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Abstract 

Physical fitness is a well-known correlate of health and the aging process. DNA 

methylation (DNAm) data lend themselves for estimating chronological and biological age 

through epigenetic clocks. However, current epigenetic clocks did not yet use measures of 

mobility, strength, lung, or endurance physical fitness parameters in their construction. Here, we 

develop blood DNAm biomarkers for fitness parameters gait speed (walking speed), hand grip 

strength, forced expiratory volume in one second (FEV1), and maximal oxygen uptake 

(VO2max). We then use these DNAm biomarkers to construct DNAmFitAge, a new biological 

age indicator that incorporates physical fitness with epigenetic mortality risk estimators. 

Adjusting DNAmFitAge for chronological age generates a novel measure of epigenetic age 

acceleration, FitAgeAcceleration, which is informative for physical activity level (p=1.2E-12), 

mortality risk (p=5.9E-13), coronary heart disease risk (p=0.0051), comorbidities (p=9.0E-9), 

and disease-free status (p=1.1E-6) across several large validation datasets. These newly 

constructed DNAm biomarkers and DNAmFitAge provide researchers and physicians a new 

method to incorporate physical fitness into epigenetic clocks and emphasizes the effect of 

lifestyle on the aging process.  
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Introduction 

Physical fitness declines with aging and is well known to correlate to health [1]. This 

decline is evident in reduced function in specific organs, like lungs [2], and in performance tests 

of strength [3, 4] or aerobic capacity [5, 6]. The rate of this decline varies between individuals 

[7- 10], and those who preserve physical fitness as they age are at lower risk for a range of 

diseases and tend to live longer lives [11-16]. At the molecular level, changes in fitness and 

related indices of functional capacity correlate with changes in molecular signs of decline 

thought to reflect underlying biological processes of aging [17-19]. Measures of fitness may 

therefore provide a window into biological aging [20]. However, direct measurement of fitness 

parameters can be challenging, requiring in-person data collection by trained personnel with 

specialized equipment [21, 22]. Furthermore, fitness measurements are not possible for studies 

with remote data collection or those conducted with stored biospecimens. To enable such studies 

to quantify fitness, we developed blood DNAm biomarkers of fitness parameters spanning 

mobility, strength, lung, and cardiovascular fitness and use these to construct a novel indicator of 

fitness-based biological age, DNAmFitAge. 

Three lines of evidence support a focus on DNAm to develop biomarkers of fitness and 

aging-related changes in fitness. First, aging is reflected in DNAm changes; thousands of sites 

across the genome change methylation states as organisms grow older, enabling construction of 

high-precision algorithms to predict age [23-26]. These are collectively known as epigenetic 

clocks, and a large body of literature demonstrates these clocks predict lifespan [27, 28], are 

associated with age-related conditions [28-30], and are reflective of one’s biological age [27, 31]. 

Second, prediction of aging-related morbidity, disability, and mortality by DNAm biomarkers is 

enhanced by the incorporation of physiological data into prediction algorithms [27, 28, 32]. This 

suggests utility in including physical fitness in DNAm biomarkers, however, current DNAm 

biomarkers do not use fitness parameters in their construction. Third, there is emerging evidence 

that epigenetic clocks are sensitive to lifestyle factors [33] and that individual differences in 

fitness parameters are reflected in DNAm data [34-37], but it was unknown if fitness parameters 

could be estimated using blood DNAm levels.  

Here, we develop blood DNAm biomarkers of four fitness parameters: gait speed 

(walking speed), handgrip strength, forced expiratory volume in 1 second (FEV1; an index of 

lung function), and maximal oxygen uptake (VO2max; a measure of cardiorespiratory fitness). 
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We then use these biomarkers to develop the novel DNAm fitness-related biological age 

indicator, DNAmFitAge which quantifies the relationship between physical fitness and 

biological aging processes. This novel measure incorporates mortality risk with strength, 

mobility, and cardiovascular fitness using blood DNAm biomarkers. Our newly constructed 

DNAm biomarkers and DNAmFitAge provide researchers and physicians a new method to 

incorporate physical fitness into epigenetic clocks and emphasizes the effect lifestyle has on the 

aging process. 

  

 

Methods 

   

Study Cohorts 

         We analyzed blood DNAm data from three datasets, Framingham Heart Study Offspring 

cohort (FHS, n = 1830), Baltimore Longitudinal Study on Aging (BLSA, n=820), and novel data 

(Budapest, n = 307) to develop DNAm biomarkers of fitness parameters. In short, the 

Framingham Heart Study is a cardiovascular study which followed adults from Massachusetts 

starting in 1948 [38]. The Baltimore Longitudinal Study of Aging (BLSA) began in 1958 

studying healthy adults and the aging process [39]. Finally, Budapest is a smaller study (n = 307) 

measuring physical fitness and DNA methylation in middle to older aged adults. Dataset 

harmonization was performed to join multiple datasets when variables were on different scales 

following previously developed methods [40]. In brief, datasets were rescaled to have the same 

mean and standard deviation by recentering and multiplying by the ratio of standard deviations.  

