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Enveloped viruses are prone to inactivation when exposed to strong acidity levels
characteristic of atmospheric aerosol. Yet, the acidity of expiratory aerosol particles
and its effect on airborne virus persistence has not been examined. Here, we
combine pH-dependent inactivation rates of influenza A virus and SARS-CoV-2
with microphysical properties of respiratory fluids under indoor conditions using a
biophysical aerosol model. We find that particles exhaled into indoor air become
mildly acidic (pH ≈ 4), rapidly inactivating influenza A virus within minutes, whereas
SARS-CoV-2 requires days. If indoor air is enriched with non-hazardous levels
of nitric acid, aerosol pH drops by up to 2 units, decreasing 99%-inactivation
times for both viruses in small aerosol particles to below 30 seconds.Conversely,
unintentional removal of volatile acids from indoor air by filtration may elevate pH
and prolong airborne virus persistence. The overlooked role of aerosol pH has
profound implications for virus transmission and mitigation strategies.

One Sentence Summary: Respiratory viruses are sensitive to aerosol pH, an unidentified
factor in the mitigation of airborne virus transmission
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Respiratory viral infections pose a great burden on human health. An average of 400 000

deaths are associated with influenza globally each year (1), and the ongoing COVID-19

pandemic has already resulted in several million deaths and countless cases of long COVID

around the world. To curb the public health and economic impacts of these diseases, health

care policy aims to minimize virus transmission. Increasing evidence points to expiratory

aerosol particles (see (2) for clarification of terminology) as vehicles for the transmission

of influenza virus and SARS-CoV-2 (3). The persistence of these viruses in aerosols is still

subject to scientific debate, but it is undisputed that rapid inactivation would contribute to

limiting their spread.

Prior studies have investigated the effect of ambient conditions on the inactivation rates

of aerosolized respiratory viruses including influenza virus (4, 5, 6, 7, 8, 9), SARS-CoV-

2 (10, 11, 12), and the common cold human coronavirus HCoV-229E (13). Relative humidity

(RH) and temperature were the primary variables modulated in these works, with low (∼ 20%),

medium (40-60%), and high (65-90%) RH compared at a few select temperatures. Some

of these studies identified a ‘U-shaped’ curve of inactivation as a function of RH (4, 5, 7),

and it has been suggested that RH affects virus inactivation by controlling evaporation of

water from the aerosol particle, thus governing the concentration of inactivation-catalysing

solutes (14, 15, 16). Beyond this, the mechanism(s) of virus inactivation in aerosol particles

remain largely speculative.

A potentially powerful, yet understudied driver of airborne virus inactivation is the aerosol

pH. It is established now that aerosol particles can be highly acidic (17), and that some

enveloped viruses, including influenza virus, are sensitive to low pH (18). Nevertheless, the

pH of expiratory aerosol particles, and hence its contribution to the inactivation of airborne

viruses, remains unknown. The aerosol pH depends on the composition of the aerosol particle

and the surrounding air, and it is well characterized for particulate matter equilibrated with

inorganic acids and bases (19). Some studies have investigated the role of matrix composition

on virus inactivation in particles, including its protective properties (7, 8, 20). However, the
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impact of air composition beyond RH has been overlooked by scientists to date. To the best

of our knowledge, the only attempt to inactivate airborne viruses by - likely inadvertently

- modulating aerosol pH is the use of acetic acid from boiling vinegar during the 2002/03

outbreak of SARS-CoV-1 (see (21) and Supplementary Material).

Outdoor airborne particulate matter is often highly acidic, with pH values ranging between -1

and +5 (17,19). Contrary to expectations, the strength of the acid or base contained in aerosols

(expressed by its dissociation constants) may not be the dominant parameter controlling

aerosol pH. Rather, the volatility of species is of importance. For example, strong organic

acids like HCOOH and CH3COOH partition negligibly to aerosol and bear a minor impact on

aerosol pH for most atmospherically relevant conditions (22). In contrast, HNO3 and NH3

partition into aerosol particles and impact pH, albeit buffered by the formation of ammonium

nitrate.

