Supplementary Appendix for: Diagnostic performance of non-invasive fibrosis markers for chronic hepatitis B in sub-Saharan Africa: a Bayesian individual patient data meta-analysis

Contents

Appendix 1: Search methodology	2
Appendix 2: List of variables reported by HEPSANET participating sites	3
Appendix 3: Characteristics of study sites	5
Appendix 4: Description of bivariate random effects model	6
Appendix 5: Validation of APRI model for cirrhosis using 500 bootstrap samples	8
Appendix 6: Ethical approval HEPSANET	9
Appendix 7: Flowchart of searches for eligible studies	10
Appendix 8: Risk of bias assessment using the QUADAS-2 criteria	11
Appendix 9: Association of cirrhosis prevalence with age, sex, and reason for hepatitis B testing	g ^a 13
Appendix 10: Associations with cirrhosis (model 1) and significant fibrosis (model 2) among HEPSANET participants: mixed effects logistic regression model ^a	14
Appendix 11: Diagnostic performance characteristics at each site, stratified by reason for testin using APRI with rule-out threshold of 0.65 for the diagnosis of cirrhosis	_
Appendix 12: Association between participant characteristics and biomarker sensitivity and specificity for the diagnosis of cirrhosis (>12.2kPa) with APRI and GPR set at rule-in thresholds: Bayesian bivariate random effects model ^a	
Appendix 13: Sensitivity analyses of rule-in and rule-out thresholds for APRI assessing the effect exclusion of patients with ascites, use of sex-specific and centre-specific upper limits of normal and use of an alternative liver stiffness threshold of 9.5 kPa to define cirrhosis	,
Appendix 14: Association between liver stiffness measurement and test sensitivity for APRI: Liv stiffness distribution stratified by APRI classification (A & B) and sensitivity of APRI relative to li stiffness (C & D) among patients with cirrhosis	iver

Appendix 1: Search methodology

Search date: 6th October 2020, no language or publication date restrictions applied

PUBMED (https://pubmed.ncbi.nlm.nih.gov/)- 697 results

("liver cirrhosis" [MeSH] OR "elasticity imaging techniques" [MeSH] OR fibrosis[tiab] OR cirrhosis[tiab] OR elastograph*[tiab] OR fibroscan[tiab] OR biopsy, needle [MeSH] OR "liver biops*" [tiab] OR metavir[tiab])

AND (hepatitis B[MeSH] OR hepatitis b[tiab] OR HBV[tiab] OR HBsAg[tiab])

AND (Africa[MeSH] OR Africa*[tiab] OR Angola[tiab] OR Benin[tiab] OR Botswana[tiab] OR "Burkina Faso"[tiab] OR Burundi[tiab] OR Cameroon[tiab] OR "Cape Verde"[tiab] OR "Central African Republic"[tiab] OR Chad[tiab] OR Comoros[tiab] OR Congo[tiab] OR Djibouti[tiab] OR "Equatorial Guinea"[tiab] OR Eritrea[tiab] OR Ethiopia[tiab] OR Gabon[tiab] OR Gambia[tiab] OR Ghana[tiab] OR Guinea[tiab] OR "Guinea Bissau"[tiab] OR "Ivory Coast"[tiab] OR "Cote d'Ivoire"[tiab] OR Kenya[tiab] OR Lesotho[tiab] OR Liberia[tiab] OR Madagascar[tiab] OR Malawi[tiab] OR Mali[tiab] OR Mauritania[tiab] OR Mauritius[tiab] OR Mozambique[tiab] OR Mocambique[tiab] OR Niger[tiab] OR Nigeria[tiab] OR Principe[tiab] OR Reunion[tiab] OR Rwanda[tiab] OR "Sao Tome"[tiab] OR Senegal[tiab] OR Seychelles[tiab] OR "Sierra Leone"[tiab] OR Somalia[tiab] OR "South Africa"[tiab] OR Sudan[tiab] OR Swaziland[tiab] OR Tanzania[tiab] OR Togo[tiab] OR Tunisia[tiab] OR Uganda[tiab] OR Zambia[tiab] OR Zimbabwe[tiab])

SCOPUS (https://www.scopus.com/search/form.uri)- 947 results

(TITLE-ABS-KEY (africa* OR angola OR benin OR botswana OR "Burkina Faso" OR burundi OR cameroon OR "Cape Verde" OR "Central African Republic" OR chad OR comoros OR congo OR djibouti OR "Equatorial Guinea" OR eritrea OR ethiopia OR gabon OR gambia OR ghana OR guinea OR "Guinea Bissau" OR "Ivory Coast" OR "Cote d'Ivoire" OR kenya OR lesotho OR liberia OR madagascar OR malawi OR mali OR mauritania OR mauritius OR mozambique OR mocambique OR namibia OR niger OR nigeria OR principe OR reunion OR rwanda OR "Sao Tome" OR senegal OR seychelles OR "Sierra Leone" OR somalia OR "South Africa" OR sudan OR swaziland OR tanzania OR togo OR tunisia OR uganda OR zambia OR zimbabwe))

