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Abstract 

As a novel approach we will combine trajectories or longitudinal studies of gene expression 

with information on annual influenza epidemics. Seasonality of gene expression in immune 

cells from blood could be a consequence of within-host seasonal immunity interacting with 

the seasonal pandemics of influenza (flu) in temperate regions and, thus, with potential valua-

ble analogy transfer to the proposed seasonal development of covid-19.  

Here we operationalized within-host immunity as genes with both a significant seasonal term 

and a significant flu term in the sine-cosine model. Information on gene expression was based 

on microarray using RNase buffered blood samples collected randomly from a population-

based cohort of Norwegian middle-aged women in 2003-2006, The Norwegian Women and 

Cancer (NOWAC) study. The unique discovery (N=425) and replication (N=432) design were 

based on identical sampling and preprocessing. Data on proportion of sick leaves due to flu, 

and the flu intensities per week was obtained from the National Institute of Public Health, 

giving a semi-ecological analysis. 

The discovery analysis found 2942 (48.1%) significant genes in a generalized seasonal model 

over four years. For 1051 within-host genes both the seasonal and the flu term were signifi-

cant. These genes followed closely the flu intensities. The trajectories showed slightly more 

genes with a maximum in early winter than in late summer. Moving the flu intensity forward 

in time indicated a better fit 3-4 weeks before the observed influenza. In the replication anal-

yses, 369 genes (35.1% of 1051) were significant. Exclusion of genes with unknown func-

tions and with more than a season in difference reduced the number of genes in the discovery 

dataset to 305, illustrating the variability in the measurements and the problem in assessing 

weak biological relationships. Thus, we found for the first time a clear seasonality in gene 

expression with marked responses to the annual seasonal influenza in a unique discovery – 

replication design. Hypothetically, this could support the within-host seasonal immunity con-

cept.  
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Introduction 

Regular recurrences of virus epidemics and sometimes pandemics like seasonal influenza, flu, 

have raised the question of within-host seasonal immunity as an evolutionary adaptation of 

the human immune systems to upcoming seasonal infections (1). Temperature, humidity, and 

population density have been described over many centuries as important factors for spread of 

the infections (2). The first wave of covid-19 in winter 2020 showed evidence of a seasonal 

disease (3, 4). The third wave in 2022 in temperate regions of Europe and USA indicate that 

covid-19 behave as a seasonal virus (5). The seasonality of covid-19 is clearly demonstrated 

in the Norwegian number of deaths for the period February 2020 till January 2022, Figure 1 

(6). The two diseases share the common nature of being mRNA virus but with important 

differences like influenza virus with negative sense and coronavirus with positive sense, 

among others (7, 8). These are two of the major zoonotic respiratory viruses with capabilities 

of a pandemic spread. Diagnostic tests based on gene expression from white blood cells at 

time of serious clinical disease have shown similarities between the two diseases, but also 

unique patterns of dysregulated expression compared to healthy state (9, 10). The last 

mutation SARS-CoV-2 omicron (11, 12) is more infectious, but with less clinical severity of 

infections than the first mutations of covid-19. Thus, covid-19 could emerge as a parallel to 

the seasonal influenza virus N1H1. A recent genomic study showed that a splice variant in 

OAS1 genes could be protective for COVID-19 (13), going back 60.000 years. There are 

indications of covid epidemics 25 000 years ago in Asia (14). Seasonal influenza had repeated 

mutations over the last centuries (7, 15). The pandemic in 1919 named the Spanish flu caused 

millions of deaths due to a N1H1 virus. The high mortality among young men during the first 

world war has been explained by a lack of immunity to those born after the 1889 “Russian 

flu”. However, the 1889 “Russian flu” pandemic has also been described potentially as a 

coronavirus epidemic that could give ideas about the future handling of a seasonal covid-19 

(16).   

This seasonality of virus infections during evolution could have changed the immune system 

in a seasonal direction. Several studies have shown seasonality of gene expression from 

immune cells (17, 18, 19) during the year. Some analyses included the effect of diagnosed 

virus infections but did not look at longitudinal effects of seasonal influenza. No general 

population studies have demonstrated repeated seasonality over years that also included 

information on seasonal influenza each year. The nature of this potential immunological 
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mechanism is not defined nor any specific gene involvement. A huge number of analyses of 

other immune parameters have found both seasonal and daytime variations (20, 21). 

Within-host seasonal immunity can be operationalized in sine-cosine models as genes have 

both significant seasonal effects and flu effects, in contrast to genes with either significant 

seasonal or significant flu effects (22). A within-host seasonal immunity would have to be a 

generalized effect covering most of a population. With the emerging knowledge of potentially 

two different seasonal virus pandemics, identification of gene expression profiles before and 

during the flu epidemic could be important for understanding a potentially seasonal covid-19 

pandemic.  

A search in MEDLINE combining seasonality, gene expression and influenza virus gave only 

8 hits, see Box 1. Of the eight articles six were about vaccination, one clinical study and one 

animal experiment. 

Here we will describe for the first time the changes or trajectories in gene expression before, 

at and after the annual seasonal flu epidemics. We will take advantage of the national 

surveillance system (23) of seasonal influenza epidemics in Norway that reports the 

proportion of sick leaves from influenza like illnesses (ILI) as proportion of all sick leaves. 

Figure 2A clearly shows the seasonal waves of influenza every winter, with the exception of 

2004 when the epidemic came earlier. Gene expression analyses used RNase buffered whole 

blood samples from the adult Norwegian female population collected randomly in 2003-2006 

as part of The Norwegian Women and Cancer study (NOWAC) postgenome biobank 

designed for gene expression analyses (24). A discovery - replication design will be 

implemented to improve reproducibility (25). The complicated explorative design focus on 

virology and epidemiology, postponing detailed pathways analyses.   

The aim here is to explore the trajectories of gene expression or seasonal changes in relation 

to the annual epidemics of seasonal influenza searching for genes expressing within-host 

seasonal immunity.  
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Methods 

Study design and participants in NOWAC (Kvinner og kreft) 

The NOWAC study is a prospective study with recruitment of 172 000 women randomly 

sampled from the National Population Register in Norway invited between 1991 and 2007 

(26). These women received a letter of invitation and a questionnaire, and additional 

questionnaires were sent out with intervals of four to six years. All participating women were 

followed up through linkage to national cancer and death registries based on the unique 

national identification number assigned to all residents of Norway.  

 

Ethical issues 

The NOWAC study was approved by the Norwegian Data Inspectorate and recommended by 

the Regional Ethical Committee of Northern Norway (REC North). The linkages of the 

NOWAC database to national registries such as the Cancer Registry of Norway and registries 

on death and emigration have also been approved. The women were informed about these 

linkages in the letter of invitation. Furthermore, the collection and storing of human biological 

material was approved by the REC North in accordance with the Norwegian Biobank Act. 

The linkages between Cancer Registry data and NOWAC study participants were performed 

at Statistics Norway, and the dataset was fully anonymized before it was made available to the 

authors. Information on breast cancer were used in this study to sample the random, matched 

controls. The Norwegian Data Protection Authority gave NOWAC exemption from the duty 

of confidentiality and permission to handle personal data (Datatilsynet, ref. 07/00030-2/cbr). 

