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Abstract

Large collaborative research networks provide opportunities to jointly analyze

multicenter electronic health record (EHR) data, which can improve the sample size,

diversity of the study population, and generalizability of the results. However, there

are challenges to analyzing multicenter EHR data including privacy protection,

large-scale computation, heterogeneity across sites, and correlated observations. In

this paper, we propose a federated algorithm for generalized linear mixed models

(Fed-GLMM), which can flexibly model multicenter longitudinal or correlated

data while accounting for site-level heterogeneity. Fed-GLMM can be applied to

both federated and centralized research networks to enable privacy-preserving data

integration and improve computational efficiency. By communicating only a limited

amount of summary statistics, Fed-GLMM can achieve nearly identical results as

the gold-standard method where the GLMM is directly fitted on the pooled dataset.

We demonstrate the performance of Fed-GLMM in both numerical experiments and

an application to longitudinal EHR data from multiple healthcare facilities.
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1 Introduction

Electronic health records (EHR) data are valuable for generating real-world evidence

in biomedical and epidemiological research [1]. With the increasing availability of EHR

data among healthcare facilities [2], integrating these data from multiple institutions has

great potential for improving statistical power and generalizability of results [3]. Such

integration is also particularly valuable - and often necessary - for studying rare conditions

and underrepresented subpopulations [4]. As a consequence, an increasing number of

large clinical research networks have been built domestically and internationally to

facilitate multicenter EHR-based studies. For example, the Patient-Centered Outcomes

Research Institute has launched PCORnet to support a national research collaborative

that empowers large-scale comparative effectiveness research [5]. More recently, large

collaborative consortia dedicated to investigating clinical and epidemiological questions

about COVID-19 have also been formed [6, 7], as timely observational studies based on

large integrated EHR data have been increasingly critical for clinical and health policy

decision-making in various areas such as treatment evaluation, diagnostic support and

healthcare resource prioritization [8–10].

Despite the importance of multicenter EHR-based studies, challenges exist in terms

of how to effectively and efficiently compile and analyze multiple large-scale EHR

datasets [11]. To overcome data sharing constraints due to privacy regulations and

computational constraints, several data-sharing models are commonly used among

multicenter research networks. Depending on whether the individual-level data are

shared, a research network can be categorized them into either a federated or centralized

network. A federated network keeps patient-level data within each institution, and

only allows summary-level statistics to be shared across institutions. Some federated

research networks allow automated queries, analysis and sharing summary statistics

through application programming interfaces and cloud computing, which saves human

labor from cross-institutional communication but may require additional safeguard of

data breaches [12,13]. Other federated networks rely on manually transferring summary

statistics, which has less requirement on the infrastructure, and is considered more

reliable for privacy protection. Thus, this practice is widely adopted among international

research networks [6, 14, 15]. In federated networks, federated algorithms are needed to

conduct joint analyses across multiple datasets without sharing patient-level data. In

contrast, centralized networks managed to directly pool deidentified patient-level data

across intuitions and store them in centralized data warehouses [16, 17]. When all data

are pooled together, fitting a model to a pooled dataset (referred to as the pooled analysis

hereafter) is feasible but may be subject to challenges from computational complexity

and memory bottlenecks due to the large size of the pooled dataset. Therefore, in a

centralized network, distributed algorithms are also needed to overcome computational
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challenges [18,19].

Most of the existing distributed or federated learning algorithms focus on regression

models with independent observations, including logistic regression and Cox

regression [20–26]. However, EHR data are longitudinal and correlated in nature,

where multiple medical encounters may be associated with the same patient, physician

or facility. Therefore, in EHR-based analyses, methods to account for such multi-level

longitudinal and correlated observations are necessary. Among many existing methods to

address the multi-level correlated data structure, the generalized mixed model (GLMM)

is one of the most widely applied methods with great flexibility [27, 28]. To fit GLMM

federatively, one straightforward way is to fit separated models locally across sites and

aggregate the local estimates through a meta-analysis [29]. Although meta-analysis

is straightforward to implement in practice, it has been shown that its accuracy may

be suboptimal, especially when rare conditions are included in the model [23]. More

recently, a few methods have been developed which consider using site-level random

effects to account for heterogeneity across sites. For example, Luo et al. proposed a

lossless algorithm for the linear mixed model [30], and a few methods have been proposed

for GLMM [31–33]. However, these approaches only consider site-level random effects,

which cannot handle repeated and correlated measures within each site. Methods are

needed that allow flexible specification of random effects to account for longitudinal or

correlated observations at lower levels.

