1 Transmission blocking activity of low dose tafenoquine in healthy volunteers

2 experimentally infected with Plasmodium falciparum

- 3
- 4 Rebecca Webster¹, Hayley Mitchell¹, Jenny M. Peters¹, Juanita Heunis¹, Brighid O'Neill¹,
- 5 Jeremy Gower¹, Sean Lynch¹, Helen Jennings¹, Fiona H. Amante¹, Stacey Llewellyn¹, Louise
- 6 Marquart¹, Adam J. Potter¹, Geoffrey W. Birrell³, Michael D. Edstein³, G. Dennis Shanks³,
- 7 James S. McCarthy^{1,2}, Bridget E. Barber^{1*}
- 8
- ¹QIMR Berghofer Medical Research Institute, Brisbane, Australia
- ²The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- ³Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
- 12
- 13 *Corresponding author: Dr. Bridget E. Barber. QIMR Berghofer Medical Research
- 14 Institute, 300 Herston Road, Herston 4006, Australia. Email:
- 15 bridget.barber@qimrberghofer.edu.au. Telephone: +61 7 3362 0498.
- 16
- 17 **Conflict of interest:** All authors declare no conflict of interest exists.

18

19 ABSTRACT

20 Background

Blocking the transmission of parasites from humans to mosquitoes is a key component of
malaria control. Tafenoquine exhibits activity against all stages of the malaria parasite and
may have utility as a transmission blocking agent. We aimed to characterize the transmission
blocking activity of low dose tafenoquine.

25 Methods

26 Healthy adults were inoculated with *P. falciparum* 3D7-infected erythrocytes on day 0.

27 Piperaquine was administered on days 9 and 11 to clear asexual parasitemia while allowing

28 gametocyte development. A single 50 mg oral dose of tafenoquine was administered on day

29 25. Transmission was determined by enriched membrane feeding assays pre-dose and at 1, 4

and 7 days post-dose. Artemether-lumefantrine was administered following the final assay.

31 Outcomes were the reduction in mosquito infection and gametocytemia post-tafenoquine, and

32 safety parameters.

33 **Results**

34 Six participants were enrolled, and all were infective to mosquitoes pre-tafenoquine, with a

median 86% (range: 22–98) of mosquitoes positive for oocysts and 57% (range: 4–92)

36 positive for sporozoites. By day 4 post-tafenoquine, the oocyst and sporozoite positivity rate

had reduced by a median 35% (IQR: 16–46) and 52% (IQR: 40–62), respectively, and by day

38 7, 81% (IQR 36–92) and 77% (IQR 52–98), respectively. The decline in gametocyte density

- 39 post-tafenoquine was not significant. No significant participant safety concerns were
- 40 identified.

41 Conclusion

- 42 Low dose tafenoquine reduces *P. falciparum* transmission to mosquitoes, with a delay in
- 43 effect.

44 Trial registration

45 Australian New Zealand Clinical Trials Registry (ACTRN12620000995976).

46 Funding

47 QIMR Berghofer Medical Research Institute.

49 INTRODUCTION

50	Despite advances in the development and implementation of tools to prevent and treat
51	malaria since the turn of the century, worldwide malaria morbidity and mortality remains
52	unacceptably high (1). The emergence of partial resistance to the first line artemisinin
53	antimalarial compounds in Southeast Asia, and more recently in East Africa, is of particular
54	concern (2). It is likely that further progress in reducing the burden of malaria and achieving
55	the ambitious goal of malaria eradication in the 21 st century will require a multifaceted
56	approach involving antimalarial chemotherapy, vaccination, and vector control.
57	The importance of targeting malaria transmission as an intervention strategy is highlighted by
58	the fact that the distribution of insecticide-treated bed nets was the largest contributor to the
59	declining prevalence of <i>P. falciparum</i> infections in Africa between 2000 and 2015 (3).
60	Blocking the transmission of parasites from humans to mosquitoes using antimalarial
61	chemotherapy represents another strategy for reducing the burden of malaria and slowing the
62	spread of resistance to antimalarials. Transmission is mediated by circulating, sexually
63	committed, mature male and female gametocytes. These gametocytes rapidly differentiate
64	into gametes upon uptake in a blood meal by the female Anopheles mosquito. Following
65	fertilization, the motile ookinete penetrates the midgut epithelium followed by oocyst
66	development, sporogony and migration of sporozoites to the salivary glands (4). Antimalarial
67	drugs used to treat clinical malaria by clearing asexual blood stage parasitemia typically
68	demonstrate lower activity towards mature transmissible gametocytes due to their arrested
69	state of cellular development (5).
70	The 8-aminoquinolone primaquine is currently the only drug recommended for blocking
71	transmission of malaria (6); it is highly effective in clearing mature gametocytes and
72	impairing the development of mosquito stage parasites after the ingestion of the blood meal

73 (7, 8). However, the use of primaquine is limited by the hemolysis it causes in individuals

74	with deficient activity of the glycolytic enzyme glucose-6-phosphate dehydrogenase (G6PD),
75	a common genetic disorder in malaria-endemic populations (9). The World Health
76	Organization (WHO) thus recommends that primaquine only be used at a low dose (0.25
77	mg/kg single dose) when treating individuals of unknown G6PD status (6). Another
78	limitation of primaquine is its short elimination half-life (plasma half-life approximately 7
79	hours) (10), which limits the duration of its pharmacodynamic activity both for transmission
80	blocking and as a drug with pre-erythrocytic activity against incubating liver stage parasites.
81	This particularly limits its utility for mass drug administration or for seasonal malaria
82	chemoprophylaxis.
83	Tafenoquine is a long acting analogue of primaquine that has been recently approved for
84	malaria prophylaxis and for radical cure of <i>P. vivax</i> malaria (11). The major advantage of
85	tafenoquine over primaquine is its considerably longer plasma elimination half-life
86	(approximately 15 days) (12, 13) which allows for single dose (radical cure) or weekly
87	administration for prophylaxis, thus reducing adherence issues commonly associated with
88	primaquine dosing regimens (14). Although not currently approved for transmission
89	blocking, the potential utility of tafenoquine for such is evident given its gametocytocidal
90	activity in vitro (15) and transmission blocking activity in murine models (16). Like
91	primaquine, tafenoquine can cause severe hemolytic anemia in G6PD-deficient individuals at
92	currently recommended doses (17); however, as with primaquine, it is possible that a
93	sufficient safety margin may be present for its therapeutic use in G6PD-deficient individuals
94	(18). The ability of low dose tafenoquine to block malaria transmission is therefore worthy of
95	investigation.
96	Volunteer infection studies (VIS) using the induced blood stage malaria (IBSM) model have