 

Blood samples and data collection: The NOWAC Post-genome Cohort 

In 2003-2006, NOWAC participants born 1943-1957 were invited to participate in a sub-

cohort: the NOWAC Post-genome Cohort (24) with the Post-genome biobank. The main 

purpose of this cohort was to establish a biobank suitable for analyses of functional genomics, 

in particular transcriptomics. Random samples of NOWAC participants were drawn in weekly 

batches of 500, until 50,000 women participated in. This gave a random date for each blood 

donation. These women completed a two paged questionnaire. Whole blood samples were 

collected by a general practitioner or at a health care institution, using the PAXgene Blood 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 11, 2022. ; https://doi.org/10.1101/2022.03.01.22271679doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.01.22271679
http://creativecommons.org/licenses/by/4.0/


 

6 

 

RNA collection kit (Preanalytix/Qiagen, Hombrechtikon, Switzerland), and were transported 

to the Institute of Community Medicine at UiT in Tromsø by overnight post for biological 

analyses. The PAXgene Blood RNA collection kit contains a buffer that lyses the blood cells 

and preserves the mRNA profile of the sample, allowing for long-term frozen storage and 

optimizing the sensitivity of analyses (27). The sampling was stopped for 6 weeks in the 

Norwegian summer holidays mostly from end of June till the beginning of August, and 

around Christmas. 

 

Sampling strategy 

These analyses were based on a split-sample strategy. Eligible Post-genome participants who 

were diagnosed with incident breast cancer were identified through linkage to the Cancer 

Registry of Norway. Each of these cases were assigned a matched control at random from the 

Post-genome cohort with the same birth year and same weekly batch of 500 invited women. 

Information on cases were not used in this study. The persons used as controls represented a 

part of the study population without any known cancer diseases. The discovery and 

replication populations were both controls from two case-control studies of breast cancer. The 

discovery population consisted of 425 women used as controls in an analysis of gene 

expression trajectories before time of diagnosis (28). The replication used 432 women that 

had been controls in a study of changes in gene expression trajectories after a diagnosis of 

breast cancer (29). The distribution of the two studies according to sampling year is shown in 

Table 1.  

 

National influenza information  

The information on seasonal influenza epidemics in Norway 2003-2006 was obtained by 

request from the MSIS system (Meldingssystem for smittsomme sykdomme) which is The 

National System for Notification of Infectious Diseases at The National Institute of Public 

Health (NIPH) (23). From autumn 1998 NIPH designated 201 general practices as sentinel 

reporting units based on geographical location, population size and previous reporting 

frequencies. These formed about 10% of the practices, but about 25% of the reported volume 

of influenza. The sentinels report weekly, from week 40 in autumn to week 20 in spring, the 

number of cases of ‘R80 Influenza’ from the International Classification of Primary Care 

(ICPC). Additionally, the number of consultations is reported. From 2004–2005 the number 
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of patients on the patient list of general practitioners were used as denominators. The weekly 

recording period was from Friday to Thursday, after which the report card was completed and 

sent to NIPH. The national data provide a constant value for each week, here named Flu 

intensity. In the analyses weeks with no observations, the Flu intensity is set equal to 0.002 

which is 2/3 of the smallest observed positive values. The data is smoothed with 15 days 

average.  

 

Laboratory procedures 

All laboratory services were provided by the Genomics Core Facility, Norwegian University 

of Science and Technology, Trondheim, Norway. To control for technical variability such as 

different batches of reagents and kits, day-to-day variations, microarray production batches, 

and effects related to different laboratory operators, the original case-control pair was kept 

together throughout all extraction, amplification, and hybridization procedures. Total RNA 

extraction was performed using the PAXgene Blood RNA kit (Preanalytix/Qiagen, 

Hombrechtikon, Switzerland) according to the manufacturer’s instructions. RNA quality and 

purity were assessed using the NanoDrop ND 8000 spectrophotometer (ThermoFisher 

Scientific, Wilmington, DE, USA) and Agilent bioanalyzer (Agilent Technologies, Palo Alto, 

CA, USA). RNA amplification was performed on 96-wells plates using 300 ng of total RNA 

and the Illumina TotalPrep-96 RNA Amplification Kit (Ambio, Inc., Austin, TX, USA). The 

mRNA amplification procedure consisted of using a oligo(dT) primer for reverse transcription 

with a T7 promoter-specific ArrayScript reverse transcriptase, followed by a second-strand 

synthesis. In vitro transcription with T7 RNA polymerase using a biotin-NTP mix produced 

biotinylated cRNA copies of each mRNA in the sample.  

The discovery samples were run on the Illumina Human Hu-6. The replication samples were 

run on the Illumina HumanHT-12 version 4 bead chip array (Illumina, San Diego, California, 

USA). The last one had half the beads of the first, see Appendix Figure A. Outliers were 

detected using the R-package nowaclean (30), based on visual examination of dendrograms, 

principal component analysis plots and density plots. Individuals that were considered 

borderline outliers were excluded if their laboratory quality measures were below given 

thresholds (RIN value <7, 260/280 ratio <2, 260/230 ratio <1.7, and 50 < RNA < 500). All 

laboratory work was done consecutively for all controls in 2012. The total number of genes 

were 25 212. 
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Preprocessing of microarray data 

The procedures for the preprocessing are given in (30). The discovery dataset consisted 

finally of 430 controls after exclusions of non-eligible and the replication set of 432 controls. 

The resulting datasets was then background corrected using negative control probes, log2 

transformed using a variance stabilizing technique (31), and quantile normalized. We retained 

probes present in at least 90% of women. A probe was defined as present for an individual if 

its detection p�value was less than 0.01 for that individual. The set points for these two 

parameters were stricter than in previous analyses leaving fewer genes with small variations. 

If a gene was represented with more than one probe, the average expression of the probes was 

used as the expression value for the gene. The probes were translated to genes using the 

lumiHumanIDMapping database (32). The two largest principal components of the two data 

set were used for outlier control, see Appendix Figure B. We removed five observations from 

the original discovery data set that were outliers in the second principal component leaving 

425 samples for the analyses. After preprocessing the discovery dataset had 6118 genes and 

the replication data set 6348 genes. 
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Statistical models 

In this Section we introduce several models where we can estimate a potential within-house 

seasonal and flu variation in the gene expression. We assume the log2 gene expression levels, 

X�,�, for person � and gene �. Here, � � 1, … , �, where M is the number of persons, and 

� � 1, … , 	� , where 	� is the number of genes. For each person we have an observation date 


�. Model A - seasonality. 

We apply a standard sine-cosine model for modelling seasonality (22, 33, 34):  

    Model A:  X�,� �  �� 
 ��,� sin�
�� 
 ��,� cos�
�� 
  ε�,�, 
where  ε�,�~	�0, ���. We assume here that the date 
� is normalized to (−�,�) from July 1st 

one year to June 30th the year after.  

The sine and cosine terms may express any shift in the sine function as may be seen from the 

equation: sin�
 
 �� � sin�
� cos��� 
 cos�
� sin ���. This implies that we can 

reparametrize the model to: 

                       X�,� �  �� 
 �� sin�
� 
 ��� 
 ε�,�, 

where �� � ���,�� 
 ��,��    and �� � atan2���,� , ��,��  that also is normalized to �#�, ��. We 

also introduce  �� � $�
�

#  ��% 	

�

 12& as a continuous variable for the month in the year 

where the integer & is selected such that 0 ' �� ' 12. If the seasonal effect is largest in the 

beginning of January,  �� � �

�
 and �� � 0. If the seasonal effect is largest in beginning of 

July, �� � # �

�
 and  �� � 6. We may characterize �� as log fold change since the maximum 

deviation from the average value of the seasonal variation is ��.  

Model B – seasonality and flu 

We have weekly data for flu in the period 2003-2006. We denote the logarithm of these data 

as *�
�. We obtain Model B by adding a flu term to model A:   

  Model B:  X�,� �  �� 
 ��,� sin�
�� 
 ��,� cos�
�� 
 +� f�
�� 
 ε�,�, 
where *�
�  is the logarithm of the ratio of consultations related to flu for general practitioners 

and +� is the coefficient of the flu term. The function *�
� is smoothed and the minimum val-

ue is set equal to 0.002. The size and period of the seasonal term may be calculated from ��,� 

and ��,�.  
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Model C – seasonality and flu moved in time 

It is of interest to find out whether the change in the gene expression is mainly coming earlier 

than, coinciding with or coming after the change in the observed flu intensity. We therefore 

introduce the model C: 

  Model C:  X�,� �  �� 
 ��,� sin�
�� 
 ��,� cos�
�� 
 +� f�
� 
 

� 
 ε�,�, 
where 

 is a fixed constant moving the flu term forward or backward in time. We estimate 

the model for different values of 

 and observe the change in the number of significant genes 

as a function of 

.  