Indoor aerosol particles have a variety of sources, including outdoor air, human transpiration

and respiration, and building materials. Indoor air tends to have lower levels of gas-phase

inorganic acids (e.g., HNO3) than outdoor air, owing to their condensation on aerosol particles

as well as their efficient removal via deposition on surfaces. Human activities are a source

of organic acids and NH3 (19, 23, 24), often elevating their levels compared to outdoors.

The ratio of indoor to outdoor concentrations is typically 0.1-0.5 for HNO3 and 3-30 for

NH3, causing the pH of indoor aerosol particles to increase compared to outdoor levels.

Operation of humidification, ventilation, and air conditioning (HVAC) systems also affect

air composition (25) and, hence, likely the pH of indoor aerosol particles. While many

outdoor and indoor aerosol particles are in equilibrium with their environment, this can only

be expected for exhaled aerosol if given enough time. In the interim, freshly exhaled aerosol

can change its pH considerably.

Exhaled air, before mixing into the indoor air, contains high concentrations of ammonia and

is characterized by very high concentrations of CO2 and high number densities of expiratory

aerosol particles. These particles are emitted by breathing, talking, coughing or sneezing, and
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contain a complex aqueous mixture of ions, proteins and surfactants. Although the pH of

exhaled breath condensate has been investigated (26), there is no study that quantifies the pH

of respiratory aerosol - especially when it equilibrates with the acidic or alkaline gases present

in the indoor air within a few seconds to minutes of exhalation.

Here, we investigate the role of aerosol acidity in the inactivation of airborne influenza A virus

(IAV) and two coronaviruses, SARS-CoV-2 and HCoV-229E in indoor environments. We

accomplish this in three steps by first determining the pH-dependent inactivation kinetics of

IAV, SARS-CoV-2 and HCoV-229E in bulk samples of representative respiratory fluids, then

measuring the thermodynamic and kinetic properties of microscopic particles of these fluids,

and finally jointly applying the inactivation kinetics and aerosol properties in a biophysical

model to determine inactivation in the aerosol system. We then use the model to investigate

the possibility of using gaseous nitric acid (HNO3) in indoor environments at non-hazardous

concentrations to lower the pH of respiratory aerosol for a wide range of sizes, and thus to

effectively reduce the risk of transmission.

Kinetics of pH-mediated inactivation of influenza virus and coro-
navirus

Inactivation kinetics of IAV (strain A/WSN/33), SARS-CoV-2 (BetaCoV/Germany/BavPat1/2020)

and HCoV-229E (strain HCoV-229E-Ren) were determined over a pH range from neutral to

strongly acidic, after immersion in bulk solutions of synthetic lung fluid (SLF; see Table S1

for composition), mucus harvested from primary epithelial nasal cultures grown at air-liquid

interface (nasal mucus) or aqueous citric acid/Na2HPO4 buffer. Figure 1 summarizes the

inactivation times (here expressed as the time to reach a 99% infectivity loss) as a function of

pH. All viruses were stable in all matrices at neutral pH, with inactivation times of several

days. From pH 6 to 4, IAV inactivation times decreased from days to seconds, or by about five

orders of magnitude. This decrease was evident in all matrices studied. It is noteworthy that

inactivation in nasal mucus, which is most representative of the matrix comprising expiratory

aerosol particles, is well described by SLF. However, inactivation times did depend on the
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SLF concentration. Specifically, we determined IAV inactivation at three different levels of