AND (TITLE-ABS-KEY ("elasticity imaging" OR elastograph* OR fibroscan OR "needle biopsy" OR "liver biops*" OR metavir OR cirrhosis OR fibrosis))

AND (TITLE-ABS-KEY ("hepatitis b" OR hbv OR hbsag))

Africa Index Medicus (https://indexmedicus.afro.who.int/) - 11 results

(tw:("elasticity imaging" OR elastograph* OR fibroscan OR "needle biopsy" OR "liver biops*" OR metavir OR cirrhosis OR fibrosis)) AND (tw:("hepatitis b" OR hbv OR hbsag))

Africa Journals Online (https://www.ajol.info/index.php/ajol) - 260 results Searched using Google Scholar (https://scholar.google.com/)

site:ajol.info (elastography OR liver biopsy OR fibroscan) AND "hepatitis B"

Appendix 2: List of variables reported by HEPSANET participating sites

2.1 Centre-specific variables

Variable	Description/ criteria
Country/ locale	Facility location
Study design	Community or hospital based
Criteria used for valid	Centre definition
Fibroscan result	
HBV DNA platform	Details of assay, manufacturer, platform
Biochemistry platform	Details of assay, manufacturer, platform for liver enzyme
	quantification
Schistosomiasis	Describe whether endemic hepatic schistosomiasis (S. mansoni)
epidemiology	
Schistosomiasis diagnosis	Method of diagnostic evaluation for schistosomiasis among centres
	with endemic disease
Harmful alcohol	Definition used for harmful alcohol consumption
definition	

2.2 Patient-specific variables (essential variables highlighted in bold)

Variable	Description/ criteria
Patient age	Unit: years
Sex	Male/female
Pregnancy	Current pregnancy
Transient elastography	Fasting (>2 hours) transient elastography result
	Unit: kPa
Alanine	Unit: U/L
aminotransferase (ALT)	
Aspartate	Unit: U/L
aminotransferase (AST)	
Gamma	Unit: U/L
glutamyltransferase	
(GGT)	
Platelets	Unit: x10 ⁹ /L
Bilirubin	Unit: mg/dL
International normalised	Unit: ratio
ratio	
Hepatitis B e antigen	Positive/ negative
Hepatitis B DNA	Unit: IU/ml
Hepatitis B genotype	Genotype assigned from sequencing
Anti-hepatitis C antibody	Positive/ negative
Hepatitis C RNA	Positive/ negative
Anti-hepatitis D antibody	Positive/ negative
Hepatitis D RNA	Positive/ negative
Body mass index	Unit: kg/m ²
Reason for testing for	Suspected liver disease, due to clinical features of liver disease, or
hepatitis B	abnormal liver function tests, or abnormal liver imaging; or
	asymptomatic screening for antenatal care, or blood donation, or
	family contact of HBsAg positive individual, or community screening.

Current or past hepatitis B treatment	Comprising tenofovir disoproxil fumarate, tenofovir alafenamide, entecavir, lamivudine, emtricitabine, telbivudine, adefovir, interferon.
Family history of HCC or cirrhosis	First- or second-degree relative with cirrhosis or HCC.
Alcohol abuse	Centre-specific definitions were used.
Type 2 diabetes	Ever diagnosed, or treated for type 2 diabetes mellitus.
Hypertension	Ever diagnosed, or treated for hypertension.
Hyperlipidaemia	Ever diagnosed with, or treated for, hyperlipidaemia.
Hepatic schistosomiasis	Evidence of schistosomal liver disease by radiology + a positive serum/stool/urine test (according to centre-specific diagnostics)
HCC	Liver tumour(s) diagnosed by radiology or histology.
Ascites	Past or current evidence of ascites, by clinical examination and/or radiology.
Jaundice	Clinically diagnosed with jaundice by a clinician
Variceal bleeding	Upper GI bleeding where endoscopy confirms oesophageal varices.
Hepatic encephalopathy	Cerebral dysfunction observed and diagnosed as HE by a clinician.