In this paper, we propose an accurate and fast federated algorithm to fit GLMM

(Fed-GLMM) with correlated data structures. Our method can be implemented in both

federated and centralized networks with different data-sharing constraints. Specifically,

in a federated setting where the pooled analysis is not feasible, our method provides

a privacy-preserving solution that only requires a small amount of aggregated data to

be shared across sites. Our method requires limited numbers of communications across

sites and thus can be applied to both the automated and manual federated settings.

In a centralized setting where the pooled analysis is allowed, our method can greatly

reduce the computation time and memory cost. In all settings, our method can achieve

nearly identical results as the gold-standard pooled analysis estimator, allows flexible

specification of random and fixed effects in models, and can account for heterogeneity in

the distribution of data across sites. We demonstrate the utility of Fed-GLMM through a

real-world EHR data analysis that assesses characteristics associated with virtual versus

in-person care utilization during the COVID-19 pandemic, using data from 8 healthcare

facilities in the New England area. While the development of Fed-GLMM is motivated

by EHR data analysis, the method can be used to address correlated structure in many

types of real-world datasets, including administrative claims, genetic and clinical trial

datasets, thus helping inform a wide range of clinical and scientific questions.

3

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 10, 2022. ; https://doi.org/10.1101/2022.03.07.22271469doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.07.22271469
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 Results

2.1 GLMM Accounting for Site-Level Heterogeneity

Fed-GLMM allows modeling correlated observations from multiple EHRs using the

following generic GLMM:

g(E(yijk|bi)) = xT
ijkβ + wT

ijkαk + zTijkbi; bi ∼ N (0, Bk(γk))

where g(.) denotes a link function, and yijk denotes the outcome variable of the i-th

visit for the j-th patient at the k-th site. xijk, wijk and zijk denote the corresponding

covariates with common fixed effect β, site-specific fixed effect αk and random effect bi,

respectively. Note that zijk is a subset of the union of xijk and wijk. The random effect bi

can be flexibly specified to account for different correlation structures. For example, we

can include patient-level random effects to account for the correlation between visits of

the same patient, and also physician-level random effects to account for the correlation

between visits with the same physician.

To account for the heterogeneity across sites, we allow site-specific fixed effect αk

and site-specific variance-covariance structure Bk, which is parameterized by γk. In a

homogenous setting, αk and Bk(γk) can be set equal across sites. Compared with existing

work where site-level heterogeneity is adjusted by introducing a random effect bk [30–33],

our method imposes no assumptions on the exchangeability of the site-level effects,

which is more robust when the heterogeneity is large, and allows accurate estimation

even when the number of sites is very small.

2.2 Fed-GLMM

The core concept upon which Fed-GLMM is built is to construct a quadratic surrogate

function using summary statistics collected from each site to approximate the global

likelihood function constructed from directly pooling all the data. Figure 1 provides

an overview of the Fed-GLMM algorithm. We start with initialization for all the

model parameters, denoted by θ̄. Since our model has both common parameters across

sites and site-specific parameters, each site is required to fit its own GLMM in the

initialization step. The initial values for the site-specific parameters are set to their

local estimates (denoted by δ̄k for the k-th site), while initial values for the common

parameters are updated by a meta-analysis (denoted by β̄). With more accurate initial

values, we can achieve the same level of estimation accuracy with fewer communications

across sites. In step 2, each site calculates and broadcasts summary statistics sk and

Hk involving less than p2 numbers (p is the number of parameters in the local model).

These summary statistics are essentially derivatives of the local likelihood function. In
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step 3, the summary statistics obtained from step 2 are used to construct a quadratic

surrogate function and obtain the parameter updates. When iterative communications

are allowed, steps 2-3 can then be repeated to further update the parameter values. We

present further details in the Methods section.