SLF enrichment (1× and 18× SLF, determined experimentally; 24× SLF, determined by

extrapolation), corresponding to water activities aw = 0.994, 0.8 and 0.5. This represents the

fluid in equilibrium with a gas phase at 99.4%, 80% and 50% RH, i.e. from physiological

equilibrium to common indoor conditions. While inactivation times in aqueous buffer, 1× SLF

and nasal mucus were very similar, 18× enrichment of the SLF coincided with an increase

in inactivation time by up to a factor 56 (blue triangles in Fig. 1). This protective effect of

concentrated SLF was most prominent around the optimal pH for A/WSN/33 viral fusion

of ∼ 5.1 (27). Coronaviruses were less affected by acidic pH than IAV. Both, SARS-CoV-2

and HCoV-229E remained largely stable down to pH 3, where their inactivation still required

24 hours. When further decreasing pH down to 2, the inactivation times rapidly reduced

to < 10 seconds for SARS-CoV-2, but never dropped below 2 hours for HCoV-229E. Com-

pared to aqueous buffer, SLF provided some protection against inactivation below pH 3, both

at 1× and 5× SLF concentrations (while measurements for pH < 3 in 18× SLF were not

possible due to precipitation). The measured differences in pH-sensitivities between IAV

and the coronaviruses may be explained by their different mechanisms of virus entry into

host cells. IAV relies on an acid-induced conformational change in haemagglutinin during

endosomal entry. This conformational change is irreversible (28); if IAV encounters the

fusion pH (typically pH < 5.5) outside the host cell, e.g. whilst within an aerosol particle,

the acid-triggered haemagglutinin can no longer bind to host-cell receptors and the virus is

inactivated. Conversely, the spike glycoprotein of coronaviruses becomes fusion competent

through cleavage by host proteases, instead of relying on acidic pH triggering conformational

changes (29). The different behavior of SARS-CoV-2 and HCoV-229E at pH < 3 remains

unclear.
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Figure 1. Time required for 99% titer reduction of influenza A virus (IAV), SARS-
CoV-2 and human coronavirus HCoV-229E measured in various bulk media (> 10 µl)
at 22°C. Data points represent inactivation times in aqueous citric acid/Na2HPO4 buffer,
synthetic lung fluid (SLF) or nasal mucus with pH between 7.4 and 2. SLF concentrations
correspond to water activity aw = 0.994 (1× SLF; squares), aw = 0.97 (5× SLF; stars) and
aw = 0.8 (18× SLF; triangles); buffer (circles) and nasal mucus (diamonds) correspond to
aw ∼ 0.99. Each experimental condition was tested in replicate with error bars indicating
95% confidence intervals. While IAV displays a pronounced reduction in infectivity around
pH 5, SARS-CoV-2 develops a similar reduction only close to pH 2, and HCoV-229E is
largely pH-insensitive. Solid lines are arctan fits to SLF data with aw = 0.994 (blue: IAV;
red: SARS-CoV-2; black: HCoV-229E). The dashed line is an arctan fit to the SLF data with
aw = 0.80. The dotted line is an extrapolation to aw = 0.5 (24× SLF). Upward arrows indicate
insignificant change in titer over the course of the experiment, and downward arrows indicate
inactivation below the level of detection at all measured times. The fitted curves below pH 2
(grey shaded aera) are extrapolated with high uncertainty. Examples of measured inactivation
curves are shown in Fig. S1. The arctan fit equations, which are also used for the model
simulations, are given by Eqns. S28, S29, and S30.

Thermodynamics and diffusion kinetics of expiratory particles

While Figure 1 shows the pH that must be attained in the aerosol particles for rapid virus

inactivation, it lacks information on aerosol particle pH after exhalation into indoor air. To

model the pH in these particles it is essential to know the particle composition in thermody-

namic equilibrium (liquid water content), as well as the kinetics that determine how rapidly

the equilibrium is approached (water and ion diffusion coefficients). To obtain this informa-

tion, we measured thermodynamic (equilibrium) and kinetic (diffusion-controlled) properties
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of individual micrometer-sized SLF and nasal mucus particles levitated contact-free in an

electrodynamic balance (EDB). Each particle was exposed to prescribed changes in RH (see

Fig. 2).