Appendix 3: Characteristics of study sites

Country	Site	Principle	Facility	Year	Number	Endemic	Definition of	Biochemistry assay	HBV DNA quantification assay
		investigator(s)		national HBV	of eligible	Schisto-	hazardous		
				vaccine	patients	somiasis	alcohol		
				introduced		mansoni			
		Desalegn &	Referral						HBV Realtime, m2000sp/rt, Abbott
Ethiopia	Addis Ababa	Johannessen	hospital	2007	1038	No	WHO AUDIT	Humalyzer 3000, Human	& GeneXpert HBV, Cepheid
							>20g/day		
		Njie &	Referral				(none		
Gambia	Fajara	Lemoine	hospital	1990	797	No	reported)	VITROS 350, Ortho	In-house assay LLQ=50 IU/ml
			Secondary						Cobas Ampliprep/Taqman v1.0,
Senegal	Dakar	Mbaye & Vray	hospitals (4)	2005	169	No	Not reported	Not reported	Roche
			Referral				CAGE		
Nigeria	Jos	Okeke	hospital	2004	190	Yes	questionnaire	Cobas, Roche	In-house assay LLQ=20 IU/ml
South		Spearman &	Referral						
Africa	Cape Town	Sonderup	hospital	1995	155	No	WHO AUDIT	Coba 6000, Roche	Cobas Amplicor, Roche
			Referral						
Malawi	Blantyre	Stockdale	hospital	2002	97	Yes	WHO AUDIT	AU480, Beckman Coulter	In-house assay LLQ=35 IU/ml ⁵³
		Sinkala &	Referral						In-house; Cobas Ampliprep/Taqman,
Zambia	Lusaka	Vinikoor	hospital	2005	283	Yes	WHO AUDIT-C	Multiple platforms	Roche & GeneXpert HBV, Cepheid
			Referral						Cobas Ampliprep/Taqman v1.0,
Senegal	Dakar	Fall	hospital	2005	97	No	WHO AUDIT	Cobas 6000, Roche	Roche
							>20g/day		
			Referral				(none		
Senegal	Thies	Lemoine	hospital	2005	300	No	reported)	VITROS 350, Ortho	HBV Realtime, m2000sp/rt, Abbott
South			Referral						
Africa	Stellenbosch	Maponga	hospital	1990	85	No	Not reported	Architect, Abbott	HBV Realtime, m2000sp/rt, Abbott
		Seydi &	Referral					CYNSTART, Cypress	COBAS Ampliprep/TaqMan System,
Senegal	Dakar	Wandeler	hospital	2005	303	No	Not reported	Diagnostics, Belgium	Roche
Burkina			Referral						
Faso	Ouagadougou	Sombie	hospital	2005	35	No	Not reported	Architect ci8000, Abbott	HBV Realtime, m2000sp/rt, Abbott

Appendix 4: Description of bivariate random effects model

To calculate sensitivity and specificity, data were pooled using a single-stage individual patient data (IPD) meta-analysis approach. We used a bivariate Bayesian random-effects meta-analysis model for sensitivity and specificity using patient-level covariates with study-level random effects to account for anticipated variability between sites.²¹

Specifically, let $Y_{i,j}$ be the random variable recording the outcome for participant $j=1,\ldots,n_i$ in study $i=1,\ldots,m$ for a specific biomarker X and a specific threshold x_t that are currently considered. $Y_{i,j}=0$ if $X_{i,j}< x_t$ and $Y_{i,j}=1$ if $X_{i,j}\geq x_t$.

Let $state_{i,j}$ be the true disease state (according to reference test result, for example cirrhosis present or absent).

The Bayesian bivariate model for sensitivity and specificity is defined by:

$$\begin{aligned} Y_{i,j} &\sim \mathsf{Bernoulli}\big(p_{i,j}\big) \\ &= \begin{cases} \beta^{(1)} + \gamma_1^{(1)} \cdot \mathsf{alcohol}_{i,j} + \gamma_2^{(1)} \cdot \mathsf{sex}_{\mathsf{female}_{i,j}} + \gamma_3^{(1)} \cdot \mathsf{BMI}_{\mathsf{underweight}_{i,j}} + \gamma_4^{(1)} \cdot \mathsf{BMI}_{\mathsf{overweight}_{i,j}} + \gamma_5^{(1)} \cdot \mathsf{BMI}_{\mathsf{obese}_{i,j}} + \gamma_6^{(1)} \cdot \mathsf{test} \, \mathsf{reason}_{\mathsf{susp. liver \, disease}_{i,j}} + u_{1,i} \\ &= \begin{cases} \beta^{(1)} + \gamma_1^{(1)} \cdot \mathsf{alcohol}_{i,j} + \gamma_2^{(1)} \cdot \mathsf{sex}_{\mathsf{female}_{i,j}} + \gamma_3^{(1)} \cdot \mathsf{BMI}_{\mathsf{underweight}_{i,j}} + \gamma_4^{(1)} \cdot \mathsf{BMI}_{\mathsf{overweight}_{i,j}} + \gamma_5^{(1)} \cdot \mathsf{BMI}_{\mathsf{obese}_{i,j}} + \gamma_6^{(1)} \cdot \mathsf{test} \, \mathsf{reason}_{\mathsf{susp. liver \, disease}_{i,j}} + u_{1,i} \\ &= \begin{cases} \beta^{(0)} + \gamma_1^{(0)} \cdot \mathsf{alcohol}_{i,j} + \gamma_2^{(0)} \cdot \mathsf{sex}_{\mathsf{female}_{i,j}} + \gamma_3^{(0)} \cdot \mathsf{BMI}_{\mathsf{underweight}_{i,j}} + \gamma_4^{(0)} \cdot \mathsf{BMI}_{\mathsf{overweight}_{i,j}} + \gamma_5^{(0)} \cdot \mathsf{BMI}_{\mathsf{obese}_{i,j}} + \gamma_6^{(0)} \cdot \mathsf{test} \, \mathsf{reason}_{\mathsf{susp. liver \, disease}_{i,j}} + u_{0,i} \end{cases} \\ &= \begin{cases} \beta^{(1)} + \gamma_1^{(1)} \cdot \mathsf{alcohol}_{i,j} + \gamma_2^{(1)} \cdot \mathsf{sex}_{\mathsf{female}_{i,j}} + \gamma_3^{(1)} \cdot \mathsf{BMI}_{\mathsf{underweight}_{i,j}} + \gamma_4^{(0)} \cdot \mathsf{BMI}_{\mathsf{overweight}_{i,j}} + \gamma_5^{(0)} \cdot \mathsf{BMI}_{\mathsf{obese}_{i,j}} + \gamma_6^{(0)} \cdot \mathsf{test} \, \mathsf{reason}_{\mathsf{susp. liver \, disease}_{i,j}} + u_{0,i} \end{cases} \end{aligned}$$