97 been successfully utilized to characterize the antimalarial activity of several compounds in

98 use or undergoing clinical development (19-23). These studies involve intravenous

99	inoculation of healthy adult volunteers with blood stage parasites followed by dosing with the
100	test antimalarial when a predefined parasitemia threshold is reached. IBSM studies have
101	largely focused on charactering activity against blood stage asexual parasites. However, more
102	recently we have demonstrated the potential utility of the model in assessing transmission
103	blocking interventions (24). The IBSM-transmission model utilizes the antimalarial drug
104	piperaquine to clear asexual parasites. As piperaquine lacks activity against gametocytes (25),
105	the effect of transmission blocking interventions can be assessed subsequent to cure of
106	asexual parasitemia with piperaquine when mature transmissible gametocytes re-enter
107	circulation.
108	Here we report the results of a clinical trial to characterize the transmission blocking activity
109	of a low single oral dose of tafenoquine (50 mg) in healthy volunteers using the IBSM-
110	transmission model.
111	

112 **RESULTS**

113 **Participants**

The study was conducted from 15 April 2021 to 23 June 2021. A total of 19 volunteers were 114 115 assessed for eligibility, with 13 volunteers excluded for not meeting the inclusion/exclusion 116 criteria (n=9) or due to the volunteers' decision not to take part in the study (n=4). A total of 117 6 healthy, malaria naïve participants were enrolled and inoculated intravenously with P. 118 falciparum 3D7 infected erythrocytes on day 0. Participants (3 male and 3 female) were aged 119 between 21 and 55 years; 5 participants self-selected their race as White and one participant 120 as Australian Aboriginal or Torres Strait Islander (Table 1). All participants were orally 121 dosed with piperaquine on day 9 (480 mg) and day 11 (960 mg), and tafenoquine on day 25 122 (50 mg). All participants completed the study and were included in the analysis of study 123 endpoints.

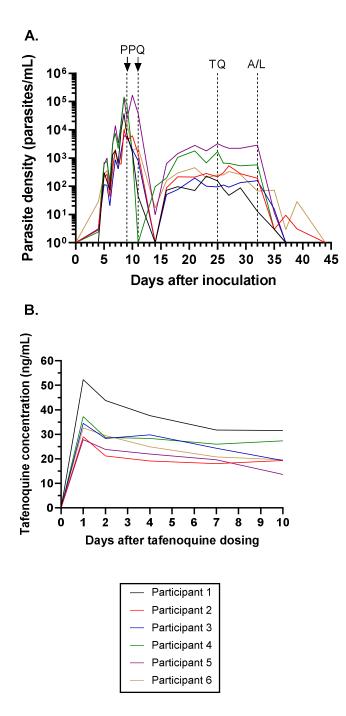

	Participant 1	Participant 2	Participant 3	Participant 4	Participant 5	Participant 6
Age range (years)	21-25	31-35	51-55	21-25	26-30	31-35
Sex	Female	Male	Male	Female	Female	Male
Race	White	White	White	Australian Aboriginal or Torres Strait Islander	White	White
Weight (kg)	61	105	85	57	77	78
Body mass index (kg/m ²)	24	32	30	21	28	27

Table 1. Demographic profile of participants (*n*=6).

125

126 Parasitemia

127	The progression of parasitemia following intravenous inoculation with blood stage parasites
128	(Figure 1A) was consistent between participants, with a median parasitemia of 12568
129	parasites/mL (range 4318-82140) recorded on day 9 prior to the commencement of
130	piperaquine treatment. Piperaquine successfully cleared asexual parasitemia in all
131	participants, while mature gametocytes were observed re-entering circulation from
132	approximately day 15. The absence of asexual ring stage parasites from day 16 was
133	confirmed using qRT-PCR targeting the SBP1 transcript which is specific for ring stage
134	parasites, while the presence of both male and female gametocytes was confirmed by qRT-
135	PCR targeting <i>pfMGET</i> and <i>pfs25</i> transcripts, respectively (Figure S1, supplementary file
136	page 2). The median gametocyte density (as determined by 18S qPCR) at the time of dosing
137	with 50 mg tafenoquine on day 25 was 234 gametocytes/mL (range 95–3234). The median
138	within-participant percent reduction in gametocyte density was not statistically significant at
139	any time-point following tafenoquine dosing (Table 2). Similarly, the change in the ratio of
140	pfMGET to pfs25 transcripts from day 25 (pre-tafenoquine) to post-treatment time points (4
141	and 7 days post-dosing) was not significant (Table S1, supplementary file page 3).
142	At day 26, the mean (range) plasma tafenoquine concentration was 35.6 ng/mL (27.8 to 52.3)
143	at about 24 hours after the 50 mg dose of tafenoquine, and concentrations remained ≥ 18
144	ng/mL over the course of the 7 day period during which transmission was assessed (Figure
145	1B). Definitive antimalarial treatment with a standard 3-day course of artemether-
146	lumefantrine was initiated on day 32 (7 days post tafenoquine dosing) for all participants.
147	Two participants (participant 2 and participant 6) were administered a single dose of 45 mg
148	primaquine after artemether-lumefrantrine treatment (day 44) to clear residual gametocytes.
149	All participants were confirmed to be aparasitemic by qPCR prior to the conclusion of the
150	study (Figure 1A).

- 152 Figure 1. Individual participant parasitemia-time profiles (A) and tafenoquine plasma
- 153 concentration-time profiles (B). Participants were inoculated intravenously with *P*.
- 154 *falciparum*-infected erythrocytes on day 0 and were administered an oral dose of piperaquine
- (PPQ) on day 9 (480 mg) and day 11 (960 mg) to clear asexual parasitemia while allowing
- transmissible gametocytes to mature. A single oral dose of 50 mg tafenoquine (TQ) was
- administered on day 25. Definitive antimalarial treatment with a standard course of
- artemether-lumefantrine (A/L) was initiated on day 32. Parasitemia was measured using
- 159 qPCR targeting the gene encoding *P. falciparum*18S rRNA. Tafenoquine plasma
- 160 concentrations were measured using liquid chromatography tandem mass spectrometry.