Figure 2A shows two moistening/drying cycles of an SLF particle obtained over a period of

two days. They allow determination of the particle equilibrium composition (water content

or mass fraction of solutes, see Fig. S2A) during time intervals with slowly changing RH.

The particle clearly takes up and loses water when the RH is changed. It has a size growth

factor at 90% RH of 1.3 (see also Fig. S3) and deliquesces at 75%, indicating that NaCl is the

predominant salt in the particle. Nasal mucus shows a similar size growth, but deliquesces

over an RH range of 55 to 70%, indicating that it contains significant amounts of other salts

(Fig. S3). We have no evidence for liquid-liquid phase separation in any of these particles

(Fig. S4A and S5) but Mie-Resonance spectra indicate inhomogenities in the particles even at

high RH.

The kinetics of water uptake/loss as derived from periods with rapid RH change or efflorescence

are highlighted in Fig. 2. Figure 2B zooms in on one efflorescence event, first showing rapid

water loss (< 10 s), then switching to a much slower rate of water loss over the next hour.

This two-stage diffusion process was confirmed in measurements of additional SLF and nasal

mucus particles (see Fig. S6). We attribute the fast process to an initial dendritic growth of an

NaCl crystal (Fig. S4A-C), which ends abruptly when the crystal reaches the droplet surface,

followed by a slow crystal growth mode (Fig. S4D). Initially, crystal growth is limited by

the liquid phase diffusivity of water molecules with D`,H2O > 10−7 cm2/s (Fig. 2C), which

is expelled from the particle as long as water activity is still high. Subsequently, the slow

crystal growth is limited by the diffusivities of Na+ and Cl– ions through the progressively

viscous liquid to the crystal (Fig. S4D). From Figs. 2B and S4D we estimate the ion diffusion

coefficient to be about D∗`,ions ≈ 10−10 cm2/s, which determines the low rate of continued loss

of water molecules. The diffusion coefficients determined in this way are "effective" (indicated

by a star), as they represent the molecular diffusivities under the specific morphological

7

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 14, 2022. ; https://doi.org/10.1101/2022.03.14.22272134doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.14.22272134
http://creativecommons.org/licenses/by-nc-nd/4.0/


conditions associated with the dendritic growth of the salt crystals inside the droplets (see next

section for details on how these diffusion coefficients were further constrained).

In summary, independent of the exact thermodynamic equilibrium state of the particles, our

results demonstrate that SLF as well as nasal mucus show a clear diffusion limitation for

ions. In contrast, water diffusion in SLF and nasal mucus remains fast even when RH is

low. This continuous, rapid diffusion of water indicates that SLF and nasal mucus do not

form diffusion-inhibiting, semisolid phase states such as those recently reported by others in

particlets containing model respiratory compounds (30).
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Figure 2. Measured hygroscopicity cycles of a synthetic lung fluid (SLF) particle in an
electrodynamic balance (EDB) forced by prescribed changes in relative humidity (RH).
The voltage required to balance the particle in the EDB against gravitational settling and
aerodynamic forces is a measure of the particle’s mass-to-charge ratio, allowing the particle
radius R to be estimated. (A) Two humidification cycles of an SLF particle with a dry radius
R0 ∼ 9.7 µm. The experiment spanned about 2 days with slow humidity changes, allowing the
thermodynamic and kinetic properties of SLF to be determined. Deliquescence/efflorescence
points are marked by "Deliq/Effl". (B) Zoom on the drying phase (red box in (A)) with salts in
the droplet (mainly NaCl) efflorescing around 56% RH (black line): very fast initial crystal
growth (< 10 s) with rapid loss of H2O from the particle, followed by slow further crystal
growth (1 h). The latter is caused by the abrupt switch from H2O diffusion to the diffusion
of Na+ and Cl– ions through the viscous liquid, resulting in an ion diffusion coefficient of
D∗`,ions ≈ 10−10 cm2/s. The insert (C) highlights the minute before and after efflorescence,
which allows a lower bound of the H2O diffusivity (namely D`,H2O > 10−7 cm2/s) to be
determined.
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Biophysical model of inactivation in expiratory aerosol particles

