) 72 (10) 54 (15) 52 (17) 40 (20) 44 (9) 55 (9) 48 (11) 30 (11) 30 (9) 

Sex 
Female 347,806 (53%) 435,501 (52%) 82,283 (54%) 182,013 (49%) 331,328 (51%) 159,164 (51%) 31,797 (51%) 687,844 (47%) 257,530 (41%) 334,338 (49%) 605,337 (45%) 
Male 305,629 (47%) 405,738 (48%) 70,011 (46%) 192,124 (51%) 320,246 (49%) 151,281 (49%) 30,855 (49%) 775,763 (53%) 366,468 (59%) 349,408 (51%) 741,914 (55%) 

IMD (1 is 
most 
deprived) 

1 83,667 (13%) 110,976 (13%) 37,216 (24%) 82,809 (22%) 147,215 (23%) 116,493 (38%) 9,239 (15%) 190,626 (13%) 176,288 (28%) 112,749 (16%) 425,972 (32%) 
2 109,349 (17%) 146,207 (17%) 34,104 (22%) 76,936 (21%) 137,960 (21%) 74,883 (24%) 11,247 (18%) 254,639 (17%) 147,847 (24%) 139,567 (20%) 336,285 (25%) 
3 143,949 (22%) 191,476 (23%) 32,185 (21%) 80,052 (21%) 137,458 (21%) 54,955 (18%) 13,453 (21%) 324,757 (22%) 127,699 (20%) 153,740 (22%) 265,524 (20%) 
4 156,352 (24%) 196,207 (23%) 27,553 (18%) 71,761 (19%) 120,773 (19%) 38,540 (12%) 14,362 (23%) 342,778 (23%) 101,526 (16%) 144,067 (21%) 192,439 (14%) 
5 160,118 (25%) 196,373 (23%) 21,236 (14%) 62,579 (17%) 108,168 (17%) 25,574 (8%) 14,351 (23%) 350,807 (24%) 70,638 (11%) 133,623 (20%) 127,031 (9%) 

Ethnicity 

White 629,163 (96%) 809,144 (96%) 120,320 (79%) 339,971 (91%) 577,192 (89%) 223,741 (72%) 53,182 (85%) 1,353,356 (92%) 458,941 (74%) 590,465 (86%) 965,781 (72%) 
Black 3,327 (1%) 4,051 (0%) 8,683 (6%) 5,432 (1%) 12,204 (2%) 24,709 (8%) 1,153 (2%) 18,105 (1%) 42,229 (7%) 8,933 (1%) 69,018 (5%) 
South Asian 14,910 (2%) 19,812 (2%) 14,842 (10%) 20,971 (6%) 46,262 (7%) 41,049 (13%) 5,503 (9%) 57,161 (4%) 70,931 (11%) 54,744 (8%) 168,380 (12%) 
Mixed 1,981 (0%) 2,672 (0%) 2,696 (2%) 3,568 (1%) 6,921 (1%) 9,785 (3%) 893 (1%) 12,150 (1%) 17,327 (3%) 11,511 (2%) 44,563 (3%) 
Other 4,054 (1%) 5,560 (1%) 5,753 (4%) 4,195 (1%) 8,995 (1%) 11,161 (4%) 1,921 (3%) 22,835 (2%) 34,570 (6%) 18,093 (3%) 99,509 (7%) 

BMI (kg/m2) 

<30 476,707 (73%) 585,656 (70%) 113,867 (75%) 193,295 (52%) 345,661 (53%) 193,942 (62%) 50,414 (80%) 1,125,365 (77%) 518,164 (83%) 593,256 (87%) 1,218,459 (90%) 
30-34.9 121,472 (19%) 168,102 (20%) 25,490 (17%) 77,654 (21%) 129,559 (20%) 45,655 (15%) 9,080 (14%) 252,974 (17%) 80,099 (13%) 63,146 (9%) 92,905 (7%) 
35-39.9 38,613 (6%) 59,172 (7%) 8,673 (6%) 40,365 (11%) 66,161 (10%) 21,492 (7%) 2,981 (5%) 81,552 (6%) 24,479 (4%) 25,221 (4%) 32,948 (2%) 
40+ 16,643 (3%) 28,309 (3%) 4,264 (3%) 62,823 (17%) 110,193 (17%) 49,356 (16%) 177 (0%) 3,716 (0%) 1,256 (0%) 2,123 (0%) 2,939 (0%) 

