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Abstract 

New techniques for individualized assessment of white matter integrity are needed to detect traumatic 

axonal injury (TAI) and predict outcomes in critically ill patients with acute severe traumatic brain injury 

(TBI). Diffusion MRI tractography has the potential to quantify white matter microstructure in vivo and 

has been used to characterize tract-specific changes in TBI. However, tractography is not routinely used 

in the clinical setting to assess the extent of TAI, in part because focal lesions reduce the robustness of 

automated methods. In the present study, we propose an automated pipeline for individualized 

assessment of white matter damage in patients with acute severe TBI that is based on tractography 

reconstructions and multivariate analysis of along-tract diffusion metrics. We used the Mahalanobis 

distance to test for a deviation of diffusion metrics along 40 white matter tracts in 18 patients with acute 

severe TBI as compared to 33 healthy subjects. The automated pipeline successfully reconstructed white 

matter tracts in all patients with a successful FreeSurfer anatomical segmentation (17 of 18 patients), 

including 13 with focal lesions. In these 17 patients, a mean of 37.5 +/- 2.1 tracts were reconstructed 

without the need for manual intervention and a mean of 2.47 +/- 2.1 needed to be reinitialized upon visual 

inspection. The pipeline detected at least one injured tract in all patients (mean: 12.6, SD: 7.6). The 

number and neuroanatomic location of disrupted tracts varied across patients and levels of 

consciousness. The pre-motor, parietal, and temporal sections of the corpus callosum were the structures 

most frequently injured (in 10, 9, and 8 patients respectively), consistent with histological studies of TAI. 

Multivariate measures of TAI did not show a significant association with behavioral measures of 

consciousness, or subscales measuring basic language and motor function. In summary, we provide proof-

of-principle evidence that an automated tractography pipeline can be used to detect and quantify TAI in 

patients with acute severe head trauma and could therefore assist in the clinical assessment of TAI. 

 
 
 
 
 
 
 
 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2022. ; https://doi.org/10.1101/2022.03.09.22271989doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.09.22271989
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

1. Introduction 

Traumatic axonal injury (TAI) is the most common pathologic substrate of head trauma (Brody et 

al., 2015; McGinn & Povlishock, 2016) and has a strong association with adverse clinical outcomes (Benson 

et al., 2007; Gennarelli et al., 1982; Moe et al., 2020; Newcombe et al., 2010). TAI is caused by high-

velocity translational and rotational forces that stretch and shear axons, leading to either primary 

axotomy or a secondary cascade that can result in axonal degeneration (Hill et al., 2016). TAI lesions are 

typically multifocal, with a neuroanatomic distribution that varies based on the mechanism of injury 

(Adams et al., 1989; Blumbergs et al., 1995; Johnson et al., 2013). For example, individuals in high-speed 

motor vehicle accidents are more likely to experience TAI in the deep subcortical white matter than are 

people who are assaulted, whose burden of TAI is more likely to be limited to the hemispheric white 

matter (Adams et al., 1989; Johnson et al., 2013). Neuroimaging studies that compare patients at the 

group level are insensitive to these variations in lesion location and therefore are suboptimal for assessing 

individual patients in clinical care (Betz et al., 2012). For clinicians and the families of patients with acute 

severe traumatic brain injury (TBI), the inability to measure the burden of TAI creates prognostic 

uncertainty and complicates discussions about continuation of life-sustaining therapy in the intensive care 

unit (ICU) (Izzy et al., 2013; Turgeon et al., 2011). New techniques for individualized assessment of white 

matter (WM) injury (Jolly et al., 2020; Kim et al., 2013; Yuh et al., 2014) are therefore needed to enhance 

detection of TAI and improve the accuracy of outcome prediction in critically ill patients with acute severe 

TBI. 

Due to its diffuse and microscopic nature (Adams et al., 1989; Blumbergs et al., 1995; Johnson et 

al., 2013), TAI is challenging to detect and quantify using routine imaging modalities, such as CT and 

conventional MRI (Betz et al., 2012). Diffusion MRI (dMRI) possesses the unique ability to probe WM tissue 

microstructure non-invasively (Basser et al., 1994), making it possible to identify TAI in vivo (Hashim et al., 

2017; Li et al., 2011; Xu et al., 2007). Numerous studies have used measures obtained from the diffusion 

tensor (DT) model to assess WM integrity in patients with TBI (Arfanakis et al., 2002; Asken et al., 2017; 

Galanaud et al., 2012; Hulkower et al., 2013; Inglese et al., 2005; Newcombe et al., 2007; Zhang et al., 

2017) and have shown its sensitivity to detect WM abnormalities across severities (i.e., mild, moderate, 

severe) and recovery phases (i.e., acute, subacute, chronic). Typically, summary DT metrics such as 

fractional anisotropy (FA) and mean diffusivity (MD) are extracted from WM regions of interest (ROIs) that 

are manually drawn in subject’s space (Inglese et al., 2005; Mac Donald et al., 2011) or segmented from 

an atlas (Galanaud et al., 2012; O’Phelan et al., 2018). Whole-brain voxel-based analysis (VBA) (Van Hecke 

et al., 2016) and tract-based spatial statistics (Smith et al., 2006) approaches are also used to compare 
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normalized DT scalar maps between patient groups (Kinnunen et al., 2011), or between a control group 

and a patient (Jolly et al., 2020). While these approaches provide flexibility to extract DT metrics from WM 

regions and have demonstrated sensitivity to TAI (Jolly et al., 2020; Perlbarg et al., 2009), they do not 

localize injury along the trajectory of white matter tracts at the individual level. Moreover, these methods 

rely on accurate registration between patients and an atlas, which can be challenging in the presence of 

lesions and may not reflect interindividual anatomical differences. They also may involve manual drawing 

of ROIs, which can be time-consuming and infeasible in clinical contexts. 

Diffusion-based tractography allows for the delineation and visualization of the 3D profiles of WM 

pathways in subject space. Tractography methods provide measurements of the magnitude and 

distribution of axonal damage along specific WM tracts, and thus may have additional prognostic utility 

for guiding early decisions about goals of care and continuation of life-sustaining therapy. Indeed, a 

patient’s potential to recover consciousness and cognitive function depends upon the integrity of brain 

networks probed by tractography (Edlow et al., 2021). However, few studies have utilized tractography in 

patients with acute TBI (D’Souza et al., 2015; Ordóñez-Rubiano et al., 2017; Snider et al., 2019; Wang et 

al., 2008; Warner et al., 2010) and even fewer have focused on critically ill patients with acute severe TBI 

(Ordóñez-Rubiano et al., 2017; Snider et al., 2019; Wang et al., 2008). dMRI tractography techniques are 

not routinely used in the clinical setting to assess the extent of TAI (Schweitzer et al., 2019) because the 

presence of focal lesions is often a challenge for these techniques. 

We aimed to test a robust pipeline for individualized TAI assessment in patients with acute severe 

TBI that combines automated reconstruction of WM tracts in subject space with a multivariate analysis of 

along-tract DT metrics. Several considerations are important in this application. Manual delineation of 

ROIs for tractography is time-intensive and operator-dependent (Rheault et al., 2020; Schilling et al., 

2021). Automated tractography methods that use ROIs from an atlas rely on accurate registration 

between the patient and the atlas, which can be difficult to achieve in the presence of focal lesions 

(Crinion et al., 2007; Ripollés et al., 2012). Along-tract measures can provide higher sensitivity than 

diffusion metrics averaged over the entire extent of the tract (Colby et al., 2012; Pieri et al., 2021). Finally, 

local tractography methods, which reconstruct a tract step by step, by considering only the local diffusion 

orientation at each step, can be confounded by lesions and unable to step through them.  