Hypothesis test – Is the flu effect due to a subgroup of individuals? 

The effect of flu on gene expression may either be a large effect in a subgroup of individuals 

or a smaller effect on the entire population.  We introduce a hypothesis test to separate be-

tween these two effects. This hypothesis test is based on the regression formula from Model B 

where the seasonal variation is omitted, i.e.  ��,� �  ��,� � 0, including only the flu term. If 

the correlation with the observed flu intensity is due to a subgroup of individuals, we expect 

that the residual term  |ε�,�|  is large when the flu term |+� f�
��| is large and ε�,��� � 0  for 

many genes for the same person, i.e. we expect more extreme gene expressions for this sub-

group than the average gene expression. The null hypothesis is that the residual term ε�,�  is 

symmetric around zero and independent of the flu. Based on this, we introduce the statistics  

.� � / ε�,�
���

���f�
�� # *
�
|�

�
�f�
�� # *
�|, 

where the sum is over the set of genes 0 where the FDR-corrected p-value for a flu term in 

Model B is below 0.05 and 1+�1 2 0.1. The constant *
 is the average of *�
�� for all the in-

dividuals. If a subgroup of individuals contributes to a significant flu term, we expect a lim-

ited number of large values for .�  when | *�
�� # *
| is large. Under the null hypothesis how-

ever, we expect .� to be symmetric around zero and close to a normal density. If the residual 

has higher variability when | *�
�� # *
| is large, then we would expect the same number of 

small negative values of .�  as large values for .�  when | *�
�� # *
| is large.   

Let 3��� denote the variable 3� � f�
�� # *
 where this variable is sorted after decreasing order 

of  .� .  Note that all large values of  |f�
�� # *
| has f�
�� # *
>0. Under the null hypothesis, 

3�  is independent of .�, while if the covariation of the flu and gene expression is due to a sub-
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group of individuals, both .� and 3�  will be large for these individuals. Based on the defini-

tions above, we define the test statistic 

4� �  /�3��� # 3��������
�

���

. 

We observe that 4� is the difference between the sum of f�
�� # *
 for the & largest values of  

.� and the & smallest values of .�. � is the number of persons. Under the null hypothesis we 

expect 4� to be close to zero since 3�  and  .� are independent, while under the alternative hy-

pothesis we expect large values of  3�  when  .� is large implying large values of 4�. We there-

fore use 4� as test statistic for the null hypothesis that the residual ε�,� is symmetric around 

zero, while the alternative hypothesis is that there is a subgroup of individuals that have 

large values of ε�,�   when |���f�
�� # *
�

	| is large. We compute the null distribution of  4� 

by permuting the values of 3�  and reject the null hypothesis if 4� is larger than expected by 

chance.  
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Results 

We used the Discovery and Replication datasets in Table 1 for estimating the parameters in 

the models and testing the hypothesis described in Statistical Models. 

Model A – seasonality 

The model with only a seasonal term, model A, was applied on the Discovery dataset. This 

gave 2942 significant genes of 6118 genes (FDR 5%). Of the 2942 significant genes, 416 had 

log fold change (
�) larger than 0.2. Figure 3 shows the seasonal variation of the 2942 genes. 

There were clear seasonal effects both in a summer and a winter season. Note that there were 

few observations during summer vacation and at the end of December.  

Model B – seasonality and flu 
 

As shown in Figure 2B, the flu intensities had a marked seasonality with up to 5% of all sick 

leaves due to ILI. The maximum value of the flu varied between the years. In 2002-2003, the 

maximum was in February - March 2003. In 2003-2004 the epidemic came as early as the 

beginning of December 2003. This looked like two epidemics in the same year. Then the 

maximum in 2004-2005 came more than a year later in middle of March 2005. In 2005-2006 

the maximum was during winter.  

The result from Model A and Model B for the Discovery dataset are shown in a Venn 

diagram in Figure 4. The area denoted Season 1 show the number of genes in Model A where 

at least one of the seasonal parameters ��,� and ��,� are significant. Correspondingly, the area 

denoted Flu 1 counts the number of significant genes in Model B where the seasonal variation 

is omitted, i.e.  ��,� �  ��,� � 0 and where the flu parameter �� is significant. The areas 

denoted Season 2 and Flu 2 show the number of genes in Model B where, respectively, at 

least one of the seasonal parameters ��,� and ��,� is significant and the flu parameter �� is 

significant.  

 

The left panel in Figure 4 shows that mainly the same genes (1983 genes) have a significant 

seasonal term or a flu term when the model only includes one of the two terms. 959 genes 

only have a significant seasonal term, and 611 genes only have a significant flu term. Hence 

these terms mainly describe the same variability in the gene expressions. The seasonal term 

has the flexibility to set the maximum gene expression at any date during the year. For most 
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genes the estimated season has its maximum or minimum value in February which is close to 

the average annual maximum value of the flu-observations. Hence, the seasonal variation for 

most genes may be explained by the flu variation. This indicates that the flu intensity may be 

a main driver in determining the seasonal variability of the gene expression. Table 2 shows 

that it is slightly more usual that the genes are up regulated with the flu (1488 genes) than 

down regulated (1106 genes) in Model B with b�,� � b�,� � 0. 

 
The right panel in Figure 4 shows that 695 genes (114+433+148) in the discovery dataset 

have only a significant seasonal term, 609 only a significant flu term (116+258+235) while 

1051 genes (378+383+172+118) have both a significant seasonal and a significant flu term 

when using Model B. Figure 5 describes the joint effect of the seasonal term and the flu term 

for the 1051 genes where both terms are significant in Model B. The upper panel compares 

the strength of the seasonal term and the flu term. There is a trend that genes with a strong flu 

trend also have a strong seasonal term. The sine function varies from -1 to 1, while the flu 

term varies from -6 to -3, see variation at vertical axis in the upper panel. Therefore, it is 

necessary for a seasonal coefficient to be 1.5 times as large in order to have the same effect. 

The ratios observed in Figure 5, upper panel, when comparing the values at the two axes 

indicate that the seasonal variation is slightly dominating in the estimate for most genes. 

Figure 5, lower panels shows that the genes that are reduced in the flu season, �� � 0, have a 

positive seasonal term in the winter with a maximum value most frequently in February. 

Similarly, the genes that are increased in the flu season, �� � 0, have a seasonal term with a 

maximum value that is most frequent in July and August.  

Figure 6 shows the estimated gene expression from Model A and Model B for three genes 

with the smallest ��<0 and three genes with largest ��>0. These six genes were selected from 

the 1051 genes with both a significant flu and seasonal effect in the four years period. For 

Model B with both a seasonal and flu term, the seasonal trend can be identified in the summer 

where the flu trend is constant. For the three genes with ��>0, the seasonal trend has a maxi-

mum during the summer which is quite close to the top of seasonal trend in Model A. For the 

three genes with �� <0, the seasonal trend has a minimum during the summer. In the rest of 

the year the variation of the flu changed over the four years. Notice that for two of the genes 

with ��>0, the estimate is almost constant in Model A, and far from constant in Model B 

when a flu term was added and where the seasonal term also is large when there is a flu term. 
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The relationships between the flu intensities over the four years and the gene expression are 

shown in Figure 7. The smoothed log flu trend is shown together with the estimated gene 

expression from model B for the gene with largest and the gene with smallest �� value, the 

coefficient for the flu term. The log fold change differences were for both in the order of 8.0 

to 9.5, or a fold change of around 3.0. The changes in the flu coefficient closely resembled the 

estimate of the flu intensities either upwards or downwards. Notice the opposite sign of the 

season trend for the two genes. Since the seasonal terms most frequently has a maximum in 

January-February or July-August (with minimum in January-February), the seasonal term was 

after the top of the flu in 2003-2004 and before the top in 2004-2005 and 2005-2006.  