where

$$p_{i,j} = \begin{cases} P\big(Y_{i,j} = 1 | \mathsf{state}_{i,j} = \mathsf{positive}\big) = \mathsf{sensitivity} & \text{if } \mathsf{state}_{i,j} = \mathsf{positive} \\ 1 - P\big(Y_{i,j} = 0 | \mathsf{state}_{i,j} = \mathsf{negative}\big) = 1 - \mathsf{specificity} & \text{if } \mathsf{state}_{i,j} = \mathsf{negative} \end{cases}$$

and $u_{1,i}$, $u_{0,i}$ are study-specific random effects

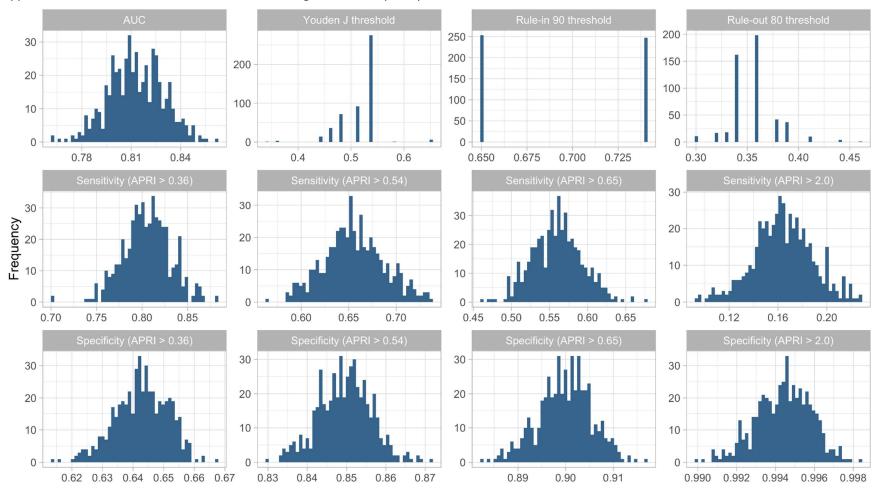
$$(u_{1,i}, u_{0,i})^T \sim N((0,0)^T, \Omega)$$

with Ω a 2x2 covariance matrix.

Since we use a Bayesian paradigm to fit the model, we need to specify prior distributions for the model parameters. These are non-informative priors:

$$\beta^{(l)}, \gamma_k^{(l)} \sim N(0, 10^5)$$
 $l = 0,1; k = 1, ..., 6$

and


$$\Omega^{-1} \sim \mathsf{Wishart} \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, 2 \right)$$

In the stratified models, the above model is fitted to the data from each stratum based on testing reason (suspected liver disease or other). For those models, the testing reason terms, i.e. the parameters $\gamma_6^{(l)}$, l=0.1, are dropped in the above model specification.

The model further specifies distributions for all variables in the model: state_{i,j} (cirrhosis or significant fibrosis present or absent), alcohol, sex_{female} are assumed to follow Bernoulli distributions and body mass index (BMI) a categorical distribution. This specification allows the Bayesian model to handle missing values in the dataset: at each MCMC iteration, for the unobserved data values, the model samples from the specified distributions with the

corresponding distributional parameters learned from the data. As the model is computationally demanding to fit, we used a grid search with 42 (APRI), 41 (GPR), 41 (ALT) and 43 (FIB4) different threshold values evaluated for each biomarker. We aimed for at least 40 different values per biomarker and the slightly different numbers of thresholds per biomarker results from the fact that for some biomarkers several quantiles have the same value.