We used TRACULA (TRActs Constrained by UnderLying Anatomy), a method for global 

probabilistic tractography with anatomical neighborhood priors (Yendiki et al., 2011), which allowed us to 

automatically reconstruct 40 WM tracts at the individual level (Maffei et al., 2021). The anatomical 

neighborhood priors in TRACULA encode information about the relative position of the tracts with respect 
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to their surrounding anatomical structures, rather than their absolute coordinates in an atlas space. 

Therefore, TRACULA does not necessitate accurate registration to an atlas (Zollei et al, 2019; Maffei et al., 

2021). It uses global tractography (i.e., it represents the tract as a spline and fits its shape to the diffusion 

orientations from the entire brain). Thus, TRACULA would not “stop” at a lesion the way that a local 

tractography method might. We previously showed that TRACULA, when trained on very high-quality data 

from the Human Connectome Project (HCP) (Fan et al., 2015), improves the accuracy of tractography 

reconstructions in routine quality data when compared to a common multi-ROI tractography approach 

(Maffei et al., 2021). These methodologic advantages of TRACULA suggest potential for translation of this 

technique to critically ill patients with acute severe TBI, who are not medically stable enough to be 

scanned with a time-intensive, high-quality dMRI sequence.   

We applied TRACULA to a diffusion MRI dataset prospectively acquired in a cohort of 18 critically 

ill patients with acute severe TBI who were imaged on a clinical 3 Tesla MRI scanner. We used TRACULA 

to identify the extent and location of injured WM tracts in each patient compared to 33 healthy subjects. 

We focused on along-tract measures of FA and MD, as these microstructural measures are the most 

commonly studied in the field of TBI (Hulkower et al., 2013). The goals of this study were: i) to demonstrate 

the feasibility of applying the TRACULA automated tractography stream (Maffei et al., 2021; Yendiki et al., 

2011) in patients with acute severe TBI, including those with focal lesions, using dMRI data acquired on a 

clinical scanner; ii) to implement an individualized multivariate approach to measure patient-specific TAI 

severity, using reconstructions derived from the automated TRACULA tractography pipeline; iii) to test for 

associations between bundle-specific dMRI measures of TAI and behavioral measures of consciousness; 

and iii) to explore the relationship between TAI within domain-specific tracts and  subscales measuring 

basic language and motor function. 

 

2. Methods 
 
2.1 Participants 

We prospectively enrolled 18 patients (mean age: 28.6 +/- 8.7 years, 13 male) with acute severe 

TBI, sixteen of whom were enrolled as part of a previously described pilot study (Edlow et al., 2017), and 

two of whom were subsequently enrolled as pilot cases for an ongoing observational study 

(ClinicalTrials.gov NCT03504709) (See Table 2 for additional information). Inclusion criteria were: 1) age 

18 to 65 years; and 2) traumatic coma, defined by Glasgow Coma Scale (GCS) (Teasdale & Jennett, 1974) 

total score of six without eye opening on at least one neurologic examination before ICU admission; and 

3) no eye opening for 24 hours after injury. Exclusion criteria were: 1) prior history of severe brain injury 
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or neurodegenerative disease; 2) life expectancy less than six months per physician judgment; 3) presence 

of metal contraindicating MRI; and/or 4) no pre-injury English fluency.  

We also enrolled 33 sex- and age-matched healthy control subjects (mean age 31.2 years, 21 

male) with no history of neurological, psychiatric, cardiovascular, pulmonary, renal or endocrinological 

disease (Edlow et al., 2017). We confirmed that age was not statistically different between the two groups 

using a nonparametric Wilcoxon sum rank test in Python 3 using SciPy Stats 1.3.1 (Jones et al., 2001) (𝑊 =

 −1.116,  𝑝 =  0.2643). Written informed consent was obtained from healthy subjects and from patients’ 

surrogate decision-makers in accordance with a study protocol approved by the Mass General Brigham 

Institutional Review Board.  

 

2.2 Standardized Assessment 

Immediately prior to MRI, each patient’s level of consciousness was prospectively assessed by a 

neurologist on the investigator team (B.L.E.) via behavioral evaluation with the GCS (Teasdale & Jennett, 

1974) and the Coma Recovery Scale-Revised (CRS-R) (Giacino et al., 2004). Per routine ICU care at our 

institution, neurological examinations and GCS assessments were performed off of sedation every two-

to-four hours (depending on clinical stability and safety considerations) by treating clinicians. ICU clinician 

GCS assessments were used to determine time from injury to coma emergence (i.e., eye opening or 

localization to noxious stimulation) and time to command-following. If a patient’s neurological 

examination fluctuated, the first behavioral evidence of coma emergence and command-following were 

reported.  

 2.3 MRI Data Acquisition 

 MRI data were acquired as soon as the treating clinicians deemed patients stable for transport. 

Diffusion weighted imaging data were acquired in the ICU on a 3T Skyra scanner (Siemens Medical 

Solutions, Malvern, PA) with a 32-channel head coil. Three healthy subjects and eight patients were 

scanned using an echo-planar imaging (EPI) sequence with the following parameters: 2𝑥2𝑥2 𝑚𝑚, 60 𝑏 =

2,000 𝑠 ∕ 𝑚𝑚2 and 10 𝑏 = 0 𝑠 ∕ 𝑚𝑚2 volumes, 𝑇𝑅 = 13,700 ms, and 𝑇𝐸 =  98 𝑚𝑠. Thirty healthy 

subjects and 8 patients were scanned using an EPI sequence with simultaneous multi-slice (SMS) 

acceleration (Setsompop et al., 2012) and the following parameters: 2𝑥2𝑥2 𝑚𝑚, 60 𝑏 = 2000 𝑠/𝑚𝑚2 

and 10 𝑏 = 0 𝑠 ∕ 𝑚𝑚2, 𝑇𝑅 =  6,700 𝑚𝑠,  𝑇𝐸 =  100 𝑚𝑠, acceleration factor = 2. Previous work from 

our group showed that diffusion-derived connectivity metrics did not differ significantly between these 

two acquisitions (Snider et al., 2019). The length of the diffusion sequence was 8 minutes and 46 seconds. 

Multi-echo MPRAGE structural images were also acquired with the following parameters: 1𝑥1𝑥1 𝑚𝑚, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2022. ; https://doi.org/10.1101/2022.03.09.22271989doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.09.22271989
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

acquisition matrix = 256 ×  256, 𝑇𝐸 =  1.69 𝑚𝑠, 𝑇𝑅 2530 𝑚𝑠, 𝑓𝑙𝑖𝑝 𝑎𝑛𝑔𝑙𝑒 =  7. All patients and 

healthy subjects were imaged using the same scanner and head coil.  

 

2.4 Diffusion MRI Data Processing 

 Diffusion weighted images were skull stripped and corrected for eddy current distortions and 

movement in FSL 6.0.1 (Andersson & Sotiropoulos, 2015). The tensor and the ball and stick model were 

fit to the data using DTIFIT and BEDPOSTX (Behrens et al., 2003) in FSL 6.0.1, respectively. Automated 

reconstruction of 40 major WM pathways was performed using the global probabilistic tractography 

algorithm TRACULA in FreeSurfer 7.2.0 (Maffei et al., 2021; Yendiki et al., 2011). Although TRACULA can 

reconstruct a total of 42 WM tracts, we decided to exclude the right and left fornix, because optimal 

identification of these WM bundles requires segmentation of thalamic subnuclei that are not provided by 

the standard “recon-all” FreeSurfer processing pipeline.  The mathematical formulation of TRACULA has 

been described elsewhere (Yendiki et al., 2011, 2016). Briefly, the algorithm models a pathway as a cubic 

spline, which is initialized with the median streamline of the training set. A random sampling algorithm is 

used to draw samples from the posterior probability distribution of the pathway, which is decomposed 

into the likelihood term and the prior term. The likelihood term fits the shape of the spline to the diffusion 

orientations obtained from the ball-and-stick model in the voxels that it goes through. The prior term fits 

the shape of the spline to its anatomical neighborhood, given the manually labeled examples of this 

pathway from the training set and the anatomical segmentation volumes of both test and training 

subjects. The number of control points of the cubic spline were chosen as previously described (Maffei et 

al., 2021). Along-tract tensor-derived metrics obtained from DTIFIT were extracted for each of the 

reconstructed tracts using a pointwise assessment of streamline tractography attributes (PASTA) (Jones 

et al., 2005). For each of the 40 tracts, 1D along-tract profiles of FA and MD were generated by projecting 

the value of each measure from every point on every automatically reconstructed streamline to its nearest 

point on a reference streamline, as previously described (Maffei et al., 2021). The reference streamline is 

the mean of the training streamlines for each tract, ensuring that all subject data were sampled at the 

same number of cross-sections along a given bundle. Before extracting the diffusion measures, the 

posterior probability distribution estimated by TRACULA was thresholded by masking out all values below 