161 **Table 2.** Change in gametocyte density from pre-tafenoquine dosing to post-treatment time

162 points

Time-point (days relative to tafenoquine dosing)	N	Median gametocyte density (range)	Median % reduction (IQR)	<i>P</i> -value*
0 (pre-tafenoquine)	6	234 (95 - 3236)		
1	6	275 (79 – 2570)	10 (-17 - 48)	0.46
4	6	269 (89 - 2239)	14 (-29 – 42)	0.46
7	6	174 (13 – 2884)	38 (10 – 73)	0.17

¹⁶³ Gametocyte density per mL was measured using 18S qPCR. Median % reduction is the median within

164 participant percentage reduction in gametocyte density relative to the pre-tafenoquine time point (baseline).

165 IQR: interquartile range. *Reduction in gametocyte density was assessed using a Wilcoxon signed-rank test.

166

167 Transmission

168 Transmission was measured by detection of oocysts and sporozoites in mosquito midgut and

169 head/thorax dissections, respectively, by 18S qPCR. Microscopy was also performed on

170 dissected mosquito midguts stained with mercurochrome for visual confirmation of oocysts.

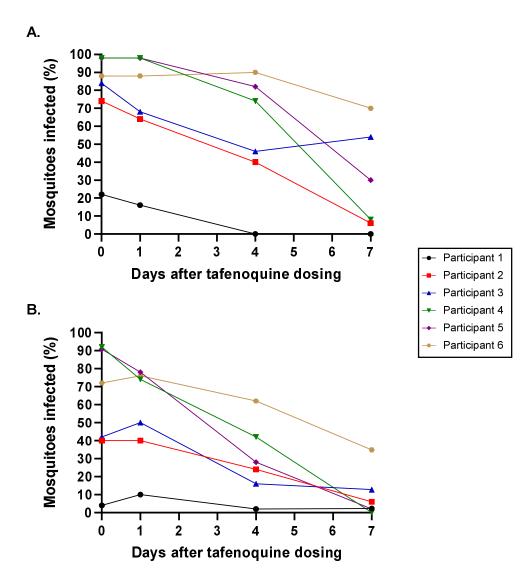
171 The oocyst detection rate by 18S qPCR and microscopy was strongly correlated ($r_{rm}=0.95$

172 [95% CI: 0.87 - 0.98], *P*<0.001), and the 18S qPCR results are reported henceforth.

173 All 6 participants were infective to mosquitoes (at both the oocyst and sporozoite level) prior

to tafenoquine dosing (Figure 2A/B). The intensity of mosquito infection was high, with a

median 86% (range 22 - 98) of mosquitoes positive for oocysts, and 57% (range 4 - 92)


176 positive for sporozoites (Table 2). All 6 participants remained infective to mosquitoes (at

both the oocyst and sporozoite levels) one day after tafenoquine dosing (Figure 2A/B), and

no significant change in the intensity of mosquito infection was evident at this time point

- 179 (Table 2). Most participants remained infective to mosquitoes at all time-points following
- tafenoquine dosing, with only one participant not infective to mosquitoes at the oocyst level
- 181 on day 4 and day 7 post-dosing, and another not infective at the sporozoites level at day 7
- 182 (*P*=0.32 [McNemar's test] for decline in proportion of participants infective to mosquitoes at

- 183 either oocyst or sporozoite levels at day 7 post dosing). However, a significant decline in the
- intensity of mosquito infection was detected at days 4 and 7 post-dosing at both the oocyst

and sporozoite levels (Table 2).

187 Figure 2. Individual participant mosquito infectivity rates at the oocyst (A) and sporozoite (B) levels. Blood samples were collected prior to and after administration of a single oral 188 dose of 50 mg tafenoquine and transmission to mosquitoes was determined using an enriched 189 190 membrane feeding assay. The presence of oocysts in mosquito midgut dissections (n=50 for 191 each participant at each time point) and sporozoites in mosquito head/thorax dissections 192 (n=42-50 for each participant at each time point) were detected using qPCR targeting the 193 gene encoding P. falciparum 18S rRNA. The sporozoite and oocyst positivity rates were 194 highly correlated (r_{rm} =0.92 [95% CI: 0.79 – 0.97], p<0.001).

196 Table 2. Change in the intensity of mosquito oocyst and sporozoite infection from pre-

197	tafenoquine dosing to post-treatment time points.	
-----	---	--

Time-point (days relative to tafenoquine dosing)	N	Median % infected mosquitoes (range)	Median % reduction (IQR)	<i>P-</i> value*	Median % infected mosquitoes (range)	Median % reduction (IQR)	P-value*
			Oocysts			Sporozoites	
0 (pre- tafenoquine)	6	86 (22 – 98)			57 (4 - 92)		
1	6	78 (16 - 98)	7 (0 – 19)	0.087	62 (10 - 78)	-3 (-19 – 14)	0.67
4	6	60 (0 - 90)	35 (16-46)	0.046	26 (2 - 62)	52 (40 - 62)	0.028
7	6	19 (0 – 70)	81 (36 – 92)	0.028	4 (0 – 35)	77 (52 – 98)	0.028

198 Median % reduction is the median within participant percentage reduction in the proportion of infected

199 mosquitoes relative to the pre-tafenoquine dosing time point (baseline). *Reduction in intensity of mosquito

200 infection was assessed using a Wilcoxon signed-rank test.

201

202 Predictors of infectivity to mosquitoes

At the pre-tafenoquine dosing time-point (day 25), infectivity to mosquitoes at the oocyst

level was positively correlated with the level of gametocytemia at this time point, as

205 measured by 18S qPCR (r=0.81, P=0.050), with a positive trend also noted at the sporozoite

level (r=0.77, P=0.072). No correlation was observed between infectivity at day 25 and the

ratio of *pfMGET* to *pfS25* transcripts at this time point (oocysts: r=0.20, p=0.70; sporozoites:

r=0.14, p=0.79). Similarly, no correlation was observed between infectivity at day 25 and

209 peak parasitemia at the time of piperaquine dosing (oocysts: r=0.58, p=0.23; sporozoites:

r=0.54, p=0.27), or the area under the parasitemia-time curve prior to piperaquine dosing

211 (oocysts: r=0.58, *P*=0.23; sporozoites: r=0.60, *P*=0.21).