Appendix 5: Validation of APRI model for cirrhosis using 500 bootstrap samples

Appendix 6: Ethical approval HEPSANET

Ethiopia

National Research Ethics Review Committee, Ethiopia (Ref.: 3.10/829/07).
Regional Committee for Medical and Health Research Ethics, Norway (Ref.: 2014/1146).

Malawi

National Health Sciences Research Committee of Malawi (Ref.: 16/11/1698 and 15/5/1599). University of Liverpool, UK (Ref.: 1954).

Zambia

University of Zambia Biomedical Research Ethics Committee (Ref.: 013-09-15).

South Africa

University of Cape Town Human Research Ethics Committee, South Africa (Ref.: 667/2020). Stellenbosch University Human Research Ethics Committee, South Africa (Ref.: N17/01/013 and S13/04/072).

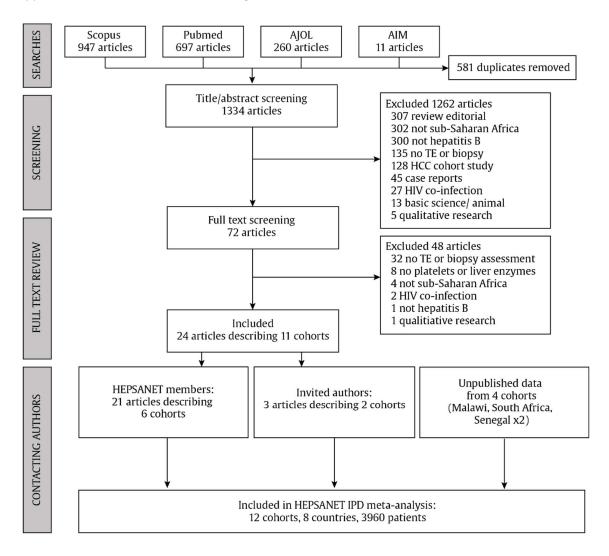
University of Oxford Tropical Research Ethics Committee, UK (Ref.: OXTREC 01–18).

Nigeria

Jos University Research Ethics Committee, Nigeria (Ref.: JUTH/DCS/ADM/127/XIX/5962).

The Gambia

The Government of The Gambia and Medical Research Council (MRC) Gambia Joint Ethics Committee (Ref.: SCC1266).


Senegal

Senegalese National Health Research Ethics Committee (Ref.: SEN11/34 and SEN19/11).

Burkina Faso

Yalgado Ouédraogo University Hospital Center Institutional Review Board, Burkina Faso (Ref.: 0782).

Appendix 7: Flowchart of searches for eligible studies

Abbreviations: AJOL, African Journals Online (https://www.ajol.info); AIM, African Index Medicus (https://www.globalindexmedicus.net/biblioteca/aim/); TE, transient elastography; HCC, hepatocellular carcinoma; IPD, individual patient data

Appendix 8: Risk of bias assessment using the QUADAS-2 criteria

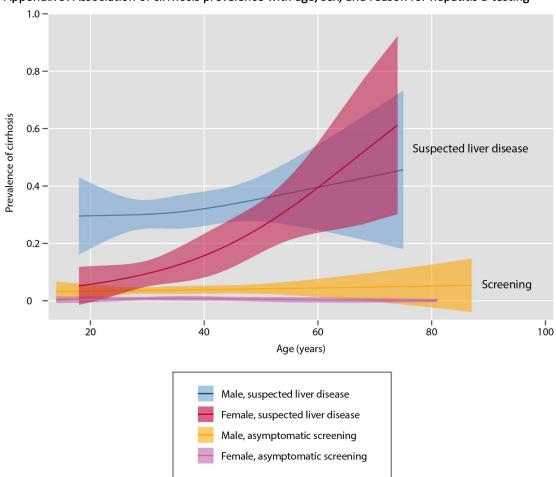
Country	Ethiopia Addis	The Gambia	Senegal 1	Senegal 2	Senegal 3	Senegal 4	South Africa Cape	South Africa	Nigera	Malawi	Zambia	Burkina Faso
Location	Ababa	Banjul	Theiès	Dakar	Dakar	Dakar	Town	Stellenbosch	Jos	Blantyre Hospital/	Lusaka Hospital/	Ouagadougou
Setting 1. PATIENT SELECTION	Hospital	Community	Hospital	Hospital	Hospital	Hospital	Hospital	Hospital	Hospital	community	community	Hospital
Was a consecutive or random sample enrolled Was a case-control design	Yes	Yes	Yes	Yes	Yes	Yes	No	No ^c	Yes	Yes	Yes	Yes
avoided? Did the study avoid	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
inappropriate exclusions? Could the selection of patients	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes
have introduced bias?	No	No	No	Yesa	Yes ^b	No	Yes	Yes ^c	Yes ^d	Yes ^e	No	Yes ^f
Is there concern that the included patients do not match the review question? 2. INDEX TESTS Were the index tests	No	No	No	Yes ^a	Yes ^b	No	No	Yes ^c	No	No	No	No
interpreted without knowledge of the reference standard? Could the conduct or interpretation of the index	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
test have introduced bias? Is there concern the the index test , its conduct or interpretation differ from the	No	No	No	No	No	No	No	No	No	No	No	No
review question? 3. REFERENCE TESTS Is the reference standard likely to correctly classify the	No	No	No	No	No	No	No	No	No	No	No	No
target condiciton?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Were the reference standard results intepreted without knowledge of the results of the index test? Could the reference standard, its conduct, or its interpretation have introduced bias? 4. FLOW AND TIMING	Unclear	Unclear No	Unclear	Unclear No	Unclear No	Yes	No No	No No	Unclear No	Yes	Yes	Unclear
Was there an appropriate interval between index tests and reference standard?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Did all patients receive a reference standard?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No ^c	Yes	Yes	No	No
Did patients receive the same reference standard?	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	No
Were all patients included in the analysis?	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Yes	No	No
Could the patient flow have introduced bias?	No	No	No	No	No	No	Yes	Yes ^c	No	Yes ^g	Yes ^g	No