Central 

Analytics

Step 1: Fit GLMM locally 

to obtain initial values of 

parameter estimates

Step 2: Calculate and 

broadcast the local first- and 

second-order derivatives

Step 3: Update parameter 

estimates, which can be used as 

initial values in the next iteration

●
●
●

●
●
●

Iteratively

Updated parameter 

estimates

𝑠1 𝐷1, ҧ𝛽, ҧ𝛿1
𝐻1 𝐷1, ҧ𝛽, ҧ𝛿1

𝑠2 𝐷2, ҧ𝛽, ҧ𝛿2
𝐻2 𝐷2, ҧ𝛽, ҧ𝛿2

𝑠𝑘 𝐷𝑘 , ҧ𝛽, ҧ𝛿𝑘
𝐻𝑘 𝐷𝑘, ҧ𝛽, ҧ𝛿𝑘

Figure 1: Schematic overview of Fed-GLMM. Fed-GLMM enables the joint implementation of

GLMM for EHRs from multiple sites without sharing individual-level data. In step 2, each site calculates

intermediate results sk, Hk locally, which are summary statistics evaluated at the initial values, and

broadcasts them to the central analytics. For the k-th site, both sk and Hk are functions of the local

data Dk, the common parameter value β̄, and the site-specific parameter value δ̄k. The local data Dk

is composed of the local design matrix for the common fixed effect Xk, the local design matrix for the

site-specific fixed effect Wk, and the local outcome vector yk. The site-specific parameter value δ̄k is

composed of the values of site-specific fixed effect ᾱk and site-specific variance parameter γ̄k. In step 3,

the central analytics combines all the local intermediate results to construct a surrogate global likelihood

function that provides updates for parameter estimates. Steps 2-3 can be iteratively performed to keep

updating parameter estimates.

2.3 Simulation Study

We use a simulation study to demonstrate the improved accuracy of Fed-GLMM

compared to the standard meta-analysis, and the improved computation time compared

to the gold-standard pooled analysis. We generated simulated data mimicking a setting

composed of 10 EHR datasets each with 100 patients and 5 visit encounters per patient.

For each encounter, a binary outcome, a binary exposure and three additional covariates

are generated from a GLMM with the logit link function, a patient-level random
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intercept, and a site-specific slope for one of the covariate variables. The detailed

parameter and model specifications are described in the Methods section. We compared

the estimation accuracy of the meta-analysis and Fed-GLMM using the relative bias

from the pooled analysis estimator (referred to as the relative bias hereafter). We also

compared the computational efficiency of Fed-GLMM to the meta-analysis and the

pooled analysis.

Fed-GLMM demonstrated improved accuracy compared to meta-analysis in

a federated setting. As shown in Figure 2 (upper left panel), the relative bias of the

meta-analysis estimator for the exposure coefficient was more severe with rare outcomes

or exposures. In contrast, Fed-GLMM converged to the values nearly identical to the

pooled analysis estimates within 5 iterations in all prevalence settings. Additionally,

in most non-rare event settings, Fed-GLMM achieved considerable improvement over

the meta-analysis within 1-2 iterations. Compared with the meta-analysis, Fed-GLMM

also demonstrated small variability in bias from the pooled analysis estimates across the

simulation replicates, as shown in Supplementary Figure 1.
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Figure 2: Accuracy of Fed-GLMM and meta-analysis estimates relative to gold-standard

pooled analysis. We compared Fed-GLMM with the meta-analysis in their accuracy by calculating

the median absolute relative difference from the gold-standard pooled analysis for the exposure coefficient

estimate. The underlying model has a binary outcome, a binary exposure, three more covariates with 10

site-specific fixed effect coefficients for the normally distributed covariate and a patient-level random

intercept. We considered 25 combinations of outcome and exposure prevalence to assess the model

accuracy with 100 simulation replicates per combination. Fed-GLMM demonstrated reduced relative bias

after 1-2 iterations compared with the meta-analysis, which was severely biased in the presence of rare

events.
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Fed-GLMM demonstrated improved computational efficiency compared to

the pooled analysis in a centralized setting. We divided a pooled dataset into a

different number of subsets and Fed-GLMM was applied using multiple computing nodes

in parallel. Figure 3 shows that Fed-GLMM spent less than 5% of the computation

time required by the pooled analysis when the number of computing nodes exceeds 20,

and the time can be further reduced with more computing nodes. The meta-analysis

can also provide a similar time reduction effect through parallel computing. However,

with more computing nodes, the meta-analysis resulted in increasing relative bias, while