212 Interestingly, in exploring possible explanations for why one participant may have had a

213 lower intensity of mosquito infectivity at baseline compared to the other participants

214 (Participant 1, Figure 2), we noted that this participant had a significantly elevated C reactive

215 protein concentration (CRP, 46 mg/L) compared to the other participants (16 mg/L for

Participant 2, 5 mg/L for Participants 3 and <5 mg/L for Participants 4 – 6). Replacing <5 mg/L with 2.5 mg/L, although numbers are small, a strong inverse correlation between CRP and infectivity was noted at both the sporozoite (r=-0.94, P=0.005) and the oocyst levels (r=-0.95, P=0.003).

220 Safety and tolerability

221 A total of 63 adverse events (AEs) were reported in this study, the majority of which were 222 mild signs and symptoms of malaria (Table 3 and Table S1, supplementary file, page 4). No 223 AEs met the protocol-defined criteria of a serious adverse event (SAE), resulted in a 224 participant discontinuing the study, or were considered related to dosing with tafenoquine. 225 There were 14 AEs of moderate intensity and one AE of severe intensity. The severe AE was 226 a low lymphocyte count $(0.4 \times 10^9/L)$, normal range 1.1 - $4 \times 10^9/L$) on day 9 (first piperaquine 227 dose). The event spontaneously resolved without medical intervention over the course of one week (lymphocyte count 1.4×10^{9} /L on day 16). A decreased white blood cell count 228 229 (lymphocytes, neutrophils, and/or a composite decrease in leukocytes) was observed in four 230 participants around the time of piperaquine dosing. Other than the severe (grade 3) decrease 231 in lymphocyte count, the decrease in total white blood cell counts were moderate (grade 2) in 232 intensity and spontaneously resolved over the course of a few days. All participants 233 experienced a mild fall in hemoglobin, with a median fall of 21.5 g/L (range 15 - 36) from 234 pre-inoculation to hemoglobin nadir (Figure S2, supplementary file page 3). Hemoglobin 235 declines of >20 g/L occurred in 3 participants and were recorded as mild AEs; these events 236 were considered unrelated to tafenoquine since the onset occurred prior to dosing. No 237 clinically significant abnormalities in other laboratory parameters were recorded for any 238 participant. Monitoring of vital signs revealed mild pyrexia in 2 participants and mild 239 tachycardia in one participant. No clinically significant abnormalities were recorded for 240 electrocardiogram (ECG) parameters.

241 **Table 3.** Summary of adverse events.

Adverse event category ^a	Participant 1	Participant 2	Participant 3	Participant 4	Participant 5	Participant 6	Total <i>N=</i> 6
Any adverse event	9	6	7	17	21	3	63
Adverse event of moderate intensity (grade 2) ^b	2	1	1	2	8	0	14
Adverse event of severe intensity (grade 3) ^b	0	0	0	0	1	0	1
Adverse event related to malaria	8	2	1	12	15	3	41

^a No adverse events met the criteria for a serious adverse event, resulted in study discontinuation, or were considered related to tafenoquine. ^b The severity of adverse events

243 was assessed in accordance with the Common Terminology Criteria for Adverse Events (26) (mild=grade 1; moderate=grade 2; severe=grade 3; life-threatening

consequences=grade 4; death related to AE=grade 5). No grade 4 or 5 adverse events were recorded in this study.

246 **DISCUSSION**

247	The objective of this study was to characterize the transmission blocking activity of a low
248	dose of tafenoquine in healthy volunteers using the IBSM-transmission model. At the time of
249	study design, the transmission blocking activity of tafenoquine in humans had not previously
250	been assessed. However, concurrently with our trial, another group has assessed the
251	transmission blocking activity of low dose tafenoquine in a field trial in Mali, Africa (27).
252	This presents a unique opportunity to compare the results obtained from a volunteer infection
253	study enrolling a small number of healthy volunteers ($n=6$), with a larger field trial enrolling
254	patients with asymptomatic <i>P. falciparum</i> (<i>n</i> =80 across 4 tafenoquine dose groups).
255	The performance of the P. falciparum IBSM-transmission model in enabling a robust
256	assessment of a candidate transmission blocking intervention was confirmed in the current
257	study. Asexual parasitemia was successfully cleared in all participants using a piperaquine
258	monotherapy dosing strategy, which allowed for subsequent development of mature
259	transmissible gametocytes. As expected, gametocyte densities (median 234 gametocytes/mL
260	on day 25) were considerably lower than are typically observed in the field (approximately
261	40,000 gametocytes/mL at baseline in the Mali trial (27)). Nevertheless, all participants were
262	infective to mosquitoes prior to administration of tafenoquine on day 25. Further, a high
263	intensity of mosquito infectivity was observed at this time point, with infectivity rates \geq 74%
264	(oocysts) or \geq 40% (sporozoites) in 5/6 participants. One participant exhibited a somewhat
265	lower intensity of mosquito infectivity at baseline (22% for oocysts and 4% for sporozoites)
266	compared with the other participants, despite having similar gametocyte levels. Interestingly,
267	this participant had an elevated CRP (46 mg/L at day 25) compared to the other participants
268	(all \leq 16 mg/L). An inhibitory effect of inflammatory cytokines on gametocyte
269	transmissibility has been demonstrated in vitro and in an animal model (28, 29), and it is
270	therefore possible that this may have contributed to lower transmission in this participant.