We conducted validation analysis in an independent group of six additional datasets: two 

Lothian Birth Cohorts: LBC1921 (n = 692) and LBC1936 (n = 2797), CALERIE (n = 578), 

InChianti (n = 924), Jackson Heart Study (JHS, n = 1746), and Women’s Health Initiative (WHI, 

n = 2117). Descriptive statistics of each dataset are presented in Table 1. Full study descriptions 

for validation datasets have previously been published [41-48]. 
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DNAm Fitness Parameter Biomarker Development 

We developed DNAm biomarkers for four fitness parameters: gait speed, maximum 

handgrip strength (Gripmax), forced expiratory volume in 1 second (FEV1), and maximal 

oxygen uptake (VO2max). Gait speed, also known as walking speed, is measured in meters per 

second [49]. Maximum hand grip strength is a measurement of force taken in kg [8, 12]. FEV1 

measures lung function; it is the amount of air forced from the lungs in one second, measured in 

liters [14]. VO2max is a measure of cardiovascular health and aerobic endurance [6, 50]. It 

measures the volume of oxygen the body processes during incremental exercise in milliliters 

used in one minute of exercise per kilogram of body weight (mL/kg/min).  

Each fitness DNAm biomarker was developed using LASSO penalized regression with 

10-fold cross validation in which the fitness parameters were dependent variables and 

independent variables were DNAm levels at cytosine-phosphate-guanines (CpG) sites and 

chronological age. The LASSO-regression method selects a minimum set of covariates that 

maximizes prediction of the dependent variable from the universe of variables included in the 

regression. Models were fit separately for men and women in the case of gait speed, gripmax, 

and FEV1 to allow for sex differences in selected CpG sites. The selected covariates and 

estimated coefficients were then used to form a prediction algorithm for each fitness parameter. 

We refer to the DNAm measurements generated by these algorithms as DNAmGaitspeed, 

DNAmGripmax, DNAmFEV1, and DNAmVO2max. Correlation of each DNAm biomarker with 

measured fitness values in the training data are displayed in Supplemental Figure 1. 

When it came to building the biomarker for VO2max, stratifying by sex was not feasible 

due to the smaller sample size. This forced us to choose between using sex as a covariate or 

FHS BLSA Budapest LBC1921 LBC1936 CALERIE InChianti JHS WHI

Total Observations 1830 820 307 692 2797 578 924 1746 2117

Age   mean (sd) 66.5 (8.80) 69.2 (13.6) 60.3 (11.7) 82.3 (4.31) 73.6 (3.7) 39.4 (7.2) 67.0 (16.6) 56.2 (12.3) 65.4 (7.1)

< 40 0 (0%) 24 (2.9%) 8 (2.6%) 0 (0%) 0 (0%) 265 (45.8%) 100 (10.8%) 173 (9.9%) 0 (0%)

40 - 59 414 (22.6%) 178 (21.7%) 133 (43.3%) 0 (0%) 0 (0%) 313 (54.2%) 128 (13.9%) 856 (49.0%) 525 (24.8%)

60 - 79 1262 (69.0%) 400 (48.8%) 151 (49.2%) 410 (59.2%) 2719 (97.2%) 0 (0%) 502 (54.3%) 691 (39.6%) 1589 (75.1%)

80+ 154 (8.4%) 218 (26.6%) 15 (4.9%) 282 (40.8%) 78 (2.8%) 0 (0%) 194 (21.0%) 26 (1.5%) 3 (0.1%)

Sex

Males 797 (43.6%) 417 (50.9%) 148 (48.2%) 291 (42.1%) 1141 (51.5%) 178 (30.8%) 426 (46.1%) 649 (37.2%) 0 (0%)

Females 1033 (56.4%) 403 (49.1%) 159 (51.8%) 401 (57.9%) 1356 (48.5%) 400 (69.2%) 498 (53.9%) 1097 (62.8%) 2117 (100%)

Race

White 1830 (100%) 572 (69.8%) 297 (96.7%) 692 (100%) 2797 (100%) 442 (76.5%) 924 (100%) 0 (0%) 1007 (47.6%)

Black 0 (0%) 216 (26.3%) 0 (0%) 0 (0%) 0 (0%) 71 (12.3%) 0 (0%) 1746 (100%) 677 (32.0%)

Asian 0 (0%) 24 (2.9%) 10 (3.3%) 0 (0%) 0 (0%) unknown 0 (0%) 0 (0%) unknown

Other 0 (0%) 8 (1.0%) 0 (0%) 0 (0%) 0 (0%) 65 (11.2%) 0 (0%) 0 (0%) 433 (20.5%)

Table 1. Descriptive Statistics for Each Dataset
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omitting sex and trusting LASSO to select X chromosome markers that best signify differences 

between males and females. We chose the latter, and it did. Finally, we present two models for 

DNAmGaitspeed and DNAmGripmax; one with chronological age and one without 

chronological age as potential covariates. Removing age as a potential variable for selection in 

LASSO was performed to remedy high collinearity discovered among these DNAm biomarkers 

when constructing DNAmFitAge (scatterplot matrix in Supplemental Figure 2).  

 

DNAm Fitness Parameter Biomarker Validation 

We conducted two validation analyses of DNAm biomarkers of fitness parameters using 

up to five independent datasets. First, we correlated DNAm biomarker values with direct 

measurements of the fitness parameters. In cases where direct measurement of a fitness 

parameter was not included in a validation dataset, substitutes were selected. Briefly, gait speed 

was substituted with a composite leg strength measurement and a composite physical functioning 

score; FEV1 was substituted by forced expiratory volume (FEV) and VO2max; VO2max was 

substituted by FEV. Details are reported in Supplemental Note 1.  