Morbidity 
count 

0 260,080 (40%) 410,906 (49%) 78,325 (51%) 16,632 (4%) 33,291 (5%) 15,121 (5%) 61,987 (99%) 1,447,217 (99%) 617,296 (99%) 679,441 (99%) 1,337,471 (99%) 
1 211,422 (32%) 256,688 (31%) 42,833 (28%) 251,713 (67%) 454,041 (70%) 243,640 (78%) 648 (1%) 15,963 (1%) 6,530 (1%) 4,224 (1%) 9,569 (1%) 
³ 2 181,933 (28%) 173,645 (21%) 31,136 (20%) 105,792 (28%) 164,242 (25%) 51,684 (17%) 17 (0%) 427 (0%) 172 (0%) 81 (0%) 211 (0%) 

Number of 
SARS-CoV-2 
tests** 

0 551,722 (84%) 715,240 (85%) 136,606 (90%) 262,334 (70%) 449,231 (69%) 236,241 (76%) 44,433 (71%) 1,056,234 (72%) 532,962 (85%) 366,973 (54%) 1,014,417 (75%) 
1 66,092 (10%) 84,845 (10%) 9,043 (6%) 70,100 (19%) 124,905 (19%) 43,578 (14%) 11,137 (18%) 252,000 (17%) 54,887 (9%) 144,497 (21%) 176,505 (13%) 
2 19,413 (3%) 22,687 (3%) 2,958 (2%) 23,318 (6%) 42,502 (7%) 14,956 (5%) 3,475 (6%) 73,497 (5%) 16,589 (3%) 63,261 (9%) 70,777 (5%) 
³ 3 16,208 (2%) 18,467 (2%) 3,687 (2%) 18,385 (5%) 34,936 (5%) 15,670 (5%) 3,607 (6%) 81,876 (6%) 19,560 (3%) 109,015 (16%) 85,552 (6%) 

Flu vaccine 
past 5 years 

yes 
598,623 (92%) 747,953 (89%) 59,585 (39%) 284,323 (76%) 459,204 (70%) 91,427 (29%) 14,920 (24%) 585,023 (40%) 34,172 (5%) 104,104 (15%) 107,067 (8%) 

Shielding yes 121,846 (19%) 116,974 (14%) 23,208 (15%) 101,785 (27%) 196,031 (30%) 67,509 (22%) 56 (0%) 1,183 (0%) 895 (0%) 237 (0%) 1,461 (0%) 

Summary statistics calculated two weeks after date of second dose for vaccinated groups and two weeks after start of second vaccination period for unvaccinated group 

* And not clinically vulnerable 

** Number of tests in between 18 May 2020 (when widespread testing became available) and the first eligibility date for the subgroup. 
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Figure 1. Illustrative example showing the definition of the 4-week comparison periods, within a stratum defined by JCVI group, eligibility date and region. The 

horizontal lines represent follow-up time for four vaccinated and eight unvaccinated individuals, and the colours of the lines correspond to the six comparison 

periods. Individuals A and D received their second vaccinations on the first and last day of the second vaccination period (SVP), respectively. 
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Figure 2. Adjusted hazard ratios comparing BNT162b2 and ChAdOx1 with unvaccinated individuals in each comparison period. Estimates for BNT162b2 in the 40-64 age 

group are omitted for all outcomes except positive SARS-CoV-2 test due to low event counts. The slopes of the dashed lines are the ratios of hazard ratios across 

comparison periods, fitted using meta-regression.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*And not clinically vulnerable. **All follow-up dates are in 2021.
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Figure 3. Adjusted hazard ratios comparing BNT162b2 with ChAdOx1. Hazard ratios <1 favour BNT162b2. The slopes 

of the lines correspond to ratios of hazard ratios across comparison periods, estimated using meta-regression. 
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