271 The generally high transmission rates achieved at baseline (with relatively low gametocyte 272 densities) were likely facilitated by the Percoll enrichment step prior to mosquito feeding, as 273 well as optimization of the timing of feeding assays relative to the entry of mature 274 gametocytes into the circulation. 275 The dose of tafenoquine assessed for transmission blocking activity in this study (50 mg 276 single dose) is considerably lower than is used for currently approved indications in 277 individuals with sufficient G6PD activity. Recommended dosing for malaria prophylaxis is 278 200 mg daily for 3 days (loading) followed by 200 mg weekly (maintenance), while a single 279 300 mg dose is recommended for radical cure of *P. vivax*. We assessed a dose of 50 mg 280 hypothesizing that such a dose may be safe to administer to individuals of unknown G6PD 281 status, in a similar manner to low dose primaquine. A dose of 100 mg tafenoquine was found 282 to be safe in a small group of G6PD heterozygous females with enzyme activity 40-60% of 283 normal (18). Nevertheless, further work is required to determine the appropriate dose of 284 tafenoquine that could safely be used in the absence of G6PD screening. As expected, no 285 safety signals were associated with tafenoquine dosing of volunteers with G6PD levels in the 286 normal range in the current study. A mild decrease in hemoglobin was observed in all 287 participants over the course of the study relative to malaria infection, consistent with what 288 has been observed in previous IBSM studies (30). Other adverse events recorded during the 289 study were commensurate with blood stage challenge of healthy malaria naïve volunteers. 290 Overall, no significant safety concerns were identified in this study. 291 A single dose of 50 mg tafenoquine was found to significantly reduce but not abrogate 292 transmission of parasites to Anopheles mosquitoes, although a delay in activity was evident. 293 No attenuation of transmission was detected one day after dosing, but a significant reduction

in the intensity of mosquito infection was evident 4 days after dosing, with a further reduction

observed at 7 days after dosing (median 81% reduction for oocysts and 77% reduction for

296 sporozoites at 7 days post-dose compared to baseline). There was no significant decrease in 297 gametocyte density detected over the course of 7 days post-dose, likely indicating that 298 sterilization of the gametocytes preceded their clearance. A similar delay in tafenoquine 299 transmission blocking activity was observed in the field (27). In the Mali trial, participants 300 received standard treatment with dihydoartemisinin-piperaquine (DP) over 3 days, or DP plus 301 a single dose of 0.42 mg/kg, 0.83 mg/kg, or 1.66 mg/kg tafenoquine. For comparison in our 302 study where participants were not dosed by body weight, the 50 mg tafenoquine dose equates 303 to a body weight adjusted dose range of 0.48-0.88 mg/kg. Two days after the commencement 304 of treatment in the Mali trial, no difference in the reduction in mosquito infection rate was 305 detected between the groups receiving tafenoquine compared to the DP control group. 306 However, a significant difference was observed at 7 days after treatment initiation, with a 307 median 100% reduction (at the oocyst level) in all three tafenoquine dose groups. This 308 reduction is higher than we observed in our study at 7 days post tafenoquine dose (81% at the 309 oocyst level). We hypothesize that this difference may be due to a contribution from the 310 combined DP treatment in the Mali study given that a significant reduction in the mosquito 311 infection rate occurred in the DP control group.

Our study had several limitations. First, due to budget constraints our sample size was small, limiting the accuracy of estimation of the transmission blocking effect. Second, we did not include control participants not receiving tafenoquine, and it is possible that a decline in transmission may have occurred even in the absence of tafenoquine. Finally, we were only able to test a single dose of tafenoquine (50 mg). Testing the effect of other doses would have provided valuable data for identifying a dose-response relationship in transmission blocking activity.

In conclusion, this study has demonstrated the utility of single low dose tafenoquine in
reducing transmission of *P. falciparum* from humans to mosquitoes. The results obtained in

321	this volunteer infection study compare favorably with those of a recent field study assessing
322	the transmission blocking activity of low dose tafenoquine in African patients with
323	asymptomatic P. falciparum infection. The reason for the delay in the activity of tafenoquine
324	identified in both studies is unclear. The mode of action of the drug and/or a requirement for
325	metabolism-dependent tafenoquine activation may be important factors. Although the delay
326	in the activity of tafenoquine is a drawback compared to its fast acting analogue primaquine,
327	the considerably longer half-life of tafenoquine suggests that it may offer a much longer
328	duration of transmission blocking activity. Such a property would be highly advantageous in
329	preventing transmission of gametocytes that appear in circulation after dosing.
330	

331 METHODS

332 Study design and participants

333 This phase 1b study was planned to be composed of three parts. Part 1, performed as planned, 334 was designed to evaluate the potential of single oral doses of tafenoquine to clear asexual 335 blood stage *P. falciparum*. The design and results of this part will be presented elsewhere. 336 Part 2 was designed to evaluate the chemoprophylaxis potential of a single oral dose of 337 tafenoquine. This part was optional and was dependent on the results obtained in Part 1. 338 Following review of the results obtained in part 1 it was decided not to conduct part 2; the 339 study design and methodology of part 2 is not described here. Part 3, performed as planned, 340 was designed to determine if a single oral dose of tafenoquine is active against mature 341 gametocytes and is able to block transmission to mosquitoes. The study design and 342 methodology of part 3 are described below. 343 This study was an open label, non-randomized, clinical trial using the IBSM model. Healthy

344 malaria naïve males and females (non-pregnant, non-lactating) aged 18-55 years were eligible

for inclusion in the study (see Text S1, supplementary file page 5 for full eligibility criteria).

346 The study was conducted at the University of the Sunshine Coast Clinical Trials Unit

347 (Morayfield, Australia) and was registered on the Australian and New Zealand Clinical Trials

348 Registry (Trial ID: ACTRN12620000995976).

349 **Procedures**

350 The study was conducted in a single cohort of 6 participants. Participants were inoculated 351 intravenously with approximately 2800 viable P. falciparum 3D7 infected erythrocytes on 352 day 0. Parasitemia was monitored throughout the study by quantitative PCR (qPCR) targeting 353 the gene encoding P. falciparum 18S rRNA (31). Additional blood samples were collected at 354 select time points for quantitative reverse transcriptase PCR (qRT-PCR) targeting male and 355 female gametocyte-specific mRNA transcripts, pfs25 and pfMGET respectively (32), as well 356 as the ring-stage trophozoite-specific transcript SBP1 (33). Participants were administered 357 piperaquine phosphate tablets (PCI Pharma Services) on day 9 (single 480 mg dose) and day 358 11 (single 960 mg dose) to clear asexual parasites while allowing development of 359 transmissible gametocytes (24, 25). Transmission of gametocytes to mosquitoes was assessed 360 on day 25 immediately prior to administration of a single oral dose of 50 mg tafenoquine succinate in tablet form (Kodatef[®], Biocelect). A validated pharmacy method for 361 362 extemporaneous preparation was used to prepare the dose from the 100 mg tablets supplied 363 by the manufacturer. Additional transmission assessments were performed on days 26, 29 and 364 32. Participants received a standard curative course of artemether-lumefantrine (Riamet[®], 365 Novartis Pharmaceuticals) following the final transmission assays on day 32. The end of 366 study occurred on day 35. 367 Transmission of gametocytes to Anopheles mosquitoes was determined by collecting blood