20% of the maximum, which is the default threshold in TRACULA (Maffei et al., 2021; Yendiki et al., 2011; 

Zöllei et al., 2019). All the pre-processing steps detailed in this section are performed automatically by the 

TRACULA pipeline. 
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2.5 Structural MRI Data Processing 

 The anatomical segmentation that was needed to compute the anatomical neighborhood priors 

in TRACULA was obtained by analyzing the structural T1-weighted image in FreeSurfer 7.1.1 (Dale et al., 

1999; Fischl, 2012). The automated “recon-all” pipeline was run with default parameters, except for the 

“bigventricle” option, which was added to optimize segmentation in patients that may have enlarged 

ventricles post-injury. The obtained segmentation volumes included a combination  of the Desikan-Killiany 

cortical parcellation labels (Desikan et al., 2006) and the standard FreeSurfer subcortical segmentation. 

To compute the prior probabilities on the anatomical neighbors of the tracts using TRACULA, the 

anatomical segmentations were transformed to the subject’s individual dMRI space. This within-subject, 

dMRI-to-T1 alignment was performed using a boundary-based, affine registration method (Greve & Fischl, 

2009). To ensure that the relative position of the anatomical structures was the same for all subjects, and 

to map the median streamline from the training data to the subject during initialization, all subjects were 

mapped onto a template brain. We used a non-linear SyN registration in ANTs (Avants et al., 2008) to map 

each subject onto an FA template constructed from the training dataset (Maffei et al., 2021). It is 

important to highlight that this step is only used to initialize the reconstruction of the tract, which is then 

refined by fitting it to the anatomy of the individual subject. 

 

2.6 Quality assessment of tract reconstructions 

 To assess the feasibility of implementing TRACULA in a clinical setting, we performed a qualitative 

assessment to evaluate the accuracy of the tract reconstructions in patients with acute severe TBI. We 

considered the application of TRACULA in this population to be feasible if more than 50% of the 

automated reconstructions were successful. For this qualitative assessment, a study investigator (C.M.) 

visually inspected all 40 tracts for all patients and healthy subjects. Reconstructions were considered 

successful if tracts traversed the relevant WM regions and reached the cortical regions that were used as 

inclusion ROIs in the protocols defined to manually label the training set. These protocols were carefully 

defined on the known anatomy of each tract and are detailed in (Maffei et al., 2021).  

When a focal lesion was present, the reconstruction was considered successful if the tract reached 

the cortical termination regions delineated in (Maffei et al., 2021), even if the tract’s course was altered 

by the presence of the lesion. As TRACULA uses a global probabilistic approach to estimate the tracts, 

post-processing steps to remove false positive reconstructions were not necessary. However, when a 

suitable solution for the initial reconstruction of the pathway is not found, the tract appears as a single 

curve (See Figure 1 for a simulated example). This can be due to errors in the subject-to-template 
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registration step, or to a misplacement of the FreeSurfer segmentation labels in the presence of lesions. 

We refer to these reconstructions as “failed reconstructions”. Moreover, as a single threshold is used 

across all tracts and groups to threshold the posterior probability of the tract, some reconstructions can 

result in incomplete tracts or in unusually small tracts for which many voxels did not survive the threshold 

(See Figure 1 for an example). We refer to these reconstructions as “partial reconstructions”. We reran 

TRACULA on the tracts that resulted in either failed or partial reconstructions by reinitializing the control 

points of the initial spline, by setting the reinit parameter to 1 (Yendiki et al., 2011). We retained the re-

initialized reconstructions if they resulted in correct tracts as defined at the beginning of this section.  The 

same criteria were applied to patients and controls. This was the only manual intervention performed in 

the TRACULA pipeline. Tracts that had partial or failed reconstructions after reinitialization were excluded 

from subsequent analyses. We performed individualized assessment of TAI using the remaining tracts, 

including both the tracts that had been successfully reconstructed without need of reinitialization and the 

tracts that needed to be reinitialized (Section 2.7). We then compared the results when performing 

individualized assessment of TAI using only the tracts that had been successfully reconstructed without 

need of reinitialization. We used a Wilcoxon signed-rank test in Python 3 (SciPy Stats 1.3.1) to assess 

differences in the number of injured tracts per patient.  

 
Figure 1. Simulated examples of failed, partial, and successful TRACULA reconstructions for a representative tract 
(the left arcuate fasciculus) in a control subject. Reconstructions are shown thresholded (20% of the maximum 
posterior probability) and unthresholded. Reconstructions are shown on sagittal fractional anisotropy scalar maps. 
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2.7 Multivariate analysis 

  

 

Figure 2.  Schematic of the automated individualized pipeline. After pre-processing of diffusion weighted imaging 
(DWI) and structural T1-weighted imaging data, which included extraction of the FreeSurfer anatomical labels, the 
40 white matter tracts were reconstructed in TRACULA. Along-tract measures derived from the diffusion tensor (DT) 
were then extracted for four equidistant segments for each of the 40 tracts. We checked the normality of the 
distribution for these measures in the controls and applied a Rank-based inverse normal transformation (INT) to the 
tracts for which assumptions of normality were not met (𝑝 < 0.05). We then computed the Mahalanobis distance 
for each tract using along-tract fractional anisotropy (FA) (𝐹𝐴1, …, 𝐹𝐴4) and mean diffusivity (MD) (𝑀𝐷1,…, 𝑀𝐷4) as 
features (𝑛 = 8). Individual profiles based on the distance of each tract from the controls were then built for each 
patient. FS: FreeSurfer. 
 

Figure 2 shows the steps of the multivariate analysis. To measure the extent of WM injury in each 

patient, we employed a multivariate analysis that included along-tract measures of both FA and MD. For 

this analysis we used both the tracts that had been successfully reconstructed without need of 

reinitialization and the tracts that needed to be reinitialized (Section 2.6). For each subject, each tract was 

divided uniformly in 𝑖 =  1, . . ,4 segments and the along-tract measures of FA and MD, extracted at each 

point along the tract in TRACULA (see Section 2.4), were averaged within each segment to obtain a total 

of eight features for each tract (𝐹𝐴1, 𝐹𝐴2, 𝐹𝐴3, 𝐹𝐴4 , 𝑀𝐷1, 𝑀𝐷2 , 𝑀𝐷3 , 𝑀𝐷4). We decided to collapse the 

along-tract measurements in four segments to ensure that for each tract the number of features (p = 8) 

was lower than the number of controls (n = 33). To meet normality assumptions, we ran Shapiro-Wilk 

TRACULA (40 Tracts) FS Structural LabelsDWI + Structural Data Along-tract 

DT measures

Check normality of DT measures in 

controls (Rank-based INT)

Mahalanobis Distance

[FA1, …, FA4, 

MD1, …, MD4]

Patient

Controls

Individual Patient Profiles
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tests in Python 3 using SciPy Stats 1.3.1 (Jones et al., 2001) and tested for the normality of 𝐹𝐴𝑖 and 𝑀𝐷𝑖  

for each of the 40 tracts in the control group. For the tracts for which the distribution of 𝐹𝐴𝑖 or 

𝑀𝐷𝑖  departed significantly from normality (𝑝 < 0.05) a rank-based inverse normal transformation (INT) 

was applied to the data for both controls and patients (Blom constant = 3 ∕ 8) (Blom, 1958) in Python 3, 

as in (Jolly et al., 2020). 