Only the combination of the virological bulk phase data (Fig. 1) with the microphysical

aerosol thermodynamics (vapor pressures and activity coefficients) and kinetics (Figs. 2 and

S7) allows the pH attained in the aerosol particles and the resulting rates of viral inactivation,

to be determined. Thus, the virological and microphysical data were combined as input

for a multi-layer Respiratory Aerosol Model (ResAM). ResAM is a biophysical model that

simulates the composition and pH changes inside an expiratory particle during exhalation,

and determines the impact of these changes on virus infectivity (see section "Biophysical

modeling" in the Supplementary Material). The model performs calculations for particles of

selectable size (from 20 nm to 1 mm) with a liquid phase composed of organic and inorganic

species representative of human respiratory fluids S1 (more detail in the Supplementary

Material). It takes account of diffusion in the gaseous and condensed phase, vapor pressures,

heat transfer, deliquescence, efflorescence, species dissociation, and activity coefficients due

to electrolytic ion interactions (see Tables S2, S3). Ultimately, ResAM computes the species

distribution and their activity in the liquid, the resulting pH, and the corresponding virus

inactivation rates as function of time and of the radial coordinate within the particle.

When RH changes are slow, the measured mass fraction of solutes in SLF as a function of

RH allows the model thermodynamics to be constrained (Fig. S2B). Under thermodynamic

equilibrium conditions the model captures the mass fraction of solutes along the deliquesced

and effloresced branches of the particle reasonably well. However, only after kinetic effects

(ion and water diffusivities) are also taken into account does the model accurately reproduce

the solute composition curve along the deliquesced branch. This demonstrates that even when

RH changes are slow (raising RH from 50% to 70% in over one hour), kinetics cannot be

neglected.

For rapidly evaporating expiratory particles, kinetics effects are even more critical. By

matching the model to the fast changes during the efflorescence and deliquescence processes,

ion diffusion coefficients can be derived for different water activities. Interpolation together
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with literature data in dilute conditions yields D`,H2O, D`,Na+ , and D`,Cl− (for details see

Fig. S7D). Other neutral species, cations and anions are treated accordingly, scaled with their

infinite dilution values (see Supplementary Material).

As an example, Fig. 3 shows the evolution of the physicochemical conditions within an

expiratory particle with 1 µm initial radius during transition from nasal to typical indoor air

conditions with 50% RH (Table S1), and the concomitant inactivation of IAV and SARS-

CoV-2 contained within the particle. The rapid loss of water leads to concentration of the

organics and salts, to the point when NaCl effloresces. Nitric acid from the indoor air enters

the particle readily, lowering its pH from an initial value of 6.6 (resulting from the high

concentrations of CO2 and NH3 in the exhaled air) to pH 5 within ∼ 10 s. This, in turn, pulls

NH3 into the particle, partly compensating the acidification. The pH further decreases to ∼ 4

within 2 minutes, then slowly approaches pH 3.7 due to further uptake of HNO3 from the

room air. This result confirms the importance of trace gases in determining the pH of indoor

aerosol particles (24). If only CO2 is considered, its volatilization from the particle would

lead to an expected increase in pH after exhalation (31). Owing to aerosol acidification, rapid

influenza virus inactivation occurs at ∼ 2 minutes, whereas SARS-CoV-2 (and the even more