Second, we evaluated if using our DNAm biomarkers improve estimation of fitness 

parameters beyond variation explained through age and sex. Direct comparison of our DNAm 

biomarkers to models only using age and sex as covariates are not possible because they are non-

nested models. Instead, we evaluate the significance of the DNAm biomarker as a predictor for 

each fitness parameter after including age and sex as covariates. Pearson correlations (instead of 

R squared) are presented in Supplemental Table 1 because they summarize the relationship 

between estimated and true fitness parameters. The reported p-values indicate the significance of 

the DNAm biomarker estimate as a predictor for the fitness parameters after including age and 

sex. The individual- dataset and fixed-effects meta-analysis p-values are calculated across 

validation datasets with the most relevant variables available in more than one dataset. 

Specifically, LBC1921 and LBC1936 were used for DNAmGaitSpeed and DNAmFEV1 meta-

analysis p-value calculations. LBC1921, LBC1936, CALERIE, and WHI were used for 

DNAmGripmax. We did not calculate a meta-analysis p-value for DNAmVO2max because only 

one validation dataset had VO2max measurement.  
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DNAmFitAge: Biological Age Estimation 

  

DNAmFitAge Development 

We constructed DNAmFitAge as an indicator of biological age following the methods 

proposed by Klemera and Doubal [51]. In brief, the Klemera-Doubal model framework stipulates 

there exists an underlying trait which is unobserved (biological age) which relates to an 

observable trait (chronological age) and a set of additional variables. This framework posits 

biological age is centered on chronological age with additional noise. Weighted least squares is 

used to estimate the relationship of the additional variables with biological age where the weights 

are formed from correlations of each variable with chronological age. 

DNAmFitAge is constructed separately for males and females using four DNAm 

variables: three of the DNAm fitness biomarkers: DNAmGripmax, DNAmGaitSpeed, and 

DNAmVO2max, and DNAmGrimAge, a biomarker of mortality risk [28]. We estimate 

biological age using the TrueTrait function from the WGCNA R package which carries out the 

Klemera Doubal method described above. Variable weights indicating each variable’s 

importance for estimating biological age are presented in Table 3A. Pearson’s correlation among 

original fitness parameters, DNAm biomarkers, and DNAmFitAge in the large training dataset 

(FHS + BLSA) are displayed in Supplemental Figure 2. Pearson’s correlation of DNAmFitAge 

to chronological age in training data are presented in panels A and B of Supplemental Figure 3. 

Models including DNAmFEV1 as a fifth variable were explored, however no improvement in 

association to physical activity or age-related outcomes were observed; the parsimonious 

DNAmFitAge model using a subset of the DNAm fitness biomarkers was therefore chosen. 

Finally, we created FitAgeAcceleration, the age-adjusted estimate of DNAmFitAge 

formed from taking the residuals after regressing DNAmFitAge onto chronological age. As such, 

FitAgeAcceleration is uncorrelated with chronological age. FitAgeAcceleration provides an 

estimate of epigenetic age acceleration, ie how much older or younger a person’s estimated 

biological age is from expected chronological age. A positive FitAgeAcceleration means 

biological age is estimated to be older than chronological age. A negative FitAgeAcceleration 

means biological age is estimated to be younger than chronological age, which is the preferred 

outcome for a person. 
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DNAmFitAge Validation 

DNAmFitAge validation analysis consisted of three components: correlating 

DNAmFitAge to chronological age, testing FitAge Acceleration association with physical 

activity, and testing FitAge Acceleration association to aging-related variables in the validation 

datasets. First, the modeling framework posits biological age is centered on chronological age, 

therefore validation datasets should demonstrate good correlation and general centeredness 

between DNAmFitAge and chronological age. Both properties would indicate DNAmFitAge can 

quantify age. Second, DNAmFitAge incorporates fitness, therefore FitAgeAcceleration (age 

adjusted DNAmFitAge) should relate to physical activity and physical functioning. These 

relationships would indicate DNAmFitAge relates to fitness. Third, DNAmFitAge provides 

insight to the aging process through a fitness paradigm, therefore FitAgeAcceleration should 

relate to aging-related phenotypes. 

We correlate DNAmFitAge with chronological age for males and females because (1) we 

cannot directly measure biological age, (2) chronological age is not used when forming 

DNAmFitAge estimates, and (3) the modeling framework posits biological age is centered on 

chronological age. In addition, because DNAmFitAge is built in males and females separately, 

we demonstrate what happens when the model is applied to the opposite sex (ie male model in 

females or female model in males). Median absolute deviation, mean deviation, and Pearson 

correlation are presented in Table 3B and displayed in Figure 2. 

We tested for associations between physical activity or physical functioning in low to 

intermediate physically fit individuals with FitAgeAcceleration, DNAm fitness parameter 

biomarkers, and other DNAm biomarkers known to relate to physical health. We restricted our 

analysis to people of low to intermediate fitness to determine if FitAgeAcceleration is more 

sensitive to small improvements in fitness compared to other current DNAm biomarkers. In 

addition, this separation captures low to average physically active individuals in each dataset.  

Furthermore, research suggests any exercise compared to none is beneficial to health [52], and 

we hope DNAmFitAge may serve as a tool to motivate starting an exercise regimen at any level. 