We compared the 8-D feature vector of dMRI measures (𝐹𝐴1,…,4 and 𝑀𝐷1,…,4) between each 

patient and the healthy population based on the Mahalanobis distance 𝐷𝑀 , which is defined as 

(Mahalanobis, 1936): 

 

𝐷2
𝑀 = (𝐱 − 𝛍)𝑇 ⋅  𝐂−1 ⋅ (𝐱 − 𝛍), 

 

where 𝐱 is the feature vector of a specific WM tract in a patient, 𝛍 is the mean feature vector of the same 

tract over controls, and 𝐂 is the covariance matrix of the feature vector in controls. The values of 𝐷2
𝑀 

reflect how far a patient, represented as a point in the 8-D feature space, is from the normative 

distribution, which is estimated from the controls. The Mahalanobis distance has been used in 

neuroimaging studies, e.g., to classify between patients with neurological diseases and controls (Lindemer 

et al., 2015) and to detect individual neurodevelopmental differences (Dean et al., 2017). We computed 

the 𝐷𝑀  between patients and healthy controls for each of the 40 tracts to build individual profiles and 

identify the location and severity of WM injuries in patients. For multivariate Gaussian data, the 

distribution of 𝐷2
𝑀 values is known to be Chi-squared with degrees of freedom equal to the number of 

features (Gnanadesikan & Kettenring, 1972). We computed the p-values corresponding to the Chi-square 

statistic in Python 3 using SciPy Stats 1.3.1 (Jones et al., 2001) and considered a WM tract to be injured if 

its 𝑝 − 𝑣𝑎𝑙𝑢𝑒 was < 0.001 (𝑝 <  0.05,  Bonferroni adjusted for multiple comparisons across 40 tracts). 

We extracted the total number of injured tracts for each patient. 

To measure the accuracy of the pipeline in the task of detecting TAI, we computed its performance 

in discriminating between patients and controls. We first computed the 𝐷𝑀  between each control and the 

remaining control population in a leave-one-out fashion and then performed a receiver operating 

characteristic (ROC) analysis by thresholding both the alpha used to identify a tract as extreme 

(𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 =  0.001, 0.01, 0.05) and the number of tracts used to assign a subject to the control or 

patient population (𝑟𝑎𝑛𝑔𝑒 =  1: 1: 40). For each combination of alpha and number of tracts we 

computed the false positives (FP; number of controls classified as patients), the false negative (FN; number 

of patients classified as controls), the true positives (TP; number of patients classified as patients), the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 10, 2022. ; https://doi.org/10.1101/2022.03.09.22271989doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.09.22271989
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

true negatives (TN; number of controls classified as controls), the true-positive rate (𝑇𝑃𝑅;  𝑇𝑃/(𝑇𝑃 +

𝐹𝑁)) and false-positive rate (𝐹𝑃𝑅;  𝐹𝑃/(𝐹𝑃 + 𝑇𝑁)). We obtained the ROC curve by plotting the TPR as a 

function of FPR and computed the area under the ROC curve (AUC) to quantify accuracy. To visualize the 

difference in 𝐷2
𝑀 values between the two populations we plotted the probability density functions of 

𝐷2
𝑀 values for patients and controls for each of the 40 tracts. Finally, we compared the results when 

using only the tracts that had been successfully reconstructed without need of reinitialization (Section 

2.6). We used a Wilcoxon signed-rank test in Python 3 (SciPy Stats 1.3.1) to assess differences in the 

number of injured tracts per patient.  

  

2.8 Testing for the effect of head motion 

 To ensure differences in 𝐷2
𝑀 values between patients and controls were not influenced by head 

motion in the scanner, we first computed a total motion index (TMI) for each subject as described in 

(Yendiki et al., 2014). The TMI is a composite score of four motion measures: i) average volume-by-volume 

translation, ii) average volume-by-volume rotation, iii) percentage of slices with signal drop-out, and iv) 

signal drop-out severity. For each subject, the TMI was computed in the following manner: 

 

𝑇𝑀𝐼 =  ∑
𝑥𝑚𝑗 − 𝑀𝑗

𝑄𝑗 − 𝑞𝑗

4

𝑗=1

  

 

where 𝑗 = 1, … ,4 are the four motion measures listed above, 𝑥𝑚𝑗  is the value of the j-th motion measure 

for the m-th subject and 𝑀𝑗 , 𝑄𝑗, and 𝑞𝑗  are respectively the median, upper quartile, and lower quartile of 

the j-th measure over all the subjects (Yendiki et al., 2014). We then used a nonparametric Wilcoxon rank 

sum test in Python 3 (SciPy Stats 1.3.1) to assess if there were statistically significant differences in head 

motion between the patients and controls. We also performed a simple least squares regression in Python 

3 using statsmodels 0.10.1 (Seabold & Perktold, 2010) to test if the interaction between group and TMI 

significantly predicted the 𝐷2
𝑀 for each of the 40 reconstructed tracts (Bonferroni adjusted alpha level 

=  0.001).   

 

2.9 Testing the relationship with behavioral measures 

 Before undertaking our analyses, GCS total scores were calculated by summing the eye opening, 

motor, and verbal subscale scores. CRS-R total scores were derived by the summing the auditory function, 

visual function, motor function, oromotor/verbal function, communication, and arousal subscales scores. 
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Both the GCS and CRS-R were included in analyses as they have complementary strengths (i.e., CRS-R has 

higher psychometric properties than the GCS; GCS is more widely-used and faster to administer than the 

CRS-R) (Bodien et al., 2021; Giacino et al., 2004; Teasdale et al., 2014).  

 Next, non-parametric Spearman correlations were conducted to test the relationship between 

our primary dependent variables (i.e., CRS-R total, GCS total, days in coma, days to command-following), 

primary independent variables (i.e., average DM and number of injured tracts per patient), and potential 

confounding variables (i.e., age, TMI, days to MRI) (Edlow et al., 2016). Results of these analyses informed 

variable selection for our subsequent analyses in two ways: i) only independent and confounding variables 

that were significantly correlated with the dependent variables were included in the linear regression 

model(s); and ii) if our dependent variables were significantly correlated with each other then, separate 

linear regression models were performed to avoid multicollinearity. Correlations were conducted in R 

using ‘cor.test’ (RStudio Team, 2020). Significance was set at 𝛼 =  0.05 to ensure identification of 

potential confounding variables.   

 Based on the results of the previously described correlations, linear regression analyses would be 

conducted using the average DM, the number of injured tracts, and any identified confounding variables 

to predict i) GCS Total scores, ii) CRS-R Total scores, ii) days in coma, and iv) days to command-following. 

Linear regressions were computed in R using the ‘lm’ function (RStudio Team, 2020). We also performed 

ordinal logistic regression using the average 𝐷𝑀   of the injured tracts, the number of injured tracts, and 

any identified confounding variables to predict levels of consciousness (i.e., levels from more to less 

severe impairment: coma, vegetative state, minimally conscious state, minimally conscious state plus, 

posttraumatic confusional state) (Giacino et al., 2004; Thibaut et al., 2020). This statistical approach was 

selected to manage the categorical nature of the level of consciousness variable. We tested the 

relationship between levels of consciousness and potential confounding variables (i.e., days to MRI, age, 

and TMI), and included variables identified to be confounding in the final ordinal logistic regression model. 