Model C – seasonality and flu moved in time 

Model C with both a season and a flu term were used for moving the flu intensities trend with 



 days, #60 5 

 5 60, to find out whether the change in the gene expression was mainly 

before, at the same time or after the changes in the flu intensity. The top panel in Figure 8 

shows that the number genes with significant flu term or significant flu and at least one 

seasonal term were largest when the flu term was moved around three weeks forward. The 

number of genes with significant seasonal terms and no flu term was lowest when the flu term 

was 5 days later than the actual data. In total, this indicates that the main change in the genes 

occurred before the increase in the flu sick leaves. This was confirmed in the lower right panel 

showing that all the genes most downregulated obtained their minimum negative value around 

– 20 days. The movement of the upregulated genes were more complex; some genes obtained 

their optimum in the period (-25, -20) days, other genes obtained the optimum around 20 days 

and a final group obtained their optimum later in the spring. Table 3 is divided into sections 

marked with boldface for when the genes obtained the most extreme values. All the listed 

genes have a significant flu term, but in most cases not in the entire period, (-60,60) days.  

Hypothesis test – Is the flu effect due to a subgroup of individuals? 

We tested the hypothesis whether the covariation of the gene expressions and the flu intensity 

was due to a subgroup of individuals. In the null hypothesis, we assumed that the residuals 

ε�,�  were symmetric around zero with the alternative hypothesis that we obtain large values of 

the residual when ε�,�+� 2 0 is large. The results are shown in Table 4. We were not able to 

reject the hypothesis that the residuals are symmetric. Hence, we may not conclude that the 

observed correlation between the gene expression and the observed flu intensity was due to a 

subgroup of individuals. In the table, � represents the potential number of individuals with the 
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most extreme residuals that potentially could dominate the covariation between the gene 

expressions and the flu intensity observations. The smaller � is, the more extreme must the 

residuals be to influence the covariation with the flu intensity for the entire sample.  

Replication analysis 

To reduce noise in the data before interpretations of the genes, a replication analysis 

was performed for the 1051 within-host genes with both a significant seasonal and flu 

term. 87 genes from the Discovery dataset were not found in the Replication dataset. Of the 

remaining 964 genes 658 had either a significant season or flu term. In all, 369 genes had both 

a significant season and flu term. The upper panel in Figure 9 shows a cross-plot of the flu 

coefficient �� against the amplitude 
�  of the seasonal term in the Model B for the 369 genes 

that were significant for both in the replication dataset. There was a clear seasonality as 

shown in lower panel Figure 9, depending on the values of ��. When �� � 0 a January – 

March peak was found in contrast to genes with ��>0 that had a peak in July – September.  

In the following, all genes with unknown function (LOC) in the Discovery dataset (N= 42) 

were excluded. We performed a correlation analysis of the months for the season between the 

Discovery dataset and the Replication dataset. When excluding 22 genes with more than one 

seasons difference in estimated month of maximum (FDR q-value <0.05), the Pearsons 

correlation coefficient changed from 0.83 to 0.92. This left 305 common genes, or 1.2% of all 

(305/ 25 212). This increased the Pearsons correlation coefficient for �� from 0.71 to 0.98. 

Among the 305 genes, negative �� values were found in 148 genes (Appendix Table 1) while 

157 genes (Appendix Table 2) had positive �� values. These genes represented two groups 

with distinct different seasonal trajectories of gene expression through the year. The flu varied 

from December to April. Those with positive �� value had their maximum in the beginning of 

the year mostly overlapped by the flu. Those with a negative flu coefficient had maximum in 

the autumn.  

The function of the significant genes 

A detailed in-depth investigation of the significant single genes and their functions was not 

among the aims of this work, but we include Tables 5A and 5B that summarize the functions 

of the top 20 genes for positive and negative flu coefficients, respectively. Additionally, we 

performed a pathway-level assessment of all significant genes associated with negative and 

positive �� values using the Reactome database (data not shown). Generally, the number of 

significant pathways (p < 0.05) was higher for the �� negative group of genes (263 against 
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49). Potentially, this can be explained by a more converged state of the immune system 

prepared for meeting oncoming infection.   

So far in the analyses the only criteria for inclusion into the analyses was the p-values. In 

epidemiology this is always combined with a measure of relative risk.  Here the fold change is 

the value of gene expression at the maximum compared to the average. A low fold change 

describes a very flat seasonal curve. Introducing a limit of log fold change => 0.1 or a fold 

change of 1.05, (5 % increase), reduced the number of genes significantly in both the 

Discovery and Replication datasets to 281, Table 6. 

A list of genes in a test for pneumonia infections like seasonal influenza and covid-19 was 

published recently (9). The test contains 36 genes as signature, Table 7. The number of genes 

available for analyses in our study depended on the different criteria in the preprocessing. 

More stringent criteria for detection limit decreased the number of genes. In a comparison of 

the genes in the test with the 1051 within-host list of our study, only one gene, GBP1, was in 

both lists. 

Lastly, in another analysis of covid-19 and severity of the disease (13) the genes OAS 1,2,3 

were found to be protective. These genes were not significant in this study, Table 8. 
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Discussion 
  
This analysis has, for the first time to our knowledge, found a strong covariation between 

seasonal influenza and annual changes in gene expression for a subset of genes from immune 

cells in peripheral blood. The trajectories of these genes showed both a significant coefficient 

for annual seasonal changes and a flu determined term. The peaks of the gene expression level 

were observed to change concomitantly with the peaks of the epidemics independent of the 

month of the peak. The findings should have been externally validated in other studies, but a 

thorough search in Medline did not reveal similar studies (Box 1). 

These findings support our operationalized within-host concept at a population level. Within-

host seasonal immunity is a rather unspecified concept and the lack of knowledge on how the 

seasonality of these genes changes the immune system is challenging (1, 2, 5, 8). The applied 

definition of both a seasonal term and a flu term in the model could be one way of searching 

for genes participating in within-host seasonal immunity. From a total of 1000 genes with 

both terms significant the number was reduced to three hundred in the discovery - replication 

analyses.  

These results indicate that during an influenza epidemic or pandemic changes occur on a 

population level for some genes. The regular seasonal pattern and the flu driven peaks 

indicates a relationship between these two. There were two major patterns of gene expression. 

In the first pattern, genes that have a maximum of seasonal expression in autumn were 

downregulated in winter, concomitantly with a decreased gene expression in many of the flu 

genes. The wave of changes in gene expression followed the flu intensities closely. In the 

second pattern, genes that were downregulated in late summer had a maximum seasonal effect 

in winter with mostly positive flu coefficients. The effect for the upregulated genes lasted 

beyond the flu. These findings could mirror two different biological responses to seasonal 

virus infections. The response of the within-host genes adapted to the timing of the virus 

epidemic was clearly seen for the year 2003, that demonstrated an early shift in response. 

Moving the flu intensities up to 60 days before the observed flu intensities gave for many 

genes a better fit for the model with largest effect around three weeks earlier. This indicated 

that the changes in the coefficient for the flu term came before or at the onset of the flu 

epidemic in a within-host model. This could be the time from incubation till serious disease 
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resulting in a sick leave. NIPH estimated a delay between infection and sick leave in the order 

of one week. 

The changes in gene expression represented all infected women in the study population. 

During the epidemic as many as five percent of the total work force of around 2.5 million 

could have a sick leave for influenza in one week (Figure 1). Around 70% of women aged 16-

74 were working. The participating women were middle aged and mainly aged 45-65 years at 

time of blood sampling. Using hypothesis testing, we were not able to show that the effect 

was due to a small group of infected people. That would have supported that the flu gene 

expression was due to the numbers of women with flu in the population.  