^a Inclusion criteria were inactive HBV carriers with HBV DNA <2000 IU/ml, normal ALT, HBeAg negative.

 $^{^{\}rm b}$ Inclusion criteria were HBsAg positive for 6 months, treatment na $\ddot{\rm i}$ ve, symptom free with HBV DNA >3.2 log₁₀ IU/ml.

^c Subset of patients underwent TE examination at clinicians' discretion - standardised criteria not provided.


^d Excluded patients with significant alcohol consumption or body mass index >28 kg/m².

^e Hospital study recruited patients with suspected cirrhosis based on clinical symptoms or signs suggestive of chronic liver disease.

^f Only patients undergoing a liver biopsy were included, although this was standard of care at the time for all HBV patients.

g Loss to follow up occurred from community diagnosis to treatment eligibility assessment with 94/150 (63%) of HBsAg positive patients being evaluated.

^h Loss to follow up occurred from referral of patients from the community study to clinical staging at the hospital site with 148/182 (80%) of HBsAg patients having treatment eligibility assessment, of whom 49/148 (33%) had transient elastography.

Appendix 9: Association of cirrhosis prevalence with age, sex, and reason for hepatitis B testing^a

^a Graphs show restricted cubic splines with three knots with respect to age. Shaded areas surrounding central estimates represent 95% confidence intervals.

Appendix 10: Associations with cirrhosis (model 1) and significant fibrosis (model 2) among HEPSANET participants: mixed effects logistic regression model^a

Model 1: Cirrhosis (>12.2kPa)

Variable	Univariable association			Multivariable model				
	Odds ratio	(95% CI)	P value	Odds ratio	(95% CI)	P value		
Age (per year)	1.03	(1.02 - 1.04)	<0.001	1.03	(1.01 - 1.04)	<0.001		
Sex (male vs	3.55	(2.52 - 5.00)	<0.001	3.31	(2.19 - 5.00)	<0.001		
female)								
BMI			<0.001			0.06		
Underweight	0.94	(0.62 - 1.43)		0.90	(0.56 – 1.45)			
Normal	Reference			Reference				
Overweight	0.46	(0.30 - 0.69)		0.58	(0.37 - 0.93)			
Obese	0.33	(0.14 - 0.77)		0.45	(0.17 – 1.21)			
Suspected liver	45.6	(25.8 - 80.7)	<0.001	55.5	(28.1 -109.5)	<0.001		
disease								
(reference								
asymptomatic								
screening)								

Model 2: Significant fibrosis (>7.9kPa)

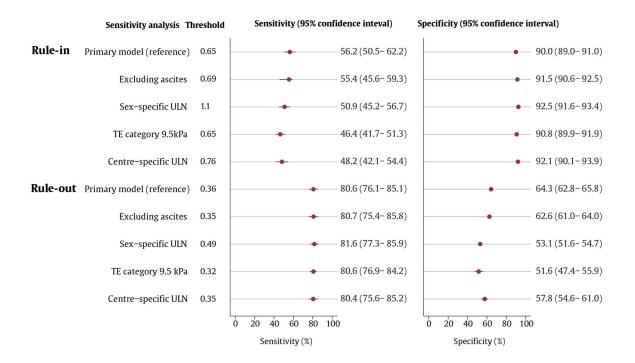
Variable	Univariable	association		Multivariable model			
	Odds ratio	(95% CI)	P value	Odds ratio	(95% CI)	P value	
Age (per year)	1.01	(1.00 - 1.02)	0.022	1.01	(1.00 - 1.02)	0.07	
Sex (male vs	3.38	(2.70 - 4.23)	<0.001	3.42	(2.63 - 4.45)	<0.001	
female)							
BMI			<0.001			0.005	
Underweight	0.99	(0.73 - 1.35)		0.92	(0.66 – 1.30)		
Normal	Reference			Reference			
Overweight	0.49	(0.37 - 0.65)		0.60	(0.44 - 0.81)		
Obese	0.46	(0.28 - 0.76)		0.65	(0.37 – 1.12)		
Suspected liver	8.3	(6.4 – 10.9)	<0.001	9.91	(7.16 – 13.7)	<0.0001	
disease							
(reference							
asymptomatic							
screening)							