In short, LBC1921, LBC1936, and JHS measure physical activity, and WHI and InChianti 

measure physical functioning. Higher values of any variable indicate more activity or better 

physical functioning. Other DNAm biomarkers which relate to physical health include 

DNAmGrimAge [28], DNAmPhenoAge [27], DNAmPAI-1 [28], and DNAmGDF-15 [28]. See 
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Supplemental Note 1 for a thorough description of physical activity variables and inclusion 

criteria. 

 We tested DNAmFitAge associations to multiple aging-related variables in validation 

datasets. Specifically, we conducted regression analysis of physical activity, time-to-death, time-

to-coronary-heart-disease (CHD), the count of age-related conditions (arthritis, cataract, cancer, 

CHD, CHF, emphysema, glaucoma, lipid condition, osteoporosis, and type 2 diabetes), age at 

menopause, and cancer hypertension, type-2 diabetes, and disease-free status.  

Time-to-event outcomes were analyzed using Cox regression to estimate hazard ratios 

(HR); continuous outcomes were analyzed using linear regression; dichotomous outcomes were 

analyzed using logistic regression to estimate odds ratios (OR); and ordinal outcomes were 

analyzed using multinomial regression to estimate OR. Linear regression models with person-

level random intercepts were implemented in R using the lmer function. Logistic regression 

models were estimated using generalized estimating equations with the R function gee. 

Multinomial models were implemented using R function multinom.  

We combine results across validation studies using fixed effect models or Stouffer’s meta 

analysis method using the metafor R function. Fixed effect models use the inverse variance to 

weight estimates, and Stouffer’s method uses the square root of the sample size to weight 

estimates. The latter is used when harmonization across cohorts was challenging; such as with 

physical activity variables, the number of age-related conditions, disease free status, and age at 

menopause. Forest plots evaluating FitAgeAcceleration hazard ratios or coefficients in models 

adjusted for age and sex are displayed in Figure 4 and Supplemental Table 2.  

 

GREAT Analysis 

We applied the GREAT analysis software tool to provide biological insight to the CpG 

loci used in constructing our DNAm biomarker estimates. GREAT analyzes genes within and 

nearby the genomic region covered by the CpGs; it performs a binomial test (over genomic 

regions) using a whole genome background. We performed the enrichment based on default 

settings (Proximal: 5.0 kb upstream, 1.0 kb downstream, plus Distal: up to 1,000 kb). We report 

nominal, Bonferroni, and FDR p-values for gene, biological, cellular, and molecular function in 

Table 6.  
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Results 

  

DNAm Fitness Parameter Biomarker Models   

         The number of CpG loci selected through LASSO for each DNAm model are presented 

in Table 2. Between 40 and 77 CpG loci were needed in addition to chronological age to estimate 

each fitness parameter. Without age as a covariate in the DNAm biomarker estimates, more CpG 

loci were needed to achieve similar precision; between 53 and 93. DNAmVO2max model 

includes several CpG loci on the X chromosome, likely capturing sex effects.  

The DNAm fitness parameter biomarkers had modest correlation with direct fitness 

parameters. Average correlations ranged from 0.07-0.46 (scatterplots are shown in Figure 1; 

Pearson correlations are reported in Table 2). DNAmGripmax in males and females had 

moderate correlations in validation datasets but do not perform well in CALERIE. We 

hypothesize this may be due in part from the stringent enrollment criteria: free of chronic 

disease, non-obese, and relatively young. Correlation of DNAmVO2max to FEV in LBC1921 

and LBC1936 was weak within each sex; however varying correlations have been described in 

literature [53-56]. Reported correlations between VO2max and FEV vary from 0 to 0.5, likely 

because VO2max is a measure of cardiovascular health whereas FEV is a measure of lung 

volume. Correlation of DNAmVO2max to VO2max in CALERIE, the one validation dataset 

with the direct fitness parameter, has good correlation overall and within sex (overall R=0.55, 

female R=0.19, male R=0.47).  
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Figure 1. Scatterplots of DNAm fitness biomarker models versus true values in test datasets. Pink indicates 

females, and blue indicates males. When original variables were unavailable, best alternative variables are 

plotted against the DNAm fitness estimates. Each panel corresponds to the performance of one DNAm-based 

model built with chronological age across test datasets displayed with Pearson correlation and p-values. (A-D) 

DNAmGaitspeed, (E-H) DNAmGripmax, (I-K) DNAmFEV1, (L-N) DNAmVO2max. (A-K) 

(DNAmGaitspeed, DNAmGripmax, and DNAmFEV1) were built in each sex separately while (L-N) 

(DNAmVO2max) was built in both sexes jointly. (D) displays performance in InChianti dataset, and (H) displays 

performance in WHI dataset. 

 

The DNAm biomarkers improve estimation of fitness parameters beyond what is 

explained through age and sex in many validation datasets (Supplemental Table 1). Interestingly, 
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DNAmGaitspeed and DNAmGripmax built without chronological age have lower correlation 

with true fitness parameters compared to the models built with chronological age. However, the 

DNAm biomarkers built without chronological age explain more additional variation in fitness 

parameters compared to the age-included DNAm biomarkers. This suggests the DNAm 

biomarkers capture different information than age and sex for understanding fitness parameters.  

DNAmGaitspeed, DNAmFEV1, and DNAmVO2max are predictive of mortality, and 

DNAmGaitspeed and DNAmFEV1 are strong predictors for number of comorbidities in the 

validation datasets. Relationship of each DNAm fitness biomarker with time-to-death, type 2 

diabetes, number of comorbidities, and disease free status after adjusting for age are displayed in 

Supplemental Figure 4. Relationship of DNAm biomarkers to physical activity are explored 

alongside DNAmFitAge below.  