pH-tolerant HCoV-229E) remain infectious.
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Figure 3. Evolution of physicochemical conditions within a respiratory particle leading
to inactivation of trapped viruses during the transition from nasal to typical indoor air
conditions, modeled with ResAM. The initial radius of the particle is 1 µm. Thermodynamic
and kinetic properties are those of synthetic lung fluid (SLF, see Fig. 2 and Table S1). The
indoor air conditions are set at 20°C and 50% RH (see Fig. S8 for the corresponding depiction
of physicochemical conditions at 80% RH). The exhaled air is assumed to mix into the indoor
air using a turbulent eddy diffusion coefficient of 50 cm2/s (32). The temporal evolution of gas
phase mixing ratios is shown in Fig. S20. The gas phase compositions of exhaled and typical
indoor air are given in Table S4. Within 0.3 s, the particle shrinks to 0.7 µm due to rapid H2O
loss, causing NaCl to effloresce (grey core). The particle then reaches 0.6 µm within 2 minutes
due to further crystal growth, after which it slowly grows again due to coupled HNO3 and
NH3 uptake and HCl loss. ResAM models the physicochemical changes in particles including
(A) water activity, (B) molality of organics, (C) NO –

3 (resulting from the deprotonation of
HNO3), (D) molality of total ammonium, (E) molality of Cl– , (F) pH, as well as inactivation
of (G) IAV and (H) SARS-CoV-2 (decadal logarithm of virus titer C at time t relative to initial
virus titer C0).

Inactivation times vary with particle size: larger droplets take longer to reach low pH than

smaller ones as they are impeded by longer diffusion paths of the relevant molecules (mainly

HNO3 and NH3) or ions through both the air and liquid phases. The black line in Fig. 4C

illustrates this relationship for IAV, showing 99% inactivation after about 2 minutes in particles

with radii < 1 µm, but longer than 5 days for millimeter-sized particles. As a rule of thumb, a

10-fold increase in particle size leads to roughly a 10-fold increase in IAV inactivation time

under typical indoor conditions. Conversely, the black line in Fig. 4D for SARS-CoV-2 shows
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that inactivation is inefficient for SARS-CoV-2, irrespective of particle size.

Inactivation times for both IAV and SARS-CoV-2 can be greatly reduced if the indoor air

is slightly acidified, provided that the gaseous acid molecules meet two conditions: their

volatility must be sufficiently low, such that they readily partition from the gas phase to the

condensed phase, and, once dissolved, they must be sufficiently strong acids to overcome

any pH buffering by the particle matrix. Figure 4 compares the aerosol pH in typical indoor

air (panel A) with that in air enriched with 50 ppb HNO3 (panel B). This concentration of

HNO3 is well below legal 8-h exposure thresholds (0.5 ppm (33) or 2 ppm (34)). Notably,

50 ppb HNO3 reduces the time to reach an aerosol pH of 4 from minutes to seconds. More

importantly, 50 ppb also allowed the pH value to drop below 2, which is required for efficient

SARS-CoV-2 inactivation (Fig. 1). For comparison, enriching the air with the more volatile

and weaker acetic acid at concentrations below exposure threshold values could not achieve

this, see Fig. S9. The dark blue lines in Fig. 4C-D show the resulting inactivation times for IAV

and SARS-CoV-2 (and Fig. S10 for HCoV-229E) as a function of particle radius. Remarkably,

inactivation times of SARS-CoV-2 diminished by 4-5 orders of magnitude compared to typical

indoor air (black lines). For particles with radii < 1 µm, which constitutes the majority of