From the end of 2021 a third wave of COVID-19 moves over the temperate regions of Europe 

and US (11). The seasonality of deaths due to the pandemic in Norway (Figure 1) 

demonstrates the three waves. The similarities with the years described here for seasonal 

influenza is striking (Figure 2). The covid-19 pandemic display new waves due to novel 

mutations, similar to seasonal influenza. The mutations give diseases with different symptoms 

and severity. Consequently, knowledge about the spread of seasonal influenza and a potential 

within-host seasonal immunity could have a transfer value to corona viruses (35). There are a 

few studies of covid-19 with results that implicit support of our view. In a study of blood gene 

expression profiles in patients admitted to emergency wards, strong transcriptional responses 

were found not only in COVID-19, but also for seasonal coronavirus, influenza, bacterial 

pneumonia, and healthy controls (9, 10). Proposed classifiers for the different serious 

infections and healthy controls showed auROC (mean area under the receiver operating 

characteristic curve) close to 1.0. However, of the 36 genes in the test only one was found 

among the 1051 genes named within-host genes here. Thus, the genes involved in the acute 

phase of serious disease did not confound the within-host genes. However, the healthy group 

of the control panel consisted of only 6 women, all 20 years. The lack of consistency between 

the within-host flu genes and the acute phase genes defined by the gene expression test could 

support our interpretations.  Recently, the genes OAS 1,2,3 were found to be associated with 

improved survival of covid-19 (13). The genes did exist in our datasets, but only OAS1 

passed the preprocessing limit. OAS1 did not reach significant expression level in the sine-

cosine model.  

The seasonal influenza epidemics showed for three of the four years of observation 

approximately the same pattern with infection rates increasing early in winter lasting for a few 
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months before disappearing. In the year 2003, the epidemic came three months earlier. The 

expression of the within-host genes changed in the same direction. This indicated that neither 

light nor short daylight-induced vitamin D deficiency were important for the response (2). 

The seasonal patterns of genome-wide gene expression have been investigated in several 

studies (17, 18, 19). The same statistical model as used here were applied in other analyses 

with focus on summer and winter effects. The number of genes with significant seasonality 

varied among the studies. In a German study, 2311genes were upregulated in the summer and 

2826 genes upregulated in the winter or 23% of all tested genes (17). They defined seasonal 

effect as positive relative effect in January, February, and December and negative in June, 

July and August. Another study from Australia (19) found less than two hundred significant 

seasonal genes. Lastly (18), a US study found 898 significant transcripts. These three studies 

were based on clinical studies of individuals with risk of prediabetes (36), children with 

increased risk of type I diabetes (37), and a study of familial melanoma (38). The models used 

by us were qualitatively very different and gave much more information opening for 

maximum response any date in the year. In the previous mentioned German study, the 

original analyses found a total of 5137 significant genes (17). This was reduced to 179 or 4% 

in an external validation study comparing the original findings with five samples from a 

multi-center study. Here the 1051 significant within-host genes were reduced to 305 or 30% 

in the replication analysis. One reason for the different results could be the design of the 

studies. By introducing a discovery – replication design the internal validity of the results in 

our study was verified. We are not aware of other studies looking at seasonal virus diseases 

that could be used for an external validation of our findings (Box 1). 

It was recommended from the early beginning of gene expression analyses to use split sample 

methodology to control for weak associations and biases like technology sampling methods 

and preprocessing (39). Split sample analyses will have lower statistical power compared to 

using all samples in an explorative design. Here we used a split sample design with discovery 

and replication studies (25). The conditions for a good replication design are that the 

discovery (original) and the replication (confirmatory) populations are similar in terms of sex, 

age, ethnicity, and other important factors. In addition, the two studies should share identical 

laboratory analyses, data processing pipelines and analytical approaches. Thus, a replication 

study is methodologically different from studies of external validity. The replication analyses 

showed that many weak associations could not be reproduced. This reduced the problem of 
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false positive results that can mislead later researchers. Both the peak months of the flu and 

the strength of the flu coefficient were significant in both datasets for one third of the genes. 

Interpretation of significance solely on the p-values have given a very large number of 

significant genes in almost all analyses of seasonal gene expression, here close to 3 000. This 

could indicate that the strong parametrization of the sine – cosine model without replication 

design leads to many false positive results. For many decades epidemiology has relied more 

on relative risks than p-values alone (40). In functional genomics fold change is used as term 

for the difference between maximum amplitude and the average value for each gene. The 

introduction of a limit of the log fold change of 0.1 reduced the number of genes somewhat in 

a common analysis of the discovery and replication datasets. A log fold change less than 0.1 

is equal to a relative risk of less than 5%. Such low risks can easily be confounded.   

The study design has some limitations. The discovery and the replication samples were run on 

two different microarrays. The discovery set used Illumina H-6 with six blood samples on the 

chip, compared to the 12 blood samples on the Illumina Hu-12 in the replication. The shift 

was due to the sudden stop in the production of Illumina Hu-6. Hu-6 had approximately twice 

as many probes per gene as Hu-12 (Appendix Figure A). It might be that the reduction in 

probe numbers per gene reduced the sensibility of the microarray. Still a reasonable test-retest 

result was obtained. The original NOWAC study invited only women since it was based on 

hypotheses related to female reproduction, oral contraception, and hormonal replacement 

therapy. The age span included mainly women in their middle age. Due to the original design 

of building a biobank for functional genomics the study covered only four years. On the other 

hand, the sampling was independent of any knowledge of seasonal influenza. 

A major issue in the interpretation of the findings is the lack of knowledge about many basic 

aspects of the antibody response to the influenza A virus (15). This makes it difficult to test 

specific hypotheses. Preliminary analyses of the gene expression did not support any specific 

hypothesis. This could be due to lack of knowledge of the biological relationship between 

host and viruses.   

A major strength of this study was the completely random assignment for blood sampling 

regardless of place of living in Norway. Due to the extended sampling period, the design 

covered four years with different timing of the annual seasonal influenza. This population-

based design increased the validity of the findings. As a national representative cohort, we 

could use national representative sickness data collected by the National Institute of Public 
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Health. In the original case-control design, controls with cancer diagnosed before or during 

follow-up were excluded. 

The discovery - replication design clearly demonstrated the need to discuss the current use of 

only p-values in studies of functional genomics due to the problem of false positive findings.  

It is well accepted that ecological analyses should not be used for causal conclusions. Still, the 

identical fluctuations in gene expression and seasonal influenza ask for an explanation. This 

opens for creation of hypotheses. From an evolutionary point of view there could be several 

scenarios. First, if the seasonality of virus infections has lasted for thousands of years, 

individuals with an evolutionary adapted seasonal immune system could have better survival. 

On the other hand, if the immune system is seasonal for other reasons with a decreased 

effectiveness in the cold season as often proposed, then virus that operates in cold seasons 

would have an evolutionary better adaptation. Hypothetically, the within-host immune 

response could start in humans by the same signals of humidity and temperature that initiate 

the virus epidemics in the temporal regions, giving a within-host seasonal immunity in 

humans. 