^aModels include random effects for study site

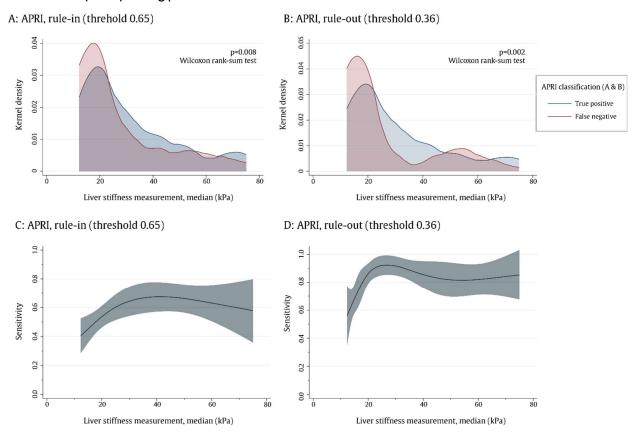
Appendix 11: Diagnostic performance characteristics at each site, stratified by reason for testing using APRI with rule-out threshold of 0.65 for the diagnosis of cirrhosis

	Asymptomatic screening populations						Liver disease populations				
				Sensitivity							
Site	Pr (%)	PPV (%)	NPV (%)	(%)	Specificity (%)	Pr (%)	PPV (%)	NPV (%)	Sensitivity (%)	Specificity (%)	
	0.6	0.0	99.4	0.0	99.9		61.0	72.0	42.7	84.3	
Ethiopia	0.6	(0-97.5)	(98.6-99.8)	(0 - 60.2)	(99.2-100)	36.5	(49.6-71.6)	(65.8 - 77.6)	(33.6- 52.2)	(78.6 - 89.0)	
	3.7	20.0	98.0	50.0	92.4		16.7	92.3	25.0	87.8	
Cape Town	3.7	(2.6-55.6)	(92.9-99.8)	(6.8 - 93.2)	(85.5-96.7)	8.9	(0.4 - 64.1)	(79.1 - 98.4)	(0.6 - 80.6)	(73.8 - 95.9)	
					96.2					100.0	
Senegal 1	0	-	100.0	-	(89.3-99.2)	0.0	-	100	D	(39.8 - 100)	
	2.7	25.0	98.5	50.0	95.7		95.2	50.0	95.2	50.0	
Malawi	2.7	(0.6-80.6)	(92.0-100)	(1.3 - 98.7)	(87.8 - 99.1)	91.7	(83.3 - 98.8)	(8.6 -91.4)	(76.2 - 99.9)	(1.3 - 98.7)	
							48.8	98.6	91.3	86.8	
Nigeria						12.1	(33.3 - 64.5)	(95.2 - 99.8)	(72.0 - 98.9)	(80.7 - 91.6)	
	11.6	50.0	96.7	75.0	90.6						
Stellenbosch	11.0	(11.8-88.2)	(82.8-99.9)	(19.4 - 99.4)	(75.0 - 98.0)						
	2.1	0.0	96.2	0.0	68.9		57.1	66.7	80.0	40.0	
Zambia	2.1	(0-14.8)	(87.0-99.5)	(0-84.2)	(57.1 - 79.2)	54.6	(18.4 - 90.1)	(9.4 - 99.2)	(28.4 - 99.5)	(5.3 - 85.3)	
	1.3	5.5	99.5	70.0	84.3						
Gambia	1.3	(2.2 - 10.9)	(98.7-99.9)	(34.8 -93.3)	(81.6 -86.8)						
	9.5	32.3	96.7	71.4	84.7						
Senegal 2	9.5	(16.7 - 51.4)	(91.7-99.1)	(41.9 - 91.6)	(77.5 - 90.3)						
Burkina Faso											
	6.6	37.5	96.4	50.0	94.2						
Senegal 3	0.0	(18.8 - 59.4)	(93.3-98.3)	(26.0 - 74.0)	(90.6 - 96.7)						
	1.2	20.0	99.1	33.3	98.2		33.3	93.9	20.0	96.9	
Senegal 4	1.3	(0.5 - 71.6)	(96.7-99.9)	(0.8 - 90.6)	(95.4- 99.5)	6.9	(0.8 - 90.6)	(85.2 - 98.3)	(0.5 - 71.6)	(89.2 - 99.6)	