 

 

 

DNAmFitAge 

         DNAmFitAge was built in each sex using DNAmGripmax, DNAmVO2max, 

DNAmGaitSpeed, and DNAmGrimAge. The models had similar weights in males and females 

and had strong correlation with and is generally centered on chronological age. DNAmGripmax, 

DNAmVO2max, and DNAmGaitspeed contributed around 50% to estimating DNAmFitAge in 

each sex, and DNAmGrimAge contributed the remaining 50% (Table 3A). Weights were very 

similar in males (13.9 - 17.9%), and there was slightly more variation in females (10.4 - 22.4%). 

This may suggest that DNAmGaitSpeed was more influential in estimating biological age in 

females than males. DNAmFitAge had strong correlation to chronological age in validation 

datasets, and the lower correlation in LBC1921 (R = 0.38) and LBC1936 (R = 0.68) can be 

attributed to the small age range they cover. LBC1921 ages ranged from 77 to 90 and LBC1936 

Training

R
Clinical 

Variable
R 

Clinical 

Variable
R 

Clinical 

Variable
R 

Clinical 

Variable
R 

Clinical 

Variable
R 

42 Y Females 0.61 0.37 0.34 0.11 0.49 0.15 0.29

26 Y Males 0.43 0.40 0.38 0.27 0.33 0.35

53 N Females 0.56 0.17 0.17 0.095 0.43 0.12 0.20

59 N Males 0.60 0.23 0.21 0.26 0.34 0.26

52 Y Females 0.66 0.27 0.16 -0.14 0.16 0.11

52 Y Males 0.68 0.35 0.19 -0.089 0.15

91 N Females 0.66 0.22 0.10 -0.16 0.12 0.07

93 N Males 0.66 0.21 0.14 -0.078 0.09

77 Y Females 0.59 0.21 0.20 0.34 0.25

73 Y Males 0.63 0.30 0.25 0.42 0.32

VO2max 40 Y Overall 0.70 FEV 0.43 FEV 0.40 VO2max 0.55 0.46

FEV1 FEV FEV VO2max

Physical 

Functioning

Gripmax Gripmax Gripmax Gripmax Gripmax

Gaitspeed Gait Speed Gait Speed

Composite 

Leg 

Strength

Physical 

Functioning

Table 2. DNAm Fitness Parameter Biomarker Pearson Correlation

DNAm 

Biomarker
CpG

Age in 

Model
Sex

LBC1921 LBC1936 CALERIE InChianti WHI
Average 

Test R
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ages ranged from 67 to 80. The average Pearson R across all validation datasets was 0.77, and 

the average R excluding LBC cohorts was 0.92. In addition, each validation dataset had low 

median absolute deviation (average difference from chronological age to biological age) ranging 

from 2.3 to 4.9 years. Overall, DNAmFitAge had high correlation with chronological age and 

great reproducibility across the validation datasets. In addition, the validation datasets span a 

large range of chronological age- from 21 (CALERIE) to 100 (InChianti). Reproducibility across 

a wide span of ages 

demonstrate DNAmFitAge’s 

calibration across a wide 

adult age range.  

Figure 2. Scatterplots of DNAmFitAge versus age separated by sex. Pink 

indicates females, and blue indicates males. Each row corresponds to the 

performance of DNAmFitAge across datasets displayed with Pearson 

correlation to chronological age and corresponding p-values. (A-G) 

DNAmFitAge models applied to the same sex it was built in (ie 

DNAmFitAge built for females tested in females and DNAmFitAge built for 

males tested in males). DNAmFitAge is centered on chronological age with 

high correlation in test sets. (H-N) DNAmFitAge models applied to the 

opposite sex it was built in (ie DNAmFitAge built for females tested in males 

and DNAmFitAge built for males tested in females). Females are estimated 

to be older than they are, and males are estimated to be younger than they 

are.  

 

Applying each DNAmFitAge model to the opposite sex shows strong correlation with 

age but with substantial over and underestimation of age in females and males, respectively. 

Females were estimated to be older than they truly are using the DNAmFitAge model built in 
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males (mean deviation -12.2 years) (Table 3B, Supplemental Figure 3). Males were estimated to 

be younger than they truly are using the DNAmFitAge model built in females (mean deviation 

+13.1 years). Over and under estimation can be explained by universal differences in fitness 

parameters by sex. Females tended to have lower fitness parameters compared to males. Hence 

males were predicted to be younger than they are using the female DNAmFitAge model because 

larger values of DNAmGaitSpeed, DNAmGripmax, or DNAmVO2max would indicate stronger 

(or more physically fit) females. To provide an idea of DNAm fitness biomarker values which 

correspond to fit/young DNAmFitAge compared to unfit/ old DNAmFitAge, we provide 

reference values within age and sex categories in Table 4. Overall, higher or more physically fit 

values of DNAmGaitspeed, DNAmGripmax, or DNAmGaitspeed corresponded to younger 

estimated biological ages in males and females. 