 

Conclusion 

To our knowledge, we have demonstrated for the first-time our concept of within-host 

seasonal immunity. For some genes we found both seasonality and influenza dependent 

changes in longitudinal analyses at a population level. This could represent important aspects 

for understanding potential new seasonal virus epidemics like covid-19. The results of our 

unique discovery – replication designed study have demonstrated the need for careful 

interpretations of results from functional genomic analyses. 
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Box 1 
 
Searched 19.01.2022 
Database: Ovid MEDLINE(R) and In-Process, In-Data-Review & Other Non-Indexed Cita-
tions and Daily <1946 to January 18, 2022> 
Search Strategy: 
-------------------------------------------------------------------------------- 
1     exp Seasons/ (114470) 
2     seasonal variation*.ti,kw. (6975) 
3     circannual rhythm*.ti,kw. (187) 
4     1 or 2 or 3 (115696) 
5     exp Gene Expression/ (481411) 
6     gene expression*.ti,kw. (115013) 
7     transcriptomic*.ti,kw. (16226) 
8     5 or 6 or 7 (563996) 
9     4 and 8 (726) 
10     exp Orthomyxoviridae/ (61015) 
11     influenza virus*.ti,kw. (21372) 
12     10 or 11 (64103) 
13     9 and 12 (8) 

 

Search for: 9 and 12 
Results: 8 

Six of the 8 were related to vaccines, one a clinical study and one cell study.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 11, 2022. ; https://doi.org/10.1101/2022.03.01.22271679doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.01.22271679
http://creativecommons.org/licenses/by/4.0/


 

29 

 

Tables 
 

Table 1. Number of persons in each year for the Discovery and Replication datasets 

 
 Study year, number of persons with blood sample   

Dataset 2003 2004 2005 2006 Sum 
Discovery 94 107 148 76 425 
Replication  96 28 112 196 432 
 

 

 

 

Table 2. The sign of the significant flu coefficients h� in Model B in the Discovery dataset. This 

model has seasonality (however this is turned off with b�,� �  b�,� � 0) and a flu term. 

 �� � 0 �� � 0 
Number of significant genes 1106 1488 
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Table 3. The table shows how the coefficient of the flu term �� changes when the flu inten-
sity is moved +/-60 days in the Discovery dataset when using Model C with seasonality and a 
flu term. We show the estimated ��-value and the corresponding FDR q-value when the flu 
term is moved -45 days (i.e. earlier), -15 days, 0 days, 15 days and 45 days. Period with 
smallest FDR q-value is written in boldface. The table is divided into sections. First there are 
three sections with +� 2 0 and then two sections with +� 5 0. Within each section, the genes 
are sorted after size of +�where the most extreme value is obtained. 
 

 -45 -15 0 15 45 

 �� FDR q-

value 

�� FDR q-

value 

�� FDR q-

value 

�� FDR q-

value 

�� FDR q-value 

SLC6A10P 0.16 9.79E-02 0.29 1.02E-03 0.32 3.09E-03 0.29 2.81E-02 0.12 4.86E-01 

FCGR3A -0.01 9.53E-01 0.12 1.40E-01 0.23 1.20E-02 0.35 1.22E-03 0.30 9.12E-03 

ACTRT1 0.06 4.80E-01 0.17 1.09E-02 0.26 1.93E-03 0.34 6.03E-04 0.28 8.70E-03 

DNA2 0.07 3.12E-01 0.18 5.38E-03 0.25 1.39E-03 0.32 5.16E-04 0.23 1.93E-02 

LOC653635 0.05 5.38E-01 0.17 2.03E-02 0.23 9.36E-03 0.32 2.30E-03 0.17 1.63E-01 

ADRA2C -0.08 3.79E-01 0.07 3.68E-01 0.22 1.81E-02 0.31 4.23E-03 0.31 8.70E-03 

LOC399744 0.13 4.87E-02 0.26 2.16E-05 0.31 4.87E-05 0.30 8.28E-04 0.06 6.64E-01 

DSCAM 0.10 1.01E-01 0.20 4.94E-04 0.25 5.05E-04 0.30 5.44E-04 0.16 8.48E-02 

ARTN -0.07 4.18E-01 0.08 2.97E-01 0.21 1.33E-02 0.29 4.47E-03 0.27 1.35E-02 

LOC729021 0.13 1.52E-02 0.21 9.77E-05 0.26 7.20E-05 0.29 2.71E-04 0.18 3.15E-02 

IGF2BP2 0.15 2.97E-02 0.25 2.65E-04 0.30 3.12E-04 0.27 6.51E-03 0.16 1.42E-01 

RNF213 -0.04 7.34E-01 0.05 6.46E-01 0.13 3.09E-01 0.27 5.44E-02 0.36 1.29E-02 

YY1 0.07 3.23E-01 0.10 1.09E-01 0.14 5.83E-02 0.17 5.51E-02 0.26 3.70E-03 

LRP10 0.07 2.88E-01 0.10 9.21E-02 0.13 5.24E-02 0.19 1.93E-02 0.25 3.16E-03 

RPL21 -0.37 5.67E-03 -0.61 2.72E-06 -0.52 1.11E-03 -0.47 1.52E-02 -0.11 6.83E-01 

FTHL8 -0.20 2.73E-01 -0.54 9.63E-04 -0.51 1.22E-02 -0.39 1.19E-01 0.01 9.76E-01 

VNN2 -0.33 2.79E-04 -0.52 1.23E-08 -0.54 5.85E-07 -0.49 1.85E-04 -0.29 3.93E-02 

FKSG30 -0.29 2.96E-02 -0.52 4.13E-05 -0.50 1.22E-03 -0.41 2.88E-02 -0.02 9.54E-01 

RPS28 -0.20 2.59E-01 -0.51 9.99E-04 -0.47 1.37E-02 -0.34 1.45E-01 0.08 8.13E-01 

LOC653658 -0.23 1.62E-01 -0.48 1.68E-03 -0.41 3.09E-02 -0.33 1.54E-01 0.07 8.42E-01 

LOC390354 -0.22 8.78E-02 -0.47 9.53E-05 -0.44 3.35E-03 -0.36 4.72E-02 -0.04 8.96E-01 

LOC642817 -0.31 2.77E-04 -0.47 1.60E-08 -0.50 7.51E-07 -0.40 8.87E-04 -0.11 5.01E-01 

LOC728481 -0.27 2.02E-02 -0.46 3.32E-05 -0.38 5.85E-03 -0.30 7.48E-02 0.08 7.48E-01 

FTHL12 -0.21 1.50E-01 -0.46 4.62E-04 -0.40 1.43E-02 -0.29 1.40E-01 0.05 8.72E-01 

LOC389787 -0.13 4.28E-01 -0.45 1.55E-03 -0.38 3.33E-02 -0.31 1.60E-01 0.02 9.64E-01 

RPL37A -0.30 1.02E-02 -0.43 1.03E-04 -0.32 2.22E-02 -0.22 1.99E-01 0.15 4.70E-01 

HNRPA2B1 -0.27 2.13E-02 -0.42 1.39E-04 -0.41 3.13E-03 -0.35 3.66E-02 0.00 9.87E-01 

CD48 -0.17 2.50E-01 -0.42 1.22E-03 -0.38 1.80E-02 -0.34 8.51E-02 0.04 9.12E-01 

WASPIP -0.24 4.73E-02 -0.42 3.01E-04 -0.35 1.67E-02 -0.32 6.96E-02 -0.01 9.74E-01 

LOC645138 -0.21 1.20E-01 -0.42 7.32E-04 -0.33 3.58E-02 -0.22 2.46E-01 0.16 4.88E-01 

AMY1C -0.22 1.19E-01 -0.41 1.35E-03 -0.36 2.71E-02 -0.28 1.49E-01 0.06 8.53E-01 

RPS3A -0.14 3.66E-01 -0.41 2.27E-03 -0.35 3.82E-02 -0.32 1.14E-01 0.06 8.42E-01 

UQCRHL -0.23 6.25E-02 -0.41 4.98E-04 -0.29 5.74E-02 -0.22 2.17E-01 0.09 7.27E-01 

TM9SF2 -0.26 3.18E-02 -0.41 3.64E-04 -0.30 3.87E-02 -0.24 1.78E-01 0.03 9.07E-01 

CDC42SE2 -0.24 6.54E-02 -0.41 1.02E-03 -0.28 8.08E-02 -0.22 2.68E-01 0.07 7.91E-01 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 11, 2022. ; https://doi.org/10.1101/2022.03.01.22271679doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.01.22271679
http://creativecommons.org/licenses/by/4.0/


 

31 

 