368 samples (up to 66 mL) from participants and conducting enriched membrane feeding assays

369 (eMFAs) as previously described (24). Briefly, blood samples collected at the clinic were

370	transported to QIMR Berghofer Medical Research Institute (under controlled temperature)
371	where eMFAs were conducted. Blood was leukodepleted and uninfected erythrocytes
372	separated from gametocytes using a concentration method (65% Percoll density gradient).
373	The resulting gametocyte rich band was added to malaria naïve donor serum and malaria
374	naïve donor blood to form the mosquito feed mix. Mosquitoes that had been reared in a
375	controlled environment in a PC3 insectary (BIC3) were distributed into containers with gauze
376	lids and starved prior to feeding. Two separate pots containing approximately 75 mosquitoes
377	each were allowed to feed for approximately 30 minutes through parafilm membranes on
378	water jacketed glass feeders attached to a pre-warmed water bath (39-40°C). After feeding,
379	the number of engorged mosquitoes was recorded. The blood-fed mosquitoes were
380	maintained on glucose in a controlled environment (27°C, 70-80% relative humidity). The
381	mosquitoes from one pot were dissected after 8 days, with approximately 50 midgut
382	dissections analyzed for oocysts by 18S qPCR (34) and the remaining midguts examined by
383	microscopy for visual confirmation of oocysts. The mosquitoes from the other pot were
384	dissected after 17 days, with approximately 50 head/thorax dissections analyzed for
385	sporozoites by 18S qPCR (see Text S2, supplementary file page 9).
386	Venous blood samples (2 mL) were collected at days 25, 26, 27, 29 and 32 for the
387	measurement of plasma tafenoquine concentrations by LC-MS/MS.
388	Ethylenediaminetetraacetic acid was used as the anticoagulant. All blood samples were
389	centrifuged at 1600g for 15 minutes at $6\pm1^{\circ}$ C, and the separated plasma samples were stored
390	at -80° \pm 5°C until analysis. Plasma concentrations of tafenoquine were measured using a
391	validated LC-MS/MS method. Briefly, plasma samples (50 μ L) were precipitated by the
392	addition of 200 μ L acetonitrile containing a stable-isotope label tafenoquine as internal
393	standard. Extracts were separated on a Waters Atlantis T3 column. (3 μ m) with a linear 0.1%
394	formic acid, acetonitrile gradient and injected into a Sciex Qtrap 4000 mass spectrometer in

395	the positive MRM mode. Unknown sample MSMS peak areas were integrated and read off a
396	6-point calibration curve (range 1 to 1200 ng/mL) with a quadratic regression analysis and
397	weighting of $1/x^2$. A correlation coefficient greater than or equal to 0.9970 was obtained for
398	all calibration curves. The intra- and inter-assay precisions (coefficient of variation %) were
399	0.5% ($n=6$) and 4.4% ($n=8$), respectively, for tafenoquine at a limit of quantification of 1
400	ng/mL. Corresponding values were 1.6% and 3.2% at 100 ng/mL. The mean \pm SD inter-assay
401	accuracy at 1 and 100 ng/mL were 102.0 \pm 4.5% and 100.9 \pm 3.3%, respectively.
402	Safety assessments included adverse event (AE) recording, clinical laboratory parameters
403	(hematology, biochemistry and urinalysis), vital signs (blood pressure, heart rate, respiratory
404	rate, and body temperature), 12-lead electrocardiography, and physical examination. AEs
405	were recorded from the time of inoculation with the malaria challenge agent up to the end of
406	the study. AE severity was recorded in accordance with the Common Terminology Criteria
407	for Adverse Events (26) (mild=grade 1; moderate=grade 2; severe=grade 3; life-threatening
408	consequences=grade 4; death related to AE=grade 5). In addition, an AE was classified as a
409	serious adverse event (SAE) if it met one of the following criteria: resulted in death, was life-
410	threatening, required inpatient hospitalization, resulted in persistent or significant disability,
411	was a congenital anomaly, was considered medically important, or constituted a possible
412	Hy's Law case. The investigator assessed whether AEs were related to tafenoquine,
413	piperaquine, and/or to the malaria challenge agent.

414 Outcomes

The primary outcome of this clinical trial was associated with part 1 and will be presented

- elsewhere. Secondary outcomes associated with part 3 of the trial were the reduction in
- 417 gametocytemia and mosquito infection on days 26, 29 and 32 compared to day 25; and the

		• .	1 1 1.		•	C . T	1	1	C	1 1.	•
418	incidanca	COVONITV	and relationship	n to tata	noalling	ST A HC	and	change	trom	hacalina	1n
410	menuence,	SUVUILLY,	and relationship	p to tare	noquine c	л പ ാ.	, anu v	change	nom	Dascinic.	111

419 clinical laboratory parameters (hematology, biochemistry, urinalysis).

420 Statistical analysis

We had initially intended to enroll a total of 14 participants, based on the assumption that 421 422 75% of participants would be infective at baseline. With 14 participants, there would be 10 423 participants infective at day 25 (lower bound of 95% CI of 41.9%). Of those 10 participants 424 infective at day 25, assuming a 95% transmission blocking efficacy for tafenoquine 425 treatment, then the lower bound of the 95% CI for the reduction in mosquito infectivity 426 would be 69.2%. Due to budget constraints implemented part-way through the study, only 6 427 participants could be enrolled. 428 The change in transmission to mosquitoes on days 26, 29 and 32 compared to day 25 (pre-429 tafenoquine dosing) was reported as the proportion of participants infective to mosquitoes, 430 and the intensity of mosquito infection (proportion of infected mosquitoes), at pre- and post-431 tafenoquine treatment time points. The median within participant percentage reduction in the 432 proportion of infected mosquitoes relative to the pre-tafenoquine time point (baseline) was 433 calculated. Separate analyses were performed at the oocyst and sporozoite levels. A 434 participant was defined as infective to mosquitoes if at least one mosquito was positive for 435 the presence of oocysts or sporozoites. A mosquito was defined as infected if the presence of 436 oocysts or sporozoites were detected in midgut or head/thorax dissections respectively by 18S 437 qPCR. Changes in the proportion of participants infective to mosquitoes between day 25 and 438 each of the post-tafenoquine treatment time points were assessed using McNemar's test. A 439 Wilcoxon signed-rank test was used to assess whether there was a nonzero percentage 440 reduction in infected mosquitos between baseline (pre-tafenoquine) and post-treatment time 441 points.