 

 

Variable

Female 

Weights

Male 

Weights

     DNAmGripmax 0.174 0.179

     DNAmGaitSpeed 0.228 0.159

     DNAmVO2max 0.104 0.139

     DNAmGrimAge 0.493 0.523

Females Males

Male 

Model in 

Females

Female 

Model in 

Males

Median Absolute Deviation 2.7 3.0 11.9 13.5

Mean Deviation 0.0 0.0 -12.2 13.1

R 0.923 0.925 0.925 0.922

Median Absolute Deviation 3.7 4.8 11.0 14.5

Mean Deviation 0.8 1.1 -11.1 13.8

R 0.409 0.386 0.404 0.391

Median Absolute Deviation 3.2 3.4 11.6 13.3

Mean Deviation 0.0 0.2 -11.9 12.9

R 0.635 0.635 0.647 0.624

Median Absolute Deviation 4.9 2.3 17.1 11.0

Mean Deviation -5.0 -2.0 -17.1 11.0

R 0.926 0.915 0.928 0.912

Median Absolute Deviation 3.9 3.9 16.0 9.6

Mean Deviation -3.8 -4.3 -16.1 9.1

R 0.969 0.964 0.969 0.963

Median Absolute Deviation 2.9 3.4 13.6 9.2

Mean Deviation -1.6 -2.8 -13.9 8.6

R 0.937 0.917 0.940 0.914

Median Absolute Deviation 3.8 16.8

Mean Deviation -3.4 -16.8

R 0.808 0.812

Table 3A. DNAmFitAge Model Weights

Table 3B. DNAmFitAge Performance in Validation Datasets

WHI

JHS

Training 

Data

LBC1921

LBC1936

CALERIE

InChianti
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DNAmFitAge Relationship to Physical Activity  

 FitAgeAcceleration, DNAmGaitspeed, DNAmGripmax, and DNAmFEV1 have 

associations in the expected direction with physical activity in low to intermediate physically 

active individuals. Coefficients indicate the effect on physical activity for a one unit increase in 

each DNAm surrogate marker after adjusting for chronological age within each sex (Table 5, 

Figure 3). The relationship to DNAmFitAge is as expected; someone with a higher 

FitAgeAcceleration has an estimated biological age that is older than expected, which 

corresponds to lower physical activity or physical functioning (Table 4). Similarly, men and 

women with a faster DNAmGaitspeed, stronger DNAmGripmax, and larger DNAmFEV1 are 

more physically active when holding age constant. In conclusion, men and women who were 

more active showed correspondingly ‘fitter’ values of FitAgeAcceleration and the DNAm fitness 

biomarkers. Additionally, DNAmFitAge (Stouffer p-value = 1.2 E -12) marginally outperforms 

current DNAm biomarkers when comparing meta-analysis p-values; improvement of 

DNAmFitAge compared to DNAmGrimAge (p-value = 1.0 E-11) is marginal, however the 

improvement compared to DNAmPhenoAge (p-value = 1.9 E-5), DNAmGDF-15 (p-value = 1.1 

E-8), and DNAmPAI-1 (p-value = 1.6 E -9) is more pronounced. In addition, DNAmFitAge, 

which provides an indicator of biological age, may provide a more interpretable aging biomarker 

compared to DNAmGrimAge, which provides a measurement of lifespan. These comparisons 

demonstrate DNAmFitAge can capture the relationship to physical activity and can provide an 

improvement to the arsenal of current DNAm biomarkers. 
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Figure 3. Meta-analysis forest plots for DNAmFitAge and DNAm fitness parameters relationship to physical 

activity or physical functioning in people with low to intermediate physical activity. Each panel reports the 

Stouffer’s meta-analysis p-value for combining coefficients across dataset cohorts after adjusting for 

chronological age. (A) DNAmFitAge, (B) DNAmGaitspeed, (C) DNAmGripmax, (D) DNAmFEV1, and (E) 

DNAmVO2max. DNAmFitAge, DNAmGaitSpeed, DNAmGripmax, and DNAmFEV1 are predictive of 

physical activity in low to intermediately active individuals.  

 

 

 

 

Outcome
LBC1921 LBC1936 InChianti JHS WHI LBC1921 LBC1936 InChianti JHS

coefficient -0.024 -0.031 -0.095 -0.033 -0.237 0.008 -0.024 -0.041 -0.040

p-value 2.32E-04 3.69E-06 0.042 0.046 0.014 0.199 2.05E-05 0.272 0.044

coefficient -0.514 2.816 8.759 3.069 26.670 -3.307 1.986 4.974 1.784

p-value 0.567 0.002 0.084 0.165 0.025 2.36E-04 0.022 0.429 0.672

coefficient 0.099 -0.064 0.144 -0.026 0.240 0.002 0.031 0.171 0.018

p-value 0.036 0.201 0.635 0.821 0.035 0.943 0.256 0.291 0.801

coefficient 1.070 0.603 0.328 0.991 4.984 -0.171 0.373 0.374 -0.576

p-value 0.026 0.197 0.898 0.114 0.005 0.585 0.173 0.791 0.337

coefficient 0.064 0.032 0.256 -0.045 -0.466 -0.061 0.016 0.045 -0.031

p-value 0.003 0.090 0.019 0.423 0.215 0.002 0.281 0.667 0.654

coefficient -0.006 -0.034 -0.080 -0.054 -0.296 -0.008 -0.028 -0.013 -0.052

p-value 0.524 5.67E-06 0.157 0.002 0.027 0.390 2.29E-05 0.794 0.007

coefficient 0.003 -0.012 -0.117 -0.021 -0.071 7.14E-05 -0.012 -0.012 -0.012

p-value 0.568 0.012 4.22E-04 0.063 0.354 0.989 0.004 0.764 0.425

coefficient -3.36E-05 -4.38E-05 -7.49E-05 -1.10E-04 0.000 -1.80E-06 -2.76E-05 7.51E-05 -6.19E-05