FAM10A4 -0.27 6.77E-03 -0.41 1.50E-05 -0.32 6.96E-03 -0.22 1.36E-01 0.07 7.45E-01 

LOC643310 -0.26 7.61E-03 -0.41 1.78E-05 -0.32 6.66E-03 -0.22 1.26E-01 0.05 8.15E-01 

ATF4 -0.22 9.63E-02 -0.38 2.20E-03 -0.31 5.06E-02 -0.24 2.21E-01 0.12 6.46E-01 

CLEC2D -0.25 4.59E-02 -0.38 9.43E-04 -0.30 4.18E-02 -0.29 9.95E-02 0.10 6.95E-01 

LDHB -0.25 1.65E-02 -0.37 1.76E-04 -0.32 9.92E-03 -0.24 1.07E-01 0.09 6.62E-01 

ZNF217 -0.27 3.01E-03 -0.37 1.75E-05 -0.29 8.39E-03 -0.25 6.19E-02 0.01 9.74E-01 

PGAM4 -0.25 1.50E-02 -0.37 1.33E-04 -0.30 1.37E-02 -0.24 1.11E-01 0.02 9.39E-01 

ARPC5 -0.21 1.11E-01 -0.37 2.25E-03 -0.30 4.88E-02 -0.23 2.13E-01 0.12 6.10E-01 

SFRS10 -0.25 1.50E-02 -0.37 1.60E-04 -0.26 3.70E-02 -0.19 1.98E-01 0.10 6.27E-01 

LOC648210 -0.31 3.47E-04 -0.47 2.72E-08 -0.52 5.65E-07 -0.44 3.96E-04 -0.15 3.33E-01 

 

 
 

 

Table 4 

The probability for rejecting the hypothesis (p-value) that the residuals are symmetric based 
on 10,000 simulations. & represents the number of persons with most extreme residual values 
that potentially could dominate the covariation between the gene expressions and the flu in-
tensity observations.  

 

& 10 20 30 40 

6�4� 2 7�89:;9< ;�=>9� 0.20 0.59 0.58 0.42 
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 Table 5 A Gene names, function and immunological function of the 20 genes with high-
est positive value of ��.  

Gene Function Immunologic function 

ABCA7 Plays a role in lipid homeostasis in 

cells of the immune system and in T-

cell functions. Involved in Alzheimer 

Participate in microglia immune 

response.  

GNB2 Encodes protein involved in 

transmembrane signaling. 

 

SBNO2 Involved in the transcriptional 

corepression of NF-kappaB in 

macrophages. Plays a role as a 

regulator in the proinflammatory 

cascade. Bone homeostasis 

Involved in inflammatory responses 

PA2G4 Involved in growth regulation, 

ribosomal assembly. Transcriptional 

co-repressor of androgen receptor-

regulated genes. Described in many 

cancers 

Inhibits influenza virus replication 

ATG16L2 Involved in autophagy. Function is 

unknown 

Might be a part of mucosal immune 

response 

LTB4R Is a receptor for leukotriene B4, a 

potent chemoattractant involved in 

inflammation and immune response 

See main function. Regulates 

inflammatory response.  

ARHGEF1 Regulator of Rho-signalling Regulates lung immune response and 

inflammation via T-cell activity. 

Associated with rare antibody 

deficiencies. 

GAA Essential for the degradation of 

glycogen in lysosomes 

 

PTMS Regulates resistance to certain 

opportunistic infections 

 

MAP1S Mediates aggregation of 

mitochondria resulting in cell death 

and genomic destruction. Plays a role 

in apoptosis 

Regulates phagocytosis of bacteria and 

innate immunity signaling. 

DLGAP4 May play a role in the molecular 

organization of synapses and 

neuronal cell signalling 

 

DPP9 Acts as an inhibitor of caspase-1-

dependent monocyte and 

macrophage pyroptosis 

Regulates cytokine signalling, involved in 

multiple immunologic processes. 

Increased in COVID-19 patients. 

OTUB1 Regulates ubiquitin-dependent 

pathways, T-cell anergy (tumor 

immune escape) 

Inhibits influenza virus development 

MARK2 An important regulator of cell polarity 

in epithelial and neuronal cells 

Involved in innate responses regulation 

DNM2 Plays an important role in vesicular 

trafficking processes, in particular. 

Involved in cytokinesis. 

 

C17orf62   
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MGC52000 Proposed to be implicated in T-cell 

proliferation and effector function. In 

dendritic cells involved in endosome-

to-membrane recycling of major 

histocompatibility complex (MHC) 

class II 

 

HK3 Mediates the initial step of glycolysis 

by catalyzing phosphorylation of D-

glucose to D-glucose 6-phosphate 

Regulates immune cells infiltration in 

cancers 

FLJ14107 Unknown. Associated with long non-

coding RNAs 

 

KCTD13 Might be involved in regulation of 

replication processes. 
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Table 5 B Gene names, function and immunological function of the 20 genes with largest 
negative values of ��. 

Gene Function Immunologic function 

VNN2 Participate in hematopoietic cell 

trafficking and transendothelial 

migration of neutrophils 

Upregulated in influenza in vitro. 

Involved in inflammation development 

and chemoresistance in ALL 

RPL21 Encodes ribosomal protein. Was 

shown to play a role in pancreatic, 

breast, uterine cancer and melanoma 

 

JAK1 Protein-tyrosine kinase 

phosphorylating STAT proteins. 

Involved in many cytokines and 

interferons signaling pathways thus in 

multiple inflammatory and cancer-

related mechanisms 

Shown to be suppressed by influenza 

viruses 

OGT Encodes an enzyme involved in 

phosphorylation and glycosylation of 

serine and threonine. Regulates 

circadian oscillation of the clock genes 

and glucose homeostasis in the liver 

Promotes cytokine storm in influenza via 

glucose metabolism 

ZFP36L2 Regulates multiple cell cycle functions Similar protein ZFP36L1 inhibits influenza 

virus 

CXCR4 Encodes chemokine receptor 4 and 

participate multiple process of 

immune cells migration 

Demonstrated to be increased by 

influenza virus 

TMEM123 Functions as a cell surface receptor 

that mediates cell death 

 

CRTAP A scaffolding protein. Involved in 

osteogenesis 

 

HNRPK One of the major pre-mRNA-binding 

proteins. Involved in the induction of 

apoptosis 

Regulates macrophage activity 

SPG21 Negative regulatory factor in CD4-

dependent T-cell activation 

Might be involved in influenza cell 

entrance mechanisms 

RPL24 Ribosomal protein that is a 

component of the 60S subunit 

Involved in HIV life cycle and viral mRNA 

translation. 

WTAP Plays a role in the efficiency of mRNA 

splicing and RNA processing 

Involved in antitumor response. 

Upregulated by influenza virus 

ITGB1 Regulates cell adhesion and laminin 

matrix deposition. Involved in 

promoting endothelial cell motility 

and angiogenesis. Involved in 

osteoblast compaction. May be 

involved in up-regulation of the 

activity of kinases. Plays a mechanistic 

adhesive role during telophase, 

required for the successful 

completion of cytokinesis. 

Regulates T-cell homeostasis and 

memory development. Shown in one 

study to be involved in influenza cell 

entrance mechanisms. 

ALDH1A1 Convert/oxidize retinaldehyde to 

retinoic acid. Binds free retinal and 

Involved in T-cell development 

regulation.  
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cellular retinol-binding protein-bound 

retinal. May oxidize other aldehydes 

in vivo. Alcohol metabolism 

HIAT1 Encodes neuronal protein. Function is 

unknown 

 

YWHAZ Implicated in the regulation of a large 

spectrum of both general and 

specialized signaling pathways. 

Regulates insulin sensitivity 

Suppress apoptosis in cancer cells. 

Regulates functions of dendritic cells. 