Ordinal logistic regression analyses were computed in R (RStudio Team, 2020) using the ‘plor’ function 

from the “MASS” package (Venables & Ripley, 2002). T-values were compared against the standard 

normal distribution to obtain t-values for the estimates. To support interpretability, odds ratios and 

confidence intervals were obtained by exponentiating the estimates and confidence intervals  

 Then, as a secondary, exploratory analysis, ordinal logistic regression analyses were implemented 

using the average DM and the number of affected tracts for the three tract subsets measuring motor 

(motor tracts (MT)), language comprehension (language comprehension tracts (LCT)), and language 

production (language production tracts (LPT)), and any identified confounding variables to predict the 
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corresponding GCS and CRS-R subscales as shown in Table 2. Tract subsets were chosen based on prior 

literature (Catani & Mesulam, 2008; Dick et al., 2019; Herbet et al., 2018; Maffei et al., 2019; Makris et 

al., 2005, 2009; Mars et al., 2016; Welniarz et al., 2017). Ordinal logistic regression was selected to manage 

the categorical nature of the GCS and CRS-R subscales (i.e., see Table 1 for details). Non-parametric 

Spearman correlations were conducted in R to test the relationship between our continuous independent 

variables (i.e., the average DM and number of injured tracts for the motor, language comprehension, and 

language production tract subsets) and potential confounding variables (i.e., age, TMI, days to MRI). 

Ordinal logistic regression analyses were applied to test the relationship between the categorical 

dependent variables (i.e., GCS and CRS-R subscales) and potential confounding variables (i.e., days to MRI, 

age, and TMI). Independent variables or confounding variables that were significantly correlated with one 

another were included in separate models to manage multicollinearity. We focused these exploratory 

analyses on language and motor function (e.g., as opposed to visual function) as their presence is 

considered a positive sign of recovery (Formisano et al., 2004; Tamashiro et al., 2012), reflecting 

reemergence of consciousness (Giacino et al., 2014). We included the CRS-R-A (i.e., assesses basic 

language comprehension) in addition to the CRS-R-O/V and GCS-V (i.e., assess basic language production) 

as these measures would be anticipated to be related to damage to different tracts, the ventral and dorsal 

streams, respectively (Hickok & Poeppel, 2004; Saur et al., 2008).   

 

Domain Tract Subscale  
Reference for 

Tract Selection 

  Name Levels  

Motor Corticospinal tract (CST) 

GCS-Motor 
 

1 = No Response  
2 = Abnormal extension  
3 = Abnormal Flexion  
4 = Flexion withdrawal from pain  
5 = Moves to localized pain  
6 = Obeys commands  

Welniarz et al., 
2017 

CRS-R 
Motor 

0 = None  
1 = Abnormal Posturing  
2 = Flexion Withdrawal  
3 = Localization to Noxious Stimulation  
4 = Object Manipulation  
5 = Automatic Motor Response  
6 = Functional Object Use  

Language 

production 

Frontal aslant tract 

(FAT) 

 
GCS-Verbal 

 

 

1 = No response  
2 = Incomprehensible Sounds  
3 = Incomprehensible Words   
4 = Confused  
5 = Oriented to time, place, and person   

Dick et al., 2019 

Superior longitudinal 
fasciculus III (SLF3) 

CRS-R 
Oromotor/

Verbal 
 

0 = None  
1 = Oral Reflexive Movement   
2 = Vocalization/Oral Movement  
3 = Intelligible Vocalization  

Makris et al., 
2015, 2009 

Arcuate fasciculus (AF) 
Catani & 

Mesulam, 2008 
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Language 
comprehension 

Arcuate fasciculus (AF) 

CRS-R 
Auditory 

 

0 = None  
1 = Auditory Startle  
2 = Localization to Sound  
3 = Reproducible Movement to Command  
4 = Consistent Movement to Command  

Catani & 
Mesulam, 2008 

Acoustic radiation (AR)  
Maffei et al., 

2019 

Middle longitudinal 
fasciculus (MdLF) 

Makris et al., 
2015, 2009 

Extreme capsule (EMC) 
Mars et al., 

2016 

Inferior longitudinal 
fasciculus (ILF) 

Herbet et al., 
2018 

Table 1. Tract Selection for Correlation analysis. The table shows the white matter tracts selected to perform 
correlations between the output of the multivariate analysis and the sub-scales of the CRS-R and GCS. For each 
domain assessed in the subscale, a group of tracts was selected based on prior literature. For each tract we selected 
its reconstruction in both hemispheres. The levels column denotes how the levels of the CRS-R and GCS subscales 
were ranked for use in the ordinal logistic regressions. CRS-R: Coma Recovery Scale-Revised; GCS: Glasgow Coma 
Scale. 

3. Results 

 
3.1 Patient Demographics and Clinical Characteristics  

 Patient demographics and clinical characteristics are provided in Table 2, including clinical 

indicators of coma duration (i.e., days in coma, days until command-following, level of consciousness at 

MRI); and behavioral measures of consciousness (i.e., GCS and CRS-R total scores), including subscales 

measuring language and motor function. 

 

ID Age 

Range 

Sex Days 

in 
Coma 
Range 

Days Until 

Command
-

Following 

Days 

to 
MRI 

Range 

LOC 

at 
MRI 

GCS-

T at 
MRI 

GCS- 

V at 
MRI 

GCS-

M at 
MRI 

CRS-R-

T at 
MRI 

CRS-R-

M at 
MRI 

CRS-R-

A at 
MRI 

CRS-R-

O/V at 
MRI 

P1 
26-30 M  

1-5 1 
16-20 

PTCS 
15 5 6 23 6 4 3 

P2 21-25 M  1-5 6 1-5 MCS- 7 1 5 4 3 0 1 

P3 16-20 F  1-5 10 1-5 Coma 5 1 3 1 1 0 0 

P4 16-20 M  1-5 2 16-20 PTCS 14 4 6 23 6 4 3 

P5 31-35 M  6-10 26 11-15 VS 7 3 1 3 0 0 2 

P6 26-30 F  1-5 9 6-10 VS 9 1 4 6 2 0 1 

P7 41-45 M  1-5 6 11-15 MCS+ 13 3 6 18 5 3 3 

P8 31-35 M  1-5 7 6-10 PTCS 11 1 6 20 5 4 2 

P9 31-35 M  1-5 8 11-15 MCS+ 10 1 6 9 2 3 1 

P10 21-25 M  1-5 7 11-15 MCS- 10 1 5 10 5 1 1 

P11 21-25 F  1-5 9 11-15 PTCS 14 4 6 22 6 4 3 

P12 26-30 F  11-15  ** 6-10 Coma 5 1 3 1 1 0 0 

P13 16-20 M  1-5 2 1-5 MCS+ 10 1 6 12 5 3 1 

P14 51-55 M  6-10  ** 6-10 VS 6 1 3 3 1 0 0 

P15 26-30 M  1-5 8 6-10 MCS- 7 1 5 3 3 0 0 

P16 31-35 M  1-5 3 1-5 MCS+ 10 1 6 12 5 4 0 
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P17 26-30 F  1-5 ** 11-15 VS 8 1 3 3 1 0 0 

P18 26-30 M  1-5 0-2* 26-30 PTCS 11 1 6 18 6 3 2 

Mean 

(SD) 

28.56 

(8.71) 

 3.00 

(3.25) 

7.00 

(6.09) 

10.39 

(6.46) 

 9.56 

(3.0

9) 

1.78 

(1.3

5) 

4.78 

(1.56) 

10.61 

(8.13) 

3.50 

(2.15) 

1.83 

(1.82) 

1.28 

(1.18) 

Range 18-51  1-13 1-26 1 -28   5 -

15  

1 - 5  1 - 6  1 - 23   0 - 6  0 - 4  0 - 3  

Table 2. Demographics and Clinical Characteristics of the TBI patients. CRS-R: Coma Recovery Scale-Revised; CRS-
R-T: Total score of the CRS-R; CRS-R-M: Motor CRS-R sub-scale; CRS-R-A: Auditory CRS-R sub-scale; CRS-R-O/V: 
Oromotor-verbal CRS-R sub-scale; GCS: Glasgow Coma Scale; GCS-T: Total score of the GSC; GCS-V: Verbal GCS sub-
scale; GCS-M: Motor GCS sub-scale; LOC: level of consciousness; MCS+ = minimally conscious state plus, evidence of 
language function (e.g., reproducible movement to command, object recognition, intelligible verbalization); MCS- = 
minimally conscious state minus, no evidence of language function, but shows at least one behavior consistent with 
a minimally conscious state (e.g., automatic motor response). PTCS: posttraumatic confusional state; SD: standard 
deviation; VS: vegetative state. *Unable to determine exact date based on intensive care unit clinician assessments. 
We used 1 day for further analysis. **Patients who died in the ICU after withdrawal of life sustaining therapy and 
before command-following was observed.   