p-value 0.021 0.002 0.358 2.55E-08 0.076 0.908 0.032 0.382 0.009

coefficient -8.53E-05 -0.001 -0.003 -8.49E-04 -0.010 -0.001 -5.92E-04 -0.003 -6.73E-04

p-value 0.802 0.000 0.082 0.147 0.047 5.44E-04 0.054 0.117 0.373

Females

DNAmGaitSpeed 0.005

DNAmGripmax

DNAmGrimAge

DNAmGDF15 1.06E-08

Table 5. Association of DNAm Biomarkers to Physical Activity and Physical Functioning in People with Low to Intermediate Activity Levels

1.00E-11

DNAmPhenoAge 1.90E-05

DNAmPAI1 1.60E-09

0.029

DNAmFEV1 0.0032

DNAmVO2max 0.171

Males
Meta Analysis 

p-value

DNAmFitAge 1.24E-12
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FitAgeAcceleration in Age-related Conditions 

FitAgeAcceleration as an epigenetic age acceleration measure was an important predictor 

of mortality, coronary heart disease, and other age-related conditions. Cox Proportional Hazard 

models demonstrated FitAgeAcceleration is a strong predictor for time-to-death (p = 5.9 E-13) 

and time-to-coronary heart disease (p = 0.0051). FitAgeAcceleration had an overall hazard ratio 

of 1.07 (1.05, 1.09) (Figure 4). Thus, a FitAgeAcceleration value of 10 years was associated with 

almost doubling the mortality risk compared to the average person of the same age and sex 

(1.07^10 = 1.97 risk). Similarly, increase in FitAgeAcceleration corresponds to more 

comorbidities (p = 9.0E-9), hypertension (p = 7.3E-5), and earlier age at menopause (p = 6.6 E-

9) (Figure 4, Supplemental Table 2). A lower FitAgeAcceleration was associated with disease 

free status (p= 1.1 E-6) and lower cholesterol (p = 0.0005) (Supplemental Table 2).  

 

 

Figure 4. Meta-analysis forest plots for FitAgeAcceleration to age-related conditions adjusted for age and sex. 

Each panel reports a meta analysis forest plot for combining hazard ratios or regression coefficients across 

dataset cohorts. (A) Time-to-death, (B) time-to-coronary heart disease, (C) type 2 diabetes, (D) comorbidity 

count, and (E) disease free status. Meta-analysis p-values are displayed in the header of each panel. Fixed effects 

models were used for (A-C) and Stouffer’s method was used for (D, E).  
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Each of these associations were in the expected direction, as someone who had a low 

FitAgeAcceleration had a biological age estimate that was younger than their chronological age. 

Hence, people who were estimated to be more ‘physically fit’ had better age-related outcomes. 

These relationships demonstrate epigenetic age acceleration can be well explained through 

DNAm fitness parameter biomarkers, and that FitAgeAcceleration provides a practical tool for 

relating fitness to the aging process.  

FitAgeAcceleration was also explored for explaining information beyond what is 

captured through DNAmGrimAge and the age-adjusted measure AgeAccelGrim with age-related 

conditions. DNAmFitAge is built using GrimAge, and GrimAge is known to be associated with 

age-related conditions. Therefore, FitAgeAcceleration is compared in two sets of models; one 

adjusts for age and sex, and the other adjusts for age, sex, and AgeAccelGrim. FitAge 

Acceleration improves mortality risk estimation after including AgeAccelGrim in the LBC1936 

and InChianti datasets when comparing LRT p-values (Supplemental Table 3). Overall, our 

results indicate FitAgeAcceleration is informative for mortality risk and may act as a supplement 

(not replacement) to AgeAccelGrim. 

          

Functional CpG Annotation  

The 971 CpG genomic locations used to construct the DNAm biomarker estimates were 

analyzed using the GREAT software tool. Twelve gene sets were found below the FDR of 0.05, 

and four surpassed the more stringent Bonferroni correction: histocompatibility antigen (HLA-

G), CD3e epsilon associated protein (CD3EAP), excision repair 2 (ERCC2), and zinc ribbon 

domain containing 1 (ZNRD1) (Table 6). CD3EAP is located between ERCC1 and ERCC2 on 

chromosome 19 (22K base pairs apart), an area involved in DNA repair and apoptosis. 

Interestingly, CD3EAP expression was observed to change in skeletal muscle following 12 

weeks of endurance exercise [57]. However, additional research examining CD3EAP’s 

relationship to physical fitness was not found in our literature search.  

The top biological processes included regulation of cellular ketone metabolism, antigen 

processing via MHC class I, and regulation of dendritic cell differentiation. Ketone metabolism 

is required for energy during exercise, and peripheral blood dendritic cells have been shown to 

increase following intense physical activity [58]. Both biological findings are intriguing and may 

provide direction for studying modifiable methylation from fitness parameters. Molecular and 
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cellular processes were found to both relate to MHC protein complexes; this relationship to 

inflammation-based genes and processes like HLA and MHC may support hypotheses relating 

physical fitness and systemic inflammation [59]. However, this inflammation relationship may 

be confounded by the DNA methylation being taken in blood.  