Can be deactivated by influenza virus in 

order to reduce antigen presentation 

OSTC Mediates protein translocation across 

the endoplasmic reticulum. Involved 

in lipid metabolism 

 

ADD3 Membrane-cytoskeleton-associated 

protein that promotes the assembly 

of the spectrin-actin network. Plays a 

role in actin filament capping 

 

MORF4L2 Involved in chromatin organization 

and transcription regulation 

 

VOPP1 Increases the transcriptional activity 

of NFKB1 by facilitating its nuclear 

translocation, DNA-binding and 

associated apoptotic response, when 

overexpressed 
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Table 6. Number of within-host genes (N=305) after running exclusion criteria based on log 
fold change for �� ? 0.1. 

 ��  discovery ? 0.1 ��  discovery <0.1 

��  replication ? 0.1 281 9 

��  replication <0.1 14 1 
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Table 7 Gene expression test for influenza (McClain). Only one gene, GBP1, from the test 
was found in the 1051 gene list of potential within-host genes. 
 
 

Number All genes No filtering Filtering 

limit=0.1 

Filtering 

limit=0.9 

1 ATF3 ATF3   

2 CCL2 CCL2   

3 DDX58 DDX58 DDX58 DDX58 

4 DECR1 DECR1 DECR1 DECR1 

5 FARP1 FARP1   

6 FPGS FPGS   

7 GAPDH GAPDH GAPDH GAPDH 

8 GBP1 GBP1 GBP1 GBP1 

9 HERC5    

10 IFI27 IFI27 IFI27 IFI27 

11 IFI44 IFI44 IFI44 IFI44 

12 IFI44L IFI44L IFI44L IFI44L 

13 IFI6 IFI6 IFI6 IFI6 

14 IFIT1 IFIT1 IFIT1 IFIT1 

15 IFIT2 IFIT2 IFIT2 IFIT2 

16 IFIT3 IFIT3 IFIT3 IFIT3 

17 IFIT5 ISG15 ISG15 ISG15 

18 ISG15    

19 LAMP3 LAMP3 LAMP3  

20 LY6E LY6E LY6E LY6E 

21 MX1 MX1 MX1 MX1 

22 OAS1 OAS1 OAS1 OAS1 

23 OAS2 OAS2 OAS2  

24 OAS3 OASL OASL OASL 

25 OASL    

26 PPIA PPIA PPIA  

27 PPIB PPIB   

28 RPL30 RPL30 RPL30 RPL30 

29 RSAD2 RSAD2 RSAD2  

30 RTP4 RTP4 RTP4  

31 SEPT4 SEPT4 SEPT4 SEPT4 

32 SERPING1 SERPING1 SERPING1  

33 SIGLEC1 SIGLEC1   

34 TNFAIP6 TNFAIP6 TNFAIP6 TNFAIP6 

35 TRAP1 TRAP1 TRAP1 TRAP1 

36 XAF1 XAF1 XAF1 XAF1 

Sum 36 33 27 21 
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Table 8. Significant expression of genes OAS1,2,3 in the discovery dataset dependent on 
preprocessing criteria (detectable yes/no and significant yes/no) and inclusion criteria of the 
within-host definition.  
  

Number of genes  OAS1 OAS2 OAS3 

  All genes 25212 yes yes yes 

  Detectable genes 6133 yes no no 

  Significant genes 2942 no no no 

  Within-host genes 1051 no no no 
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Figures 

 
Figure 1. Number of deaths due to or with covid-19 for each week during the pandemic 
2020-2022. Source FHI Weekly report 2022 
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Figur 2A. Percentage of the number of weekly consultations related to flu at general 
practitioners in Norway in the period 2000-2005, the Norwegian Surveillance System 
for Communicable Disease (MSIS)  

www.fhi.no/globalassets/dokumenterfiler/influensa/influensaovervaking-gml/sykdomsovervaking---

influensasesongen-2004-2005-pdf.pdf  

 
 

 

 

 
Figure 2B. The figure shows the log of the weekly percentage of consultations at general 
practitioners in Norway, log(flu), related to flu in the study period 2003-2006. No reports 
were collected between week 20 and week 40, the middle of the year. Data delivered from the 
Norwegian Surveillance System for Communicable Disease (MSIS), numbers identical to 
figure 2A. 
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Figure 3. The distribution of the month M� where the estimated gene expressions in the 
Discovery dataset are strongest for the 2942 genes with significant seasonal variation in Mod-
el A with seasonality.  

 
 

 
 

 

Figure 4. Venn diagram with the number of significant genes from the Discovery dataset 
when there is only a seasonal term (Season 1, Model A), only a flu term (Flu 1, Model B with 
b�,� �  b�,� � 0  ) or a significant seasonal term (Seasonal 2) or a significant flu term (Flu 2) 
when the model has both terms (Model B).  
 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 11, 2022. ; https://doi.org/10.1101/2022.03.01.22271679doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.01.22271679
http://creativecommons.org/licenses/by/4.0/


 

42 

 

 
 

 

 

 

 

Figure 5. The upper panel show a cross plot of the flu coefficient h� versus the amplitude c� 
of the seasonal term in Model B for the 1051 genes where both these are significant in the 
Discovery dataset. Green circles indicate 3 ' M� ' 9 and red circles indicate 0 ' M� '
3 and 9 ' M� ' 12. Note that the season term is large when the flu term is small and the oth-

er way around. The lower panel shows the distribution of the month M� with the maximum 
seasonal effect in Model B for the 1051 genes where both the seasonal term and the flu term 
are significant.  
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Figure 6. Estimated gene expression for three genes with smallest +� 5 0 and three genes 
with largest  +� 2 0.  +� is the coefficient to the log flu intensity. The six genes are selected 
from   the 1051 genes with both a significant flu and seasonal effect for the period 2003-2006, 
for the Discovery dataset. The estimate in Model A (season) is shown in black, the estimate in 
Model B (season and flu) is shown in red, and all observations are shown as circles.  
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Figure 7. Gene expression trajectories for gene SLCA6A10P (largest �� >0, upper panel, red 
line) and gene VNN2 (largest �� <0, lower panel, black line) in relation to the estimated 
smoothed log flu intensities (grey shaded) 2003-2006   
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Figure 8. The effect of moving the flu trend forwards or backwards +/- 60 days in time, Dis-
covery dataset, Model C. The top panel shows the number of genes with significant season/flu 
terms:  flu term (black), both season and flu term (blue), flu term and not season term (red) 
and season term and not flu term (green). The lower left panel shows the size of coefficient 
for the flu term +� when moving the flu term +/-60 days for the 30 genes with largest positive 
+� values in the period. Lower right is similar for +� 5 0.   
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Figure 9. Upper panel shows a cross plot of the flu coefficient h� versus the amplitude c� of 
the seasonal term in Model B for the 369 genes where both these are significant in the Repli-
cation dataset. Green circles indicate 3 ' M� ' 9 and red circles indicate 0 ' M� ' 3 and 

9 ' M� ' 12. Note that the season term is large when the flu term is small and the other way 

around. Lower panel shows the distribution of the month M� with the maximum seasonal ef-
fect in Model B for the 369 genes where both the seasonal term and the flu term are signifi-
cant in the Replication data set. 
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Figure 10 

Correlation of  values between the Discovery and Replication dataset. The red dots are the 
three most significant genes for  <0 and the two most significant genes for  >0. See Table 
5A and Table 5B. 
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Appendix figures 

 
 

 

Appendix Figure A. 

Plot of the distribution of the beads for the same gene VVN2 from Hu-6 (discovery dataset) 
and Hu-12 (replication dataset. 
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Appendix Figure B. Plot of the first and second principal component of the discovery 
dataset, (left panel), 6118, genes, 425 samples after we have removed five outliers based on 
the PCA plots. Replication dataset (right panel) 6348 genes, 432 samples. The two datasets 
were pre-processed separately using a p-value for cut-off E � 0.01, and a present limit of 0.9. 
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