 

 
3.2 Quality assessment and feasibility of tractography reconstructions 
 
Figure 3 shows the reconstruction of the 40 tracts for six representative patients with different 

mechanisms of injury and one representative control. We observed that the TRACULA pipeline 

successfully reconstructed 93% of the tracts (mean: 37,5; SD: 2.18) across all patients without manual 

intervention. This is 43% more successful reconstructions than the threshold we set to consider the 

TRACULA automated stream feasible in this study (Section 2.6). Figure 4 reports the number of 

reconstructions for each patient that i) were correctly reconstructed without the need for reinitialization, 

ii) resulted in either partial or failed reconstruction and were reinitialized successfully, and iii) resulted in 

partial or failed reconstructions even after reinitialization (See Section 2.6). For a complete list of tracts 

that were reinitialized for each patient see supplementary table 1.  
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Figure 3.  TRACULA reconstructions. The 40 tracts automatically reconstructed in TRACULA are shown in 3D sagittal 
view (right hemisphere) for one control and six representative patients. For each subject, tracts are overlaid on the 
T1-weighted structural volume. Patients with few or no tracts visually affected by the lesion (LEFT COLUMN) and 
with more affected tracts (RIGHT COLUMN) are shown. Color labels are reported only for tracts visible in the figure. 
Complete list of WM tracts abbreviations: ACOMM: anterior commissure; AF: arcuate fasciculus; AR: acoustic 
radiation;  ATR: anterior thalamic radiation; CC BODYC: central section of the body of the CC; CC BODYP: parietal 
section of the body of the CC; CC BODYPF: prefrontal section of the body of the CC; CC BODYPM: premotor section 
of the body of the CC; CC BODYT: temporal section of the body of the CC ; CC GENU: genu of the CC; CC ROSTRUM: 
rostrum of the CC; CC SPLENIUM: splenium of the CC; CBD: dorsal portion of cingulum bundle; CBV: ventral portion 
of the cingulum bundle; CC: corpus callosum; CST: cortico-spinal tract; EMC: extreme capsule; FAT: frontal Aslant 
tract; ILF: inferior longitudinal fasciculus; LH: left hemisphere; ILF: middle longitudinal fasciculus; OR: optic radiation; 
RH: right hemisphere; SLF I,II,III: first, second, and third branch of the superior longitudinal fasciculus; UF: uncinate 
fasciculus. 
 

In one patient (P1) the FreeSurfer “recon-all” stream failed due to the presence of a massive lesion 

that injured a substantial portion of the cerebral cortex in the right hemisphere. This patient was thus 

excluded from the TRACULA pipeline. For five of the remaining 17 patients (P2, P3, P6, P12, P16), 

reconstructions were complete and accurate and did not require reinitialization, even in the presence of 

focal lesions (P2, P6, P12) (Supplementary Figure S1). For the remaining twelve patients, a small number 

of tracts (mean = 2.47, range = 1:7) resulted in failed or partial reconstructions and required 

reinitialization. For nine patients out of twelve, reinitialization led to successful reconstructions (as 

defined in Section 2.6). For one of these twelve patients (P4) two tracts were only partially reconstructed 

after reinitialization (MCP, LH CST), and for two patients (P10, P14) two and three tracts respectively (P10: 

ACOMM, RH UF; P14: ACOMM, RH SLFII, CC BODYPF) did not improve after reinitialization and resulted in 

failed reconstructions (Figure 3, P14). Upon visual inspection, failed or partial reconstructions were 

attributable to hemorrhagic contusions in the temporal and frontal lobes, respectively, which caused 

disruption of three tracts each (Supplementary Figure S2).  
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Figure 4. The number of correct reconstructions that did not need to be reinitialized, the number of reconstructions 
that were reinitialized, and number of tracts that resulted in partial or failed reconstructions even after 
reinitialization are shown for each of the patients TBI. The FreeSurfer automated segmentation pipeline failed in P1 
due to the presence of a massive lesion. This precluded to run the TRACULA pipeline on this subject. 

 

3.3 Multivariate individualized assessment of white matter damage 
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Figure 5. Individual Tract Profiles. The figure shows the individual profiles for four representative subjects, each 
with a different level of consciousness (Coma, VS, MCS+, PTCS). The Mahalanobis distance for the reconstructed 
tracts is plotted using polar bar plots. The pink dotted line corresponds to the critical value of the Chi-squared 

statistic at 𝛼 = 0.001. White matter tracts are grouped in commissural (red), associative (green), and projection 
pathways (blue). The 3D reconstructions of the 40 WM tracts are shown for a representative control subject, colored 
based on the group they belong to. MCS+: minimally conscious state plus; PTCS: posttraumatic confusional state; 
VS: vegetative state; WM: white matter. For a complete list of WM tract abbreviations see Figure 3. 
 

The Shapiro-Wilk test showed that the distribution of 𝐹𝐴𝑖 and 𝑀𝐷𝑖  departed significantly from 

normality (p-value < 0.05) in 8.6 tracts per measure on average. Supplementary Table 2 reports the tracts 

along with the W- and p-value. Figure 5 shows the 𝐷2
𝑀-based individual profiles for four representative 

patients at different levels of consciousness (Coma, VS, MCS, PTCS). Individual profiles for all 17 patients 

are shown in Supplementary Figures S3 and S4. The individual profiles show the distance of each of the 

WM tracts from the multivariate distribution of that tract in the control population. To investigate 

whether a common pattern of TAI localization was visible across individuals, we grouped the 

reconstructed WM tracts as follows: i) commissural tracts: ACOMM, CC-BODYC, CC-BODYT, CC-BODYPF, 

CC-BODYP, CC-BODYPM, CC-GENU, CC-ROSTRUM, CC-SPLENIUM; ii) projection tracts: CST, ATR, AR, OR; 

iii) association tracts: all the other WM tracts. Commissural tracts were shown to have overall higher 𝐷2
𝑀 

values (Supplementary Figure S5) that resulted in a higher number of significantly extreme values (𝑝 <

 0.001) across patients compared to projection and association tracts (Supplementary Figure S6). The 

number and type of tracts that resulted injured varied across level of consciousness (LOC) (Figure 5, 

Figures S3, S4). For each patient we extracted the total number of injured tracts (we considered a WM 

tract to be injured if its 𝑝 − 𝑣𝑎𝑙𝑢𝑒 was < 0.001 (Section 2.7)). On average 12.6 tracts resulted injured in 

patients with TBI (Figure 6).  

 

Figure 6. Number of affected tracts per subject. Left panel) The number of extreme WM tracts is shown for each 
subject with TBI. A tract was considered injured if its 𝑝 − 𝑣𝑎𝑙𝑢𝑒, correspondent to a Chi-square statistic, was <
0.001 (p < 0.05 corrected for multiple comparisons across 40 tracts). Patients are ordered based on the number of 
injured tracts. The color of the bars reflects the level of consciousness (LOC) at the day of MRI. MCS+: minimally 
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conscious state plus; MCS-: minimally conscious state minus; PTCS: posttraumatic confusional state; VS: vegetative 
state. Patient IDs corresponding to those used in Table 1 (𝑃2, … , 𝑃18) are indicated for each patient. Right panel) 
Boxplots showing the number of extreme tracts for controls and patients. The asterisk indicates a significant 
difference (Wilcoxon sum rank test: 𝑊 =  4.79,  𝑝 =  1.64𝑒 − 6). 
 