442	Spearman's rank order correlation was used to assess factors associated with transmission at
443	day 25 (pre-tafenoquine baseline). Repeated measures correlation was run for assessment of
444	oocyst vs sporozoite infectivity, and for qPCR vs microscopy oocyst infectivity, following
445	logit(x+0.01) transformations, to account for multiple measures per participant across all
446	transmission days (35, 36). The area under the parasitemia-time curve prior to piperaquine
447	dosing (day 4 to day 9) was calculated on the parasites/mL scale for each participant using
448	the trapezoidal rule method.
449	Gametocyte densities were quantified using 18S qPCR, as it was confirmed during the study
450	(by qRT-PCR targeting SBP1 mRNA) that asexual parasites were successfully cleared
451	following piperaquine dosing and thus the 18S signal detected during the transmission phase
452	of the study represented gametocytes only. A Wilcoxon signed-rank test was used to assess
453	whether there was a nonzero percentage reduction in gametocyte density between baseline
454	(pre-tafenoquine) and post-treatment time points. The change in the ratio of <i>pfMGET</i>
455	transcript levels to pfs25 transcript levels on days 26, 29 and 32 compared with day 25 (pre-
456	tafenoquine baseline) was assessed using a Wilcoxon rank sum test.
457	Statistical significance was set at a <i>P</i> -value < 0.05 (two-sided). Statistical analysis were
458	performed in Stata version 15 (StataCorp, College Station, TX, USA) and in R statistical
459	package version 4.1.0 (R Core Team, 2020).
460	Study approval
461	This study was approved by the QIMR Berghofer Medical Research Institute Human

462 Research Ethics Committee (reference number P3646) with mutual recognition of the ethical

review of the QIMR Berghofer HREC P3646 by the Departments of Defence and Veterans'

464 Affairs Human Research Ethics Committee (DDVA HREC 194-19). All participants gave

465 written informed consent before enrollment.

466

467 AUTHOR CONTRIBUTIONS

- 468 Study conceptualization: BEB, JSM, GDS.
- 469 Study design: BEB, JSM, GDS, LM, SLL, RW, AJP, HJ.
- 470 Study management: RW, BEB.
- 471 Data acquisition: HM, JP, JH, BON, JG, SL, FA, ME, GB, BEB.
- 472 Data analysis: SLL, LM.
- 473 Manuscript writing: AJP, BEB.
- 474 Manuscript review: All authors.
- 475

476 ACKNOWLEWDGEMENTS

- 477 We thank all the volunteers who participated in the study; staff at the University of the
- 478 Sunshine Coast Clinical Trials Unit who conducted the trial; staff at the Queensland
- 479 Paediatric Infectious Diseases laboratory for qPCR analysis; Dr David Wesche (Certara), Dr
- 480 Jörg Möhrle (Medicine for Malaria Venture), and Dr Scott Miller (Bill and Melinda Gates
- 481 Foundation) for their participation in the Safety Data Review Team; Karin Van Breda for the
- 482 measurement of plasma tafenoquine concentrations using LC-MS/MS; and Medicines for
- 483 Malaria Venture (MMV) for providing financial support to the Clinical Malaria Group within
- 484 QIMR Berghofer Medical Research Institute.

485

486 **DISCLAIMER**

- 487 The views expressed in this article are those of the authors and do not necessarily reflect the
- 488 official policy or position of the Australian Defence Force, Joint Health Command or any
- 489 extant Australian Defence Force policy.

491 **REFERENCES**

- 492 1. *World Malaria Report*. Geneva: World Health Organization; 2020.
- 493 2. White NJ. Emergence of artemisinin-resistant *Plasmodium falciparum* in East Africa.
- 494 *N Engl J Med.* 2021;385(13):1231-2.
- 495 3. Bhatt S, et al. The effect of malaria control on *Plasmodium falciparum* in Africa
- 496 between 2000 and 2015. *Nature*. 2015;526(7572):207-11.
- 497 4. Delves MJ, et al. Antimalarial transmission-blocking interventions: Past, present, and
 498 future. *Trends Parasitol.* 2018;34(9):735-46.
- 499 5. Birkholtz LM, et al. Transmission-blocking drugs for malaria elimination. *Trends*
- 500 *Parasitol.* In press.
- 501 6. Policy brief on single-dose primaquine as a gametocytocide in Plasmodium

falciparum malaria. Geneva: World Health Organization; 2015.

- 503 7. Dicko A, et al. Efficacy and safety of primaquine and methylene blue for prevention
- of *Plasmodium falciparum* transmission in Mali: a phase 2, single-blind, randomised
 controlled trial. *Lancet Infect Dis.* 2018;18(6):627-39.
- 506 8. Goncalves BP, et al. Single low dose primaquine to reduce gametocyte carriage and
- 507 *Plasmodium falciparum* transmission after artemether-lumefantrine in children with
- asymptomatic infection: a randomised, double-blind, placebo-controlled trial. *BMC Med.* 2016;14:40.
- 9. Recht J, et al. Use of primaquine and glucose-6-phosphate dehydrogenase deficiency
 testing: divergent policies and practices in malaria endemic countries. *PLoS Negl Trop Dis.* 2018;12(4):e0006230.
- 513 10. Mihaly GW, et al. Pharmacokinetics of primaquine in man: identification of the
 514 carboxylic acid derivative as a major plasma metabolite. *Br J Clin Pharmacol.*
- 515 1984;17(4):441-6.

516	11.	Frampton JE.	Tafenoquine:	first global	approval.	Drugs.	2018;78(14):1517-23.