Fed-GLMM retained its accuracy relative to the pooled analysis.
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Figure 3: Comparison of computation time and estimate accuracy for Fed-GLMM

and meta-analysis relative to gold-standard pooled analysis with increasing computing

nodes/EHR subsets. We compared Fed-GLMM with the meta-analysis using the ratio (in percentage)

of computation time over the pooled analysis. For each simulation replicate, we generated one single

centralized EHR. The underlying model has a binary outcome, a binary exposure, three more covariates

and a patient-level random intercept. We considered dividing the centralized EHR data into varying

numbers of subsets to be computed in parallel. Both Fed-GLMM and the meta-analysis spent less than 5%

of the computation time required by the pooled analysis with the number of computing nodes greater than

20. However, the meta-analysis had increased relative bias for the exposure coefficient when the number

of subsets increased, while Fed-GLMM retained its accuracy relative to the pooled analysis. The points

and bars represent median and interquartile range of computation time and relative bias in percentage

respectively.
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2.4 An Application of Fed-GLMM to Real-World EHR data:

Evaluate Visit Characteristics Associated with Virtual Care

Utilization

We applied Fed-GLMM to assess visit characteristics associated with virtual versus

in-person care utilization during the COVID-19 pandemic. The outcome was defined

as whether a care encounter or visit was conducted virtually versus in-person. The

covariates of the model included variables measuring patient demographics, insurance

status, English proficiency, digital literacy, visit type, and a temporal indicator for the

“social normalization” during the COVID-19 pandemic. As care encounters are clustered

by patients and physicians, we included both patient-level and physician-level random

intercepts to account for the correlated observations. The detailed model specifications

are described in the Methods section.

We identified all outpatient encounters over a one-year period between 10/1/2020 and

9/30/2021 from 8 acute care hospital facilities in the New England area. Combining

data from 8 facilities, a total of around 3 million outpatient records are available. The

facility with the highest visit volume has 1,194,009 records, making it computationally

difficult to fit a GLMM even within one site.

Federated Setting

To demonstrate the use case of Fed-GLMM in a federated setting, we applied it to EHRs

from all 8 facilities to fit the GLMM with facility-specific fixed intercepts that account

for heterogeneity across facilities. EHRs from the two large facilities both with over

900,000 records were each split into 10 subsets to improve computation time, while other

smaller EHRs were not split. Different from the simulation study where we had only the

patient-level random effects, physician-level random effects were also included, which

added difficulties in terms of dividing data into subsets. If patients were nested within

physicians, we could simply split the records by physicians. However, since multiple

visits of the same patient can be associated with different physicians, a random division

based on physicians is not the optimal splitting strategy as observations of the same

patient would be split into different subsets. We proposed a clustering-based splitting

method that splits physicians based on how many shared patients they have. Two

physicians are more likely to be assigned to the same subsets if they share more patients.

In this way, we can best preserve the correlation structure of the data, and therefore

achieve better accuracy. A numerical evaluation has shown that the clustering-based

splitting strategy has higher estimation accuracy than the random splitting strategy.

More details of the evaluation are shown in Supplementary Figure 2.
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Centralized Setting

We demonstrate the computation time benefit of Fed-GLMM compared to the pooled

analysis in a centralized setting. We fit the same GLMM using the EHR data from

the facility with the highest visit volume. With Fed-GLMM, the EHR was split into

10 smaller subsets to be computed in parallel. Fitting Fed-GLMM to the EHR data

of the single facility (n = 1,194,009) using the clustering-based splitting strategy, we

observed convergence at the 4th iteration. The entire process took 5,026 seconds, while

the analysis would be otherwise infeasible if all data were fit in a single GLMM process.

Our analysis was performed with R 4.0.2 on a Linux cluster with up to 512GB RAM per

node at 1600MHz.

The results of EHR modeling for the federated (all 8 facilities) and centralized (the

facility with the highest visit volume only) settings are summarized in Figure 4. In both

settings, the characteristics associated with lower odds of conducting a virtual visit (i.e.,

greater odds of in-person visit) includes increasing age, Hispanic, non-Hispanic black,

non-Hispanic Asian or other non-Hispanic relative to non-Hispanic white race/ethnicity,

limited English proficiency, inactive patient portal (as a proxy for lower-level of digital

literacy). Compared with primary care visits, behavioral health and specialty visits were

more likely to be conducted virtually. Visits of female patients, as well as visits billed to

Medicaid were also more likely to be conducted virtually.