 

To investigate the accuracy of the TRACULA pipeline at detecting TAI, we quantified its 

performance in classifying patients versus controls. We first computed the 𝐷𝑀  for each control in a leave-

one-out fashion and extracted the number of injured tracts for each control. On average 3.3 tracts 

resulted injured in controls (Figure 6, right panel).  A Wilcoxon sum rank test showed significant difference 

between the number of injured tracts in patients and controls (𝑊 =  4.79,  𝑝 =  1.64𝑒 − 6). We then 

performed a ROC analysis and found an accuracy of 0.91 (Supplementary Figure 8). To visualize the 

difference in 𝐷2
𝑀 values between the two populations we plotted the probability density functions of 

𝐷2
𝑀 for patients and controls. Figure 7 shows the probability density functions of 𝐷2

𝑀 values for the 

different sections of the corpus callosum for patients and controls. For subjects with severe TBI, 𝐷2
𝑀 

values are shifted to the right suggesting a larger mean and greater degree of microstructural deviation 

from the normative reference group. Probability density functions of 𝐷2
𝑀 values for patients and controls 

for all 40 tracts are shown in supplementary figure S7.  

Finally, there was no significant difference in number of injured tracts per patient when using only 

the tracts that had been successfully reconstructed without need of reinitialization (i.e., discarding the 

tracts that needed to be reinitialized (p=0.083), suggesting the low number of tracts that needed to be 

reinitialized across subjects did not significantly impact the overall individualized assessment of TAI. 

 

 
Figure 7. Density plots. Probability density functions of Mahalanobis distance (𝐷2

𝑀) values are shown for patients 
(shown in red) and controls (shown in blue) for each of the different sections of the corpus callosum (CC). 
Representative 3D reconstructions of the correspondent WM tracts are shown to the right of the density plots. CC 
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BODYC: central section of the body of the CC; CC BODYP: parietal section of the body of the CC; CC BODYPF: 
prefrontal section of the body of the CC; CC BODYPM: premotor section of the body of the CC; CC BODYT: temporal 
section of the body of the CC; CC GENU: genu of the CC; CC ROSTRUM: rostrum of the CC; CC SPLENIUM: splenium 
of the CC 
 
 

3.4 Effects of head motion  
 
The TMI and the four motion measures used to compute it are reported for each subject in Supplementary 

Table S4. A nonparametric Wilcoxon sum rank test revealed a non-statistically significant difference in TMI 

between patients and controls (𝑊 =  1.91, 𝑝 =  0.055) and the group-by-TMI interaction did not 

significantly predict 𝐷2
𝑀 values for any of the 40 tracts nor the number of injured tracts per subject (all 

𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 >  0.05). Taken together, these results emphasize that the greater number of injured tracts 

detected for patients versus controls was not confounded by differences in head motion between the 

groups.  

 

3.5 Relationship with behavioral measures 
 
 Non-parametric Spearman correlations identified several significant relationships as shown in 

Supplementary Table S4. See Supplementary Figure S10 for full results of the Spearman correlations 

testing associations between continuous variables.  

 Based on these findings, separate linear regression analyses were conducted for each of the 

dependent variables (i.e., GCS-Total, CRS-R Total, Days in Coma, Days to command-following) with both 

the average  𝐷𝑀  and number of affected tracts included as predictor variables. Days to MRI was included 

as a continuous covariate in the regression predicting GCS-Total, as they were revealed to be significantly 

correlated (rho = 0.54, p < 0.01). Average 𝐷𝑀  and number of affected tracts did not significantly predict 

GCS-Total, CRS-R Total, Days to command-following, or Days in coma (all uncorrected p-values > 0.05). 

Days to MRI did not significantly predict GCS-Total in the regression model (beta = 0.21, SE = 0.10, t = 

2.048, p = 0.06). No confounding variables were identified for the ordinal regression using the average  

𝐷𝑀  and number of affected tracts to predict levels of consciousness, although Days to MRI approached 

significance (beta = 0.37, SE = 0.20, t = 1.87, p = 0.06). Average  𝐷𝑀  and number of affected tracts did not 

significantly predict level of consciousness (beta = -0.01, SE = 0.02, t = -0.73, p = 0.46 and beta = -0.03, SE 

= 0.09, t = -0.35, p = 0.72, respectively). 

 In terms of our secondary, exploratory analyses with language and motor function, non-

parametric Spearman correlations identified several relationships between our dependent (i.e., GCS 

Motor, GCS Verbal, CRS-R-Auditory, CRS-R-Oromotor/Verbal, CRS-R Motor) and independent variables 
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(e.g., average  𝐷𝑀  of tract subsets, n of affected tracts within each subset) as shown in Supplementary 

Table S4. These results influenced our analyses in two ways: i) separate ordinal regression analyses were 

undertaken for each of the dependent variables (i.e., GCS Verbal, GCS Motor, CRS-R Auditory, CRS-R-

Oromotor/Verbal, CRS-R-R Motor); and ii) the average 𝐷𝑀  of tract subsets and the number of affected 

tracts within a subset were not included in the same model. Before conducting ordinal logistic regressions 

testing the relationship between the dMRI-derived measures and language and motor subscales of the 

GCS and CRS-R, the relationship between age, TMI, and days to MRI and the sub-scales were individually 

investigated. TMI (beta = 0.11, SE = 0.05, t = 1.98, p = 0.047) showed a significant relationship with the 

GCS Verbal subscale and thus, was included as a confounding variable. TMI (beta = 0.14, SE = 0.06, t = 

2.39, p = 0.167) and Days to MRI (beta = 0.16, SE = 0.08, t = 1.98, p = 0.047) demonstrated significant 

relationships with the CRS-R Oromotor/Verbal subscale and thus, were included as confounding variables. 

 Neither the average  𝐷𝑀 , nor the number injured tracts for the motor, language comprehension, 

and language production subsets significantly predicted their corresponding GCS and CRS-R subscales (all 

uncorrected 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 >  0.05). Interestingly, however, for every one unit increase in TMI, the 

likelihood of a patient demonstrating a higher level of verbal expression function (as measured by the GCS 

Verbal subscale) increased by 18% in the ordinal logistic regression with the average 𝐷𝑀   of language 

production tracts as a predictor variable (beta = 0.16 , SE =  0.09, t = 1.83 , p = 0.06, Profiled 95% Confidence 

Interval =  0.02 to 0.38, Proportional Odds Ratio = 1.18) and by 19% in the ordinal logistic regression with 

the number of affected language production tracts as a predictor variable (beta = 0.17, SE = 0.09 , t =1.91 

, p = 0.055, Profiled 95% Confidence Interval = 0.03 to 0.38, Proportional Odds Ratio = 1.19).   

 Furthermore, for every one unit increase in days to MRI, the likelihood of a patient demonstrating 

a higher level of verbal expression function (as measured by the CRS-R Oromotor/Verbal subscale) 

increased by 17% in the ordinal logistic regression with the average 𝐷𝑀   of language production tracts as 

a predictor variable (beta = 0.16 , SE = 0.08, t = 1.98, p = 0.04, Profiled 95% Confidence Interval = 0.02 to 

0.34, Proportional Odds Ratio = 1.17) and by 18% in the ordinal logistic regression with the number of 

affected language production tracts as a predictor variable (beta = 0.16, SE = 0.08 , t = 1.99, p = 0.045, 

Profiled 95% Confidence Interval = 0.02 to 0.35, Proportional Odds Ratio = 1.18).   