- 517 12. Charles BG, et al. Population pharmacokinetics of tafenoquine during malaria
- 518 prophylaxis in healthy subjects. *Antimicrob Agents Chemother*. 2007;51(8):2709-15.
- 519 13. Edstein MD, et al. Population pharmacokinetics of the new antimalarial agent
- tafenoquine in Thai soldiers. *Br J Clin Pharmacol.* 2001;52(6):663-70.
- 521 14. Chen V, and Daily JP. Tafenoquine: the new kid on the block. *Curr Opin Infect Dis.*522 2019;32(5):407-12.
- 523 15. Kemirembe K, et al. Interactions between tafenoquine and artemisinin-combination
- 524 therapy partner drug in asexual and sexual stage *Plasmodium falciparum*. *Int J*
- 525 *Parasitol Drugs Drug Resist.* 2017;7(2):131-7.
- 526 16. Coleman RE, et al. Gametocytocidal and sporontocidal activity of antimalarials
- 527against Plasmodium berghei ANKA in ICR Mice and Anopheles stephensi

528 mosquitoes. *Am J Trop Med Hyg.* 1992;46(2):169-82.

- Lu KY, and Derbyshire ER. Tafenoquine: a step toward malaria elimination. *Biochemistry*. 2020;59(8):911-20.
- 531 18. Rueangweerayut R, et al. Hemolytic potential of tafenoquine in female volunteers
- heterozygous for glucose-6-phosphate dehydrogenase (G6PD) deficiency (G6PD
- 533 Mahidol variant) versus G6PD-normal volunteers. *Am J Trop Med Hyg*.
- 534 2017;97(3):702-11.
- Gaur AH, et al. Safety, tolerability, pharmacokinetics, and antimalarial efficacy of a
 novel *Plasmodium falciparum* ATP4 inhibitor SJ733: a first-in-human and induced
 blood-stage malaria phase 1a/b trial. *Lancet Infect Dis.* 2020;20(8):964-75.
- 538 20. McCarthy JS, et al. Efficacy of OZ439 (artefenomel) against early *Plasmodium*
- *falciparum* blood-stage malaria infection in healthy volunteers. *J Antimicrob*
- 540 *Chemother*. 2016;71(9):2620-7.

541	21.	McCarthy JS, et al	. Safety,	tolerability,	pharmacokir	netics, a	nd activity	of the nove	l
-----	-----	--------------------	-----------	---------------	-------------	-----------	-------------	-------------	---

- 542 long-acting antimalarial DSM265: a two-part first-in-human phase 1a/1b randomised
 543 study. *Lancet Infect Dis.* 2017;17(6):626-35.
- 544 22. McCarthy JS, et al. Linking murine and human *Plasmodium falciparum* challenge
- models in a translational path for antimalarial drug development. *Antimicrob Agents*
- 546 *Chemother*. 2016;60(6):3669-75.
- 547 23. McCarthy JS, et al. Safety, pharmacokinetics, and antimalarial activity of the novel
- 548 *Plasmodium* eukaryotic translation elongation factor 2 inhibitor M5717: a first-in-
- human, randomised, placebo-controlled, double-blind, single ascending dose study

and volunteer infection study. *Lancet Infect Dis.* 2021;21(12):1713-24.

- 551 24. Collins KA, et al. A controlled human malaria infection model enabling evaluation of
 552 transmission-blocking interventions. *J Clin Invest.* 2018;128(4):1551-62.
- 553 25. Pasay CJ, et al. Piperaquine monotherapy of drug-susceptible *Plasmodium falciparum*
- infection results in rapid clearance of parasitemia but Is followed by the appearance of
 gametocytemia. *J Infect Dis.* 2016;214(1):105-13.
- 556 26. *Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0.* Bethesda:
- 557 US Department of Health and Human Services; 2010.
- 558 27. Mahamar A, et al. Single low dose tafenoquine combined with dihydroartemisinin-
- piperaquine to reduce *P. falciparum* transmission: A phase 2 single blind randomised
- 560 clinical trial in Ouelessebougou, Mali [preprint].
- 561 <u>https://dx.doi.org/10.2139/ssrn.3903938</u>. Posted on SSRN August 12, 2021.
- 562 28. Naotunne TS, et al. Cytokines kill malaria parasites during infection crisis:
- 563 extracellular complementary factors are essential. *J Exp Med.* 1991;173(3):523-9.

- 564 29. Naotunne TS, et al. Cytokine-mediated inactivation of malarial gametocytes is
- 565 dependent on the presence of white blood cells and involves reactive nitrogen
- 566 intermediates. *Immunology*. 1993;78(4):555-62.
- 30. Woolley SD, et al. Haematological response in experimental human *Plasmodium falciparum* and *Plasmodium vivax* malaria. *Malar J.* 2021;20(1):470.
- 569 31. Rockett RJ, et al. A real-time, quantitative PCR method using hydrolysis probes for
- 570 the monitoring of *Plasmodium falciparum* load in experimentally infected human
- 571 volunteers. *Malar J*. 2011;10(1):1-6.
- 572 32. Wang CYT, et al. Assays for quantification of male and female gametocytes in human
- blood by qRT-PCR in the absence of pure sex-specific gametocyte standards. *Malar*
- 574 *J*. 2020;19(1):218.
- 575 33. Tadesse FG, et al. Molecular markers for sensitive detection of *Plasmodium*
- *falciparum* asexual stage parasites and their application in a malaria clinical trial. *Am*
- 577 *J Trop Med Hyg.* 2017;97(1):188-98.
- 578 34. Wang CYT, et al. Assessing *Plasmodium falciparum* transmission in mosquito-
- feeding assays using quantitative PCR. *Malar J.* 2018;17(1):249.
- 580 35. Linden A. *RMCORR: Stata module to compute a correlation for data with repeated*581 *measures.* Boston College Department of Economics; 2021.
- 36. Bakdash JZ, and Marusich LR. Repeated measures correlation. *Front Psychol.*2017;8:456.

584

585 SUPPLEMENTARY MATERIAL

- **Figure S1.** Individual participant (A) and male (B) gametocytemia-time profiles.
- **Figure S2.** Individual participant hemoglobin-time profiles.

- **Table S1**. Incidence of adverse events by participant.
- **Text S1.** Participant eligibility criteria.
- **Text S2.** qPCR analysis of mosquito head/thorax dissections.