Age (OR per 10 years) -

Female Gender: Yes No

Race/Ethnicity: Hispanic NH White

Race/Ethnicity: NH Black NH White

Race/Ethnicity: NH Asian NH White

Race/Ethnicity: NH Other NH White

LEP: Yes No

Medicaid Insurance: Yes No

Inactivated Portal: Yes No

Visit Type: Behavioral Health Primary Care

Visit Type: Specialty Visit Primary Care

Post Social Restriction: Yes No

Variable Reference

Figure 4: Adjusted odds ratios of virtual visit vs. in-person visit of patient and

visit characteristics. Using the forest plot, we visualized the adjusted odds ratios obtained through

Fed-GLMM for both all facilities (federated setting to demonstrate privacy preservation) and the single

facility (centralized setting to demonstrate computation improvement). The points and bars represent

the point estimates and 95% confidence intervals, respectively. Abbreviations: OR - Odds Ratio; NH -

Non-Hispanic; LEP - Limited English Proficiency

9

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 10, 2022. ; https://doi.org/10.1101/2022.03.07.22271469doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.07.22271469
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 Discussion

In light of the increasing need for multicenter collaborative research utilizing EHR data,

and the potential challenges in data sharing and large-scale computation, we proposed

the Fed-GLMM algorithm to model correlated EHR data that allows privacy-preserving

integration of datasets from multiple healthcare systems. Our method also enables

fitting GLMM with much less computation time and memory cost in both federated

and centralized networks, and thus can also be applied to EHR from a single site. Our

simulation study has demonstrated that Fed-GLMM achieves nearly identical results to

the pooled analysis with reduced computation time over a broad spectrum of settings.

Our real-world data analysis demonstrated the feasibility of applying Fed-GLMM to

single-site and multicenter EHR-based studies to fit a model with millions of observations.

Compared to existing work, the most important contribution of Fed-GLMM is that

it allows the modeling of longitudinal and correlated data within each institution and

can accommodate all GLMM specifications, including crossed or nested random effects.

However, when performing Fed-GLMM to improve computational efficiency through

splitting large-scale data, one needs to be mindful of the data splitting strategy to

generate accurate results for models with crossed or nested random effects. For nested

random effects, splitting the data by the highest-level factors will allow Fed-GLMM

estimates to converge to the gold-standard pooled analysis results. For crossed random

effects, one should split the data such that the correlated observations are allocated to

the same subsets as much as possible as shown in Supplementary Figure 2. This makes

the Fed-GLMM estimates close (though not identical) to the pooled analysis estimates.

As demonstrated in our simulation and real-world data analyses, iterative communication

among the central analytics and individual sites is not required. In most cases, only

one round of parameter updating provides negligible bias. Thus, in federated research

networks that rely on manual data transferring, our method with one round of iteration

is preferred to reduce the communication cost. However, when multiple rounds of

communication are feasible, with an increasing number of iterations, our method

will eventually converge to the pooled analysis. When studying rare conditions,

extra iterations help correct the bias, so a balance needs to be reached between the

communication cost and estimation accuracy. In addition, the sharing of first- and

second-order derivatives is common among federated algorithms but may still entail a

risk of identifiability for small datasets with rare events. Nevertheless, this risk is limited

in that the transmission of summary-level statistics is typically regulated and protected

by the data-sharing protocols of collaborative research networks. Methods such as

differential privacy and data encryption techniques can be combined with Fed-GLMM

to improve privacy protection.
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In the virtual care analysis, we found lower odds of virtual care use among Hispanic,

non-Hispanic black, non-Hispanic Asian or other non-Hispanic relative to non-Hispanic

white patients but higher odds among patients with Medicaid insurance. These results

are in contrast to a previous study investigating the same health system [34], which

used a generalized linear model without accounting for the patient- and physician-level

correlations. The different findings may be explained by distinct study periods and

different levels of virtual care adoption over time, or may be explained by the different

methodological approach we employed here. By including random effects, our analysis

was better able to address correlations among visits within patients and physicians.