 Finally, for every one unit increase in TMI, the likelihood of a patient demonstrating a higher level 

of verbal expression function (as measured by the CRS-R Oromotor/Verbal subscale) increased by 14 % in 

the ordinal logistic regression with the average 𝐷𝑀   of language production tracts as a predictor variable 

(beta = 0.13, SE = 0.06 , t = 2.39, p = 0.017, Profiled 95% Confidence Interval = 0.03 to 0.26, Proportional 

Odds Ratio = 1.14) and by 16 % in the ordinal logistic regression with the number of affected language 
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production tracts as a predictor variable (beta = 0.15 , SE = 0.06, t = 2.48, p = 0.013, Profiled 95% 

Confidence Interval = 0.04 to 0.28, Proportional Odds Ratio = 1.16).   

 All statistical analyses were conducted again using data from the completed tracts only. There 

were no differences in the results using the 𝐷𝑀  or number of affected tracts that had been successfully 

reconstructed without need of reinitialization. This finding further supports that the few tracts that 

needed to be reinitialized across subjects did not significantly impact the overall individualized assessment 

of TAI. 

4. Discussion 

In this prospective observational study, we show that TRACULA provides automated 

reconstruction of white matter tracts from diffusion MRI data in critically ill patients with acute severe 

TBI, even in the presence of large focal lesions. These findings demonstrate the feasibility of applying the 

TRACULA automated tractography pipeline (Maffei et al., 2021; Yendiki et al., 2011) during the acute stage 

of severe TBI, addressing a major barrier to the assessment of TAI in this population. If replicated in larger 

studies, these proof-of-principle results suggest that TRACULA can be used by clinicians for acute 

detection of TAI in critically ill patients – information that can inform prognosis, guide therapeutic 

decision-making, and provide additional information to the standardized clinical assessment. We discuss 

the clinical implications and technical limitations of the current results and provide further directions for 

optimization of the proposed pipeline. 

With respect to TAI detection, TRACULA provided individualized profiles of WM disruption that 

differentiated patients from healthy controls and from one another (Fig. 5, Fig. 6), providing an acute 

assessment of TAI burden for each individual patient. This finding builds on recent studies showing that 

DT measures can be used to identify the neuroanatomic distribution and severity of TAI at the individual 

level (Jolly et al., 2020), an important goal given the well-established heterogeneity of this condition 

(Douglas et al., 2019). Multivariate approaches that combine different neuroimaging measures have 

shown higher power in distinguishing different clinical populations from controls (Dean et al., 2017). 

Indeed, the multivariate analysis of along-tract DT metrics revealed marked variability in the number and 

location of injured WM tracts between patients (Fig. 5, Fig. 6). While no clear pattern of WM damage was 

visible within LOC, results of the multivariate individual analysis revealed commissural connections to be 

overall more significantly and more frequently affected compared to projection and association fibers 

(Fig. 5, Fig. S5, Fig. S6). Specifically, the frontal, parietal, and temporal sections of the CC were the most 

affected, consistent with previous histological and neuroimaging studies in humans (Moen et al., 2014; 
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Nolan et al., 2020; Ubukata et al., 2016) and with studies in animal models of TAI (Baker et al., 2004; 

Gennarelli et al., 1982). 

 Interestingly, individual multivariate measures of TAI did not show a significant relationship with 

behavioral measures of consciousness (i.e., GCS-Total, CRS-R Total, days to command-following, days in 

coma) or basic language and motor function (i.e., GCS Verbal, GCS Motor, CRS-R Auditory, CRS-R 

Oromotor/Verbal, CRS-R Motor). There are several potential explanations for this observation. First, 

widespread tract disruption in the brainstem may have confounded any associations between i) the global 

burden of TAI and behavioral measures of consciousness; and ii) TAI within domain-specific tracts and 

behavioral measures of language or motor function. TRACULA does not yet provide automated 

reconstructions of brainstem tracts – a key direction for future work in this field, especially as the presence 

of TAI in the brainstem pathways can cause altered consciousness, and impaired language and motor 

function (Edlow et al., 2013; Snider et al., 2019).  Second, it is important to acknowledge that the GCS and 

CRS-R subscales are not “pure” measures of motor and language function (e.g., highest score on the GCS 

motor requires intact auditory comprehension) (Schnakers et al., 2015), and these scores may not reflect 

“covert consciousness” in the presence of cognitive-motor dissociation (Schiff, 2015). As prior correlations 

between acute tractography data and long-term cognitive function indicate a possible prognostic role for 

tract-specific TAI assessments (Wang et al., 2008), it will be important in future work to assess if these 

multivariate tract-specific measurements in the ICU are relevant to overall and/or domain-specific 

recovery in the subacute-to-chronic stages of care, when language and motor assessments may be less 

affected by global injury  and/or brainstem injury.  

TRACULA allowed to automatically reconstruct on average 93% of the WM tracts with minimal 

manual intervention, providing potential for dissemination to a broad range of hospital settings without 

the need for local tractography expertise. However, the potential clinical translation of this pipeline for 

TAI detection in the ICU will depend upon additional methodological and logistical factors that require 

further study. While on average TRACULA could successfully reconstruct 37.5 of 40 tracts without the 

need of manual intervention, an average of 2.4 tracts resulted in failed or partial reconstructions and 

needed to be reinitialized in 12 patients (Supplementary Table 1). This step relied upon a visual quality 

assessment from a tractography expert that would limit its applicability to clinical settings. Furthermore, 

some of the reinitialized tracts could not be successfully reconstructed due to the presence of focal lesions 

in two patients. While it has been previously shown that TRACULA is robust to errors in the anatomical 

segmentation (Zöllei et al., 2019), because prior probabilities are based on the relative positions of the 

bundles with respect to the labels, large lesions can lead to missing labels that can affect tract 
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reconstructions. Further optimization of the TRACULA pipeline will include i) automated quality 

assessment of tract reconstructions and ii) correct handling of missing FreeSurfer anatomical labels, 

including in cases where the FreeSurfer “recon-all” pipeline fails due to the presence of lesions (e.g., 

Patient 1 in this study). Additionally, the dMRI data in this study were acquired on a clinical scanner in a 

research hospital. More specifically, the dMRI sequence used high spatial resolution (2 mm isotropic) and 

high angular resolution (𝑏 =  2,000 𝑠/𝑚𝑚2, 60 diffusion-encoding directions) leading to a longer 

acquisition time (~ 9 minutes), relative to more standard clinical diffusion sequences (Chilla et al., 2015). 

Thus, while obtained on a clinical scanner, the dMRI data collected in this study were likely of “higher-

quality” than dMRI data acquired on clinical scanners in hospitals not associated with a research facility, 

and it will be important to determine whether automated reconstruction of WM tracts with TRACULA is 

robust in the setting of lower-resolution, lower-quality dMRI data in the future. It is also important to 

consider that the individualized assessment can only be performed comparing patients to a control cohort 

scanned with the same dMRI sequence. For this pipeline to be applied in a clinical setting that does not 

have data from healthy controls, future optimizations of this pipeline should explore its robustness to 

dMRI data acquired on a different scanner and with a different dMRI sequence.  Finally, it is important to 

consider that some patients with acute severe TBI are not stable enough to travel to an MRI scanner, and 

thus this pipeline may not be feasible to use until these patients reach the subacute stage of care.  

The results of this study should also be interpreted in the context of further methodological 

limitations, including the small sample size.  Although there was no statistically significant difference in 

age between the patient and control cohorts, the controls were not enrolled with an even distribution of 

age, sex and educational attainment. Identification of optimal characteristics and sample sizes for control 

cohorts is an area of active inquiry (Jolly et al., 2020), and future studies may leverage large normative 

databases such as the Human Connectome Project in this effort (Bookheimer et al., 2019; Harms et al., 

2018).   

In summary, this prospective observational study demonstrates the feasibility and utility of an 

automated tractography pipeline for detecting TAI in the acute injury phase of severe TBI. Quantitative 

analysis of patient-specific TAI burden in the ICU could increase the accuracy of outcome prediction in this 

population and guide decisions regarding the provision of life-sustaining treatment and rehabilitation.   
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