expiratory particles (see panel E), inactivation is expected to occur within 30 s.
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Figure 4. Impact of nitric acid vapor (HNO3) in indoor air on virus inactivation in
expiratory particles. (A) Modeled pH value in an expiratory particle with properties of
synthetic lung fluid with initially 1 µm radius in indoor air (20°C, 50% RH) of typical
composition (identical to 3F, but with different color scale). (B) Same, but in indoor air
enriched with 50 ppb HNO3, reducing the time to reach pH 4 from 2 minutes to less than 2
seconds. (C and D) Inactivation times of IAV and SARS-CoV-2 as function of particle radius
under various conditions: indoor air with typical composition (black), enriched with 10 or 50
ppb HNO3 (blue), or purified air with HNO3 and NH3 reduced to 20% or 1% (red). Whiskers
show reductions of virus load to 10−4 (upper end), 10−2 (intersection with line) and 1/e (lower
end). The exhaled air mixes with the indoor air by turbulent eddy diffusion (see Fig. 3). For
sensitivity tests see Figs. S11B and S12B. The gas phase compositions of exhaled air and
the various cases of indoor air are defined in Table S4. (E) Mean size distribution (35) of
number emission rates of expiratory aerosol particles (dQ/d log(R)) for breathing (solid line),
speaking and singing (dotted line) and coughing (dashed line). Dark grey range indicates virus
radii. Light grey shading shows conditions for particles smaller than a virus, referring to an
equivalent coating volume with inactivation times indicated. (Radius values in (C)-(E) refer to
the particle size 1 s after exhalation.)

While an enrichment of acidic gases in air leads to an acceleration of IAV and SARS-CoV-2
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inactivation, the depletion of these gases, for instance by air filtration, has the opposite effect.

It is well-known that concentrations of strong inorganic acids, such as HNO3, are lower

indoors than outdoors by at least a factor 2, and in buildings with special air purification, such

as museums and libraries, by factors 10-80 (24). If air is purified to contain only a fraction

of the initial trace gas concentrations (see Table S4), the aerosol pH increases compared to

typical indoor air and intermittently reaches neutral or even slightly alkaline values (up to pH

8.4 in particles with 5 µm radius in air purified to 1%). As a result, air purification is expected

to enhance virus persistence, especially for IAV, as indicated by the red curves in Fig. 4.

To validate the model results, we compared published inactivation data for aerosolized IAV

and SARS-CoV-2 obtained in rotating drum experiments with inactivation times estimated

by ResAM (Figures S13 and S14 and supplementary text). For both viruses, modelled and

measured inactivation times exhibited similar trends as a function of RH. For IAV, measured

inactivation times are consistent with ResAM predictions for experiments conducted in partly

purified air, as is expected for rotating drum experiments. The comparison with SARS-CoV-2

is inconclusive, because of the wide scatter in the experimental data. However, ResAM

predictions fall within the range of measured inactivation times. Given the importance of semi-

volatile acids and bases for inactivation, further model validation should include inactivation

times measured in aerosol experiments under well-known air compositions, including the

presence of HNO3.

Management of airborne transmission risks

Given the high pH sensitivity of many viruses (18, 36, 37, 38) and the readiness of expiratory

aerosol particles for acidification, we next investigated the extent to which the modification of

indoor air composition could mitigate the risk of virus transmission. To this end, we consider

a ventilated room with occupants who exhale aerosol containing infectious viruses. We further

make the assumption that, given the low concentration of airborne viruses, the transmission

risk is directly proportional to the infectious virus concentration, respectively inhalation dose.

We use the term "relative risk of transmission" to express how the risk changes from standard
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conditions (here typical indoor air according to Table S4) compared to air slightly enriched by

HNO3 or air that has been purified.

For the ventilated room we assume steady-state conditions where the exhalation defines the

source of virus, which is balanced by three sinks, namely air exchange through ventilation,

aerosol deposition, and pH-moderated virus inactivation within the aerosol particles (see

Supplementary Material). We describe the virus source by the mean size distributions of

number emission rates of expiratory aerosol particles (Fig. 4E) and assume each particle

with radius > 50 nm to carry one virus irrespective of size. We describe the virus sinks by

expressing ventilation by Air Change per Hour (ACH, mixing ventilation), applying mean

aerosol deposition rates (39), and computing the inactivation rates similar to Fig. 4C,D. This

allows the airborne viral load and, thus, the relative risk of transmission, to be calculated as

displayed in Fig. 5 for IAV and SARS-CoV-2 (and Fig. S15 for HCoV-229E). Black bars

show the results for typical indoor conditions, blue bars indicate an enrichment of HNO3 to 10

or 50 ppb, and red bars indicate purification of air to 20% or 1% of trace gases (see Table S4).