 

 

 

Observed 

Regions

Fold 

Enrichment

Nominal p-

value

Bonferroni 

p-value

FDR Q-

value

HLA-G 5 44.4 1.36E-07 0.0025 0.0025

CD3EAP 3 279.8 2.03E-07 0.0038 0.0019

ERCC2 3 148.7 1.34E-06 0.025 0.0083

ZNRD1 4 50.3 1.55E-06 0.029 0.0072

regulation of ketone 

metabolic processes
6 21 5.77E-07 0.0074 0.0074

antigen processing and 

presentation via MHC class I, 

TAP independent

6 17.7 1.55E-06 0.02 0.01

negative regulation of 

dendritic cell differentiation
5 22.4 3.77E-06 0.049 0.016

MHC protein complex 12 21.6 1.02E-12 1.69E-09 1.69E-09

integral component of 

lumenal side of endoplasmic 

reticulum membrane

10 11.7 2.45E-08 4.07E-05 2.04E-05

intrinsic component of 

endoplasmic reticulum 

membrane

29 3.3 6.25E-08 0.0001 3.47E-05

integral component of 

endoplasmic reticulum 

membrane

28 3.2 1.35E-07 0.00023 5.63E-05

MHC class I protein complex 6 22.4 4.02E-07 0.00067 0.00013

MHC class II protein complex 6 20.8 6.09E-07 0.001 0.00017

DNA-directed RNA 

polymerase I complex
7 11 4.62E-06 0.0077 0.0011

MMXD complex 4 35.3 6.23E-06 0.01 0.0013

peptide antigen binding 9 12.9 5.56E-08 0.00023 0.00023

MHC class II receptor activity 5 23 3.32E-06 0.014 0.0069

DNA-directed 5'-3' RNA 

polymerase activity
11 5.9 3.98E-06 0.017 0.0055

antigen binding 15 4.2 4.87E-06 0.02 0.0051

5'-3' RNA polymerase activity 11 5.7 5.39E-06 0.022 0.0045

Table 6. GREAT CpG Annotation 

Genes

Biological 

Cellular

Molecular Function
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Discussion 

DNAm biomarkers have been constructed for blood cell count, age, smoking, and more, 

however, there were not yet DNAm biomarkers for fitness parameters. Our work introduces new 

DNAm biomarkers for the fitness parameters of grip strength, gait speed, FEV1, and VO2max. 

These DNAm biomarkers represent new tools for researchers with access to blood samples and 

interest in epigenetic components to fitness. For example, VO2max measurement requires 

specialized equipment, trained personnel, and can be unsafe to measure in older adults [21, 22]. 

However, while DNAmVO2max can be easily measured with a blood draw, it exhibits only 

moderate correlation with the measured VO2max (on average r=0.46 in the validation data). Our 

DNAm biomarker fitness parameter biomarkers are not intended to replace true physical fitness 

measurements. Instead, these DNAm biomarker estimates provide an epigenetic component to 

evaluating a person’s physical fitness. 

DNAm biomarkers have been improved by incorporating phenotypic information, 

however, DNAm biomarkers had not yet incorporated physical fitness. DNAmFitAge provides 

researchers a novel indicator of biological age which combines physical fitness and epigenetic 

health. This biomarker integrates the established DNAm prediction of mortality risk 

(DNAmGrimAge) with the newly developed DNAm predictions of fitness. Higher values of 

DNAm fitness biomarkers, which reflect greater physical fitness, correspond to younger 

estimated biological ages in men and women. Furthermore, DNAmFitAge is associated with 

physical activity in people of low to intermediate activity levels across five large-scale validation 

datasets and can outperform some DNAm biomarkers. FitAgeAcceleration is strongly associated 

with a host of age-related conditions and predicts time-to-death and time-to-CHD across 

validation datasets. In summary, DNAmFitAge provides an easily interpretable tool to relate 

physical fitness to biological age, and the age-adjusted version, FitAgeAcceleration, provides a 

novel measure of epigenetic age acceleration explained through physical fitness.  

We acknowledge the following limitations. The DNAm fitness parameter biomarkers 

have marginal improvement to estimate fitness parameters after including age and sex as 

covariates in validation datasets. Therefore, the DNAm biomarkers should not replace true 

fitness parameters. Instead, our DNAm fitness biomarkers can supplement direct measurements 

to understand physical fitness and physiological health from an epigenetic perspective. In 

addition, our DNAmVO2max biomarker was only validated in one dataset with VO2max; more 
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research is needed to evaluate how our DNAmVO2max biomarker performs across a range of 

independent datasets. Finally, we studied generally healthy adults and did not explore 

relationships in samples of athletes or teenagers. Additional research is needed to understand 

performance in younger, more athletic populations.  

 Overall, DNAmGaitspeed, DNAmGripmax, DNAmFEV1, DNAmVO2max, 

DNAmFitAge, and FitAgeAcceleration provide epigenetic components to evaluating a person’s 

physical fitness and biological age. This research demonstrates biological age can be estimated 

using DNAm fitness parameter biomarkers which are dependent on exercise lifestyle. 

DNAmFitAge and FitAgeAcceleration are practical and intuitive tools; physically fit people 

have a younger DNAmFitAge and younger FitAgeAcceleration, and younger values are 

associated with more physical activity and better age-related outcomes. Our research suggests 

exercise and stronger fitness parameters are protective to DNAmFitAge in both sexes, and 

additional research should explore if DNAmFitAge and FitAgeAcceleration are sensitive to 

exercise interventions.  
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