While we have demonstrated Fed-GLMM for analyzing EHR data to assess virtual

care utilization, the algorithm can be used in other types of datasets with correlated

observations to investigate a variety of biomedical and epidemiological research questions.

4 Methods

4.1 Fed-GLMM Algorithm

Suppose we want to use Fed-GLMM to integrate data from K EHRs stored at K different

sites. At each site, we fit the following model:

g(E(yijk|bi)) = xT
ijkβ + wT

ijkαk + zTijkbi; bi ∼ N (0, Bk(γk))

where β denotes the fixed effects shared across sites, αk denotes the fixed effects specific

to the k-th site, and Bk denotes the variance-covariance matrix of the random effect bi

and is parameterized by γk.

Let Ik denote the index set indicating patients in the k-th site. Suppose the j-th patient

has nj observations. The log-likelihood function constructed by data from the k-th site

can then be written as

lk(β, αk, γk) =
∑
j∈Ik

ln

∫ nj∏
i

pβ,αk
(yijk|bi)pγk(bi)dbi

Since the integral above does not have a closed-form solution, the log likelihood is often

approximated by methods such as the penalized quasi-likelihood, Laplace’s method or

Gaussian quadrature [27,28]. Fed-GLMM applies to any of these integral approximation

methods, and here we use Laplace’s method as an example which approximates the log

likelihood by

l̂k(β, αk, γk) =
∑
j∈Ik

(q(b̂i, β, αk, γk)−
1

2
ln| − ∇2

bq(b̂i, β, αk, γk)|)
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where q(bi, β, αk, γk) = ln(
∏nj

i pβ,αk
(yijk|bi)pγk(bi)) with bi evaluated at b̂i such that the

corresponding first-order derivative ∇bq(b̂i, β, αk, γk) = 0, and ∇2
bq(b̂i, β, αk, γk) denotes

the second-order derivative.

We denote the parameters specific to the k-th EHR as δk = (αk, γk), and denote the

entire set of parameters as θ = (β, δ1, δ2, . . . , δK)
T . The combined log-likelihood function

encompassing all K EHRs can be written as

l̂(θ) ≡ l̂(β, δ1, δ2, . . . , δK) ≡ l̂(β, α1, γ1, α2, γ2, . . . , αK , γK) =
K∑
k

l̂k(β, αk, γk) ≡
K∑
k

l̂k(β, δk)

We then propose the following quadratic surrogate function that approximates the global

function l̂(θ) at an initial value θ̄ = (β̄, δ̄1, δ̄2, . . . , δ̄K)
T :

l̃(θ; θ̄) = l̂(θ̄) +∇l̂(θ̄)T (θ − θ̄) +
1

2
(θ − θ̄)T∇2l̂(θ̄)(θ − θ̄) (1)

To obtain l̃(θ; θ̄), site k needs to share

sk = (∇β l̂k(β̄, δ̄k)
T ,∇δk l̂k(β̄, δ̄k)

T ) (2)

and

Hk =

(
∇ββ l̂k(β̄, δ̄k) ∇βδk l̂k(β̄, δ̄k)

∇δkβ l̂k(β̄, δ̄k) ∇δkδk l̂k(β̄, δ̄k)

)
(3)

which are summary statistics that can be calculated using the local EHR given an

initial value θ̄. After getting all the summary statistics, the parameter estimates can

be updated through θ̃ = argmaxθ l̃(θ; θ̄). The above procedure can be repeated T times

when iterative communications are allowed or until a convergence criterion d is reached.

We denote the resulting value as θFed. The Fed-GLMM algorithm is summarized as

Algorithm 1.
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Algorithm 1: Fed-GLMM

Step 1: Fit GLMM locally

for k in 1, 2, . . . , K do

� At the k-th site, fit a GLMM and obtain initial estimators δ̄k, β̄k, as well as the

estimated variance of δ̄k, denoted by Vk

� Transmit β̄k and Vk to the central analytics

� Obtain β̄ =
∑

V −1
k β̄k∑
V −1
k

and initialize t = 0, θ(t) = (β̄, δ̄1, δ̄2, . . . , δ̄K)
T , and ∆ = ||θ(t)||2

while t ≤ T or ∆ ≤ d do
Step 2: Calculate and broadcast the summary statistics

for k in 1, 2, . . . , K do

� At the k-th site, given θ(t), calculate the first- and second-order derivatives sk and