Abbreviations APRI, aspartate aminotransferase-to-platelet ratio index; Pr, Prevalence of cirrhosis; PPV, positive predictive value; NPV, negative predictive value


Appendix 12: Association between participant characteristics and biomarker sensitivity and specificity for the diagnosis of cirrhosis (>12.2kPa) with APRI and GPR set at rule-in thresholds: Bayesian bivariate random effects model^a

Se	ensitivity		Specificity			
		Odds ratio (posterior mean)				
(95% HDI	credible interval)	95% HD	I credible interval			
1.19	(0.11 - 2.79)	0.53	(0.24, 0.86)			
1.41	(0.43 - 2.67)	0.92	(0.57 – 1.33)			
1.27	(0.31 - 2.63)	1.44	(0.43 - 2.67)			
1.00	(0.00 - 3.10)	2.15	(0.85 - 3.92)			
4.96	(0.67 - 1.67)	0.13	(0.06 - 0.21)			
1.66	(0.53 - 3.17)	2.26	(1.63 - 2.96)			
0.88	(0.09 - 2.19)	1.27	(0.35, 2.64)			
0.50	(0.32 – 0.68)	0.93	(0.91 - 0.95)			
3.00	(0.16 - 8.38)	0.22	(0.07 - 0.41)			
1.27	(0.24 - 2.66)	1.08	(0.51 - 1.78)			
1.31	(0.17 - 3.17)	0.57	(0.35 - 0.81)			
0.40	(0.00 - 1.48)	0.72	(0.30 - 1.24)			
3.86	(0.39 – 9.85)	0.32	(0.15 - 0.50)			
0.93	(0.14 – 1.99)	2.64	(1.68 – 3.68)			
1.27	(0.10 - 3.38)	0.94	(0.20 - 2.10)			
0.60	(0.39 - 0.79)	0.94	(0.91 - 0.96)			
	0dds ratio (95% HDI 1.19 1.41 1.27 1.00 4.96 1.66 0.88 0.50 3.00 1.27 1.31 0.40 3.86	1.27 (0.31 - 2.63) 1.00 (0.00 - 3.10) 4.96 (0.67 - 1.67) 1.66 (0.53 - 3.17) 0.88 (0.09 - 2.19) 0.50 (0.32 - 0.68) 3.00 (0.16 - 8.38) 1.27 (0.24 - 2.66) 1.31 (0.17 - 3.17) 0.40 (0.00 - 1.48) 3.86 (0.39 - 9.85) 0.93 (0.14 - 1.99) 1.27 (0.10 - 3.38)	Odds ratio, posterior mean (95% HDI credible interval) Odds ration (95% HDI credible interval) 1.19 (0.11 - 2.79) 0.53 1.41 (0.43 - 2.67) 0.92 1.27 (0.31 - 2.63) 1.44 1.00 (0.00 - 3.10) 2.15 4.96 (0.67 - 1.67) 0.13 1.66 (0.53 - 3.17) 2.26 0.88 (0.09 - 2.19) 1.27 0.50 (0.32 - 0.68) 0.93 3.00 (0.16 - 8.38) 0.22 1.27 (0.24 - 2.66) 1.08 1.31 (0.17 - 3.17) 0.57 0.40 (0.00 - 1.48) 0.72 3.86 (0.39 - 9.85) 0.32 0.93 (0.14 - 1.99) 2.64 1.27 (0.10 - 3.38) 0.94			


Abbreviations: HDI, highest density interval; APRI, Aspartate aminotransferase-to-platelet ratio index; GPR, gamma-glutamyl transferase-to-platelet ratio.

^a Reference category is a male with normal body mass index (18.5-24.9 kg/m²), without hazardous alcohol consumption, with HBsAg testing conducted for asymptomatic screening. We derived odds ratios (for sensitivity and specificity respectively) for the fixed factors included in the bivariate mixed effects logistic regression model. An odds ratio >1 indicates that the corresponding covariate, on average, increases the sensitivity (or specificity), and an odds ratio <1 indicates that the covariate decreases on average the sensitivity (or specificity).

Appendix 13: Sensitivity analyses of rule-in and rule-out thresholds for APRI assessing the effect of exclusion of patients with ascites, use of sex-specific and centre-specific upper limits of normal, and use of an alternative liver stiffness threshold of 9.5 kPa to define cirrhosis

Appendix 14: Association between liver stiffness measurement and test sensitivity for APRI: Liver stiffness distribution stratified by APRI classification (A & B) and sensitivity of APRI relative to liver stiffness (C & D) among patients with cirrhosis

^a Kernel density plots (A&B) show distribution of median liver stiffness measurements among patients with cirrhosis, stratified by the result of APRI classification at the rule-in (A) and rule-out (B) thresholds. The association between the sensitivity of APRI at rule-in (C) and rule-out (D) thresholds with liver stiffness measurement is shown using a restricted cubic spline with 5 knots, with shaded areas indicating 95% confidence intervals.