The results are unambiguous: while adding 50 ppb HNO3 only has a moderate impact on

HCoV-229E (Figs. S10 and S15), it promises to diminish the relative risk of transmission of

IAV by a factor of ∼ 20 and of SARS-CoV-2 by a factor of 800 in rooms with ACH 2. Using

HNO3 is a more effective measure than increasing ventilation from ACH2 to ACH10, which

for SARS-CoV-2 leads to a mere dilution by a factor 5 and for IAV does not help at all as the

IAV 99%-inactivation time in typical indoor air is already short (2 minutes).

The ResAM estimates for purified air with significant reduction of trace gases (red bars) are

also striking. While even normal air conditioning systems with air filters can lead to a reduction

in "sticky" molecules such as HNO3 (40), acid removal is likely even more pronounced in

museums, libraries or hospitals with activated carbon filters (24). In such public buildings, the

relative risk of IAV transmission can increase significantly compared to buildings supplied

with unfiltered outside air.

Here we demonstrate that a significant reduction in transmission risk can be achieved by
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air enrichment with HNO3 levels that correspond to less than 10% of the legal exposure

thresholds (33,34). We therefore expect that the resulting acid exposure will not cause harmful

effects on human health. Nevertheless, future studies should investigate the effects of acid

accumulation in indoor air on the microbiome and immune response in the respiratory tract.

In addition, ResAM should be further refined to include a greater diversity of respiratory

matrices. Aerosol particles emitted during different human activities (e.g., coughing, singing)

differ in their production mechanisms and site of origin in the respiratory tract, and hence in

their matrix composition. The two matrices considered in this work - SLF and nasal mucus -

have comparable thermodynamic and kinetic properties as well as a similar pH-dependence

of viral inactivation. However, we cannot exclude that additional respiratory matrices found

in expiratory aerosol plumes (e.g., saliva) exhibit divergent properties (30, 41). Despite these

current unknowns, targeted regulation of aerosol pH promises profound positive effects on

virus transmission and disease mitigation strategies.
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Figure 5. Airborne viral load (# viruses per volume of air) and relative risk of trans-
mission of (A) IAV and (B) SARS-CoV-2 infection in a room subject to various air treat-
ments, such as addition of HNO3 or supply of purified air with different ventilation
rates, Air Changes per Hour (ACH). The room is assumed to accommodate one infected
person per 10 m3 of air volume, emitting virus-laden aerosol by normal breathing (solid curve
in Figure 4E), and assuming one infectious virus per aerosol particle. (Corresponding plots
assuming a virus concentration that is proportional to the size of the aerosol particles are
shown in Fig. S16.) Steady state virus loading, i.e. number of infectious viruses per cubic
centimeter of air (left axes), is calculated as the balance of exhaled viruses and their removal
by ventilation, deposition, and inactivation. Results are shown for three different ventilation
strengths. Virus inactivation is calculated according to Figure 4C-D, starting from radius 0.05
µm. Note, that the mixing speed of the exhalation plume with indoor air depends on ACH
(following (32), see Supplementary Text). Right axes show the transmission risk under these
treatments relative to the risk in a room with typical indoor air (see Table S4) and ACH 2
(thin horizontal line). Typical indoor air is shown by black bars, filtered air with removal of
trace gases to 20% and 1% by red bars, and air enriched with 10 or 50 ppb HNO3 by blue
bars. Thick grey horizontal lines indicate the viral load and relative transmission risk in the
absence of any inactivation. Results for 2 and 5 ppb HNO3 are shown in Fig. S17. Results for
HCoV-229E, along with analogous analyses for coughing and speaking/singing are shown in
Fig. S15.
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