Hk according to Equations 2 and 3

� Transmit the derivatives to the central analytics

Step 3: Update parameter estimates through the central analytics

� Combine elements of the derivatives from all EHRs to construct the surrogate

global likelihood function l̃(θ; θ(t)) according to Equation 1

� Obtain θ(t+1) = argmaxθ l̃(θ; θ
(t))

� Update ∆ = ||θ(t+1) − θ(t)||2, and t = t+ 1

Return θFed = θ(t)

The algorithm also applies to the centralized setting in which site-specific parameters are

not involved and our model of interest becomes

g(E(yijk|bi)) = xT
ijkβ + wT

ijkα + zTijkbi; bi ∼ N (0, B(γ))

where the entire set of parameters is redefined as θ = (β, α, γ)T .

4.2 Variance Estimation

The variance of the Fed-GLMM estimator can be calculated directly using the

Hessian of the surrogate global likelihood evaluated at θFed, denoted as HFed. The

variance-covariance estimator for θFed can then be obtained through V̂ ar(θFed) =

(−HFed)
−1.
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4.3 Simulation: Evaluate the Accuracy of Fed-GLMM

We considered a GLMM with a binary outcome, a binary exposure and three additional

covariates (one binary and two continuous variables that follow standard normal and

uniform distributions respectively). The model also included a patient-level random

intercept, which can be expressed as

g(E(yijk|bjk)) = β0 + x1ijk + 0.5x2ijk + 0.5x3ijk + αkx4ijk + bjk

where x1ijk ∼ Bernoulli(px), x2ijk ∼ Uniform(0, 1), x3ijk ∼ Bernoulli(0.5),

and x4ijk ∼ N (0, 1).

We randomly assigned k distinct values ranging from 0 to 1 for the K sites as the

site-level fixed effect αk. To study the impact of the prevalence of binary exposure on

the model performance, we let px vary from 0.01 to 0.5. By choosing different values of

β0, we were also able to allow the prevalence of the binary outcome to vary from 0.01 to

0.5.

In a single simulation replicate, we simulated 10 EHR datasets, each with 100 patients and

5 encounters per patient (500 encounters in total). We performed the pooled analysis, the

meta-analysis and Fed-GLMM respectively. We evaluated the accuracy of Fed-GLMM

vs. meta-analysis using the absolute relative bias from the pooled analysis for estimating

the coefficient of the binary exposure x1, calculated as the following:

Relatvie Bias =

∣∣∣∣Fed-GLMM or Meta-analysis Estimate− Pooled Analysis Estimate

Pooled Analysis Estimate

∣∣∣∣
The simulation results are summarized in Figure 2 and described in the Results section.

4.4 Simulation: Evaluate the Computational Efficiency of

Fed-GLMM

We considered a homogeneous setting with the same GLMM specifications and variable

distributions as in the previous simulation. In a single simulation replicate, we generated

a single dataset with 5,000 patients and 5 encounters per patient (25,000 encounters in

total). The prevalence of the binary exposure was set to 0.05 and the prevalence of binary

outcome was set to 0.25. We applied Fed-GLMM by randomly splitting the dataset into

subsets. We investigated the computation time with the number of subsets ranging from

5 to 100. We generated 50 simulation replicates for each setting, and for each simulation

replicate, we also performed the pooled analysis and the meta-analysis. We evaluated
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the computational efficiency of Fed-GLMM and the meta-analysis as the ratio of their

computation time to that of the pooled analysis, calculated as the following:

Relative Computation T ime =
Fed-GLMM or Meta-analysis Computation T ime

Pooled Analysis Computation T ime

The simulation results are summarized in Figure 3 and described in the Results section.

4.5 Real-World Data Analysis

The Virtual Care dataset was curated from the data warehouse of a large New England

healthcare system. For a demonstration of Fed-GLMM, we included all 3,165,913

ambulatory visits with physicians conducted at 8 acute care hospital facilities during a

one-year period from 10/1/2020 through 9/30/2021. We extracted patient characteristics

and demographics, physician primary specialty, and whether the visit was conducted in

person or virtually through associated modifier codes. We performed a complete-case

analysis where all observations with missing values (6.8% or 215,329 visits) were excluded

from the final analytical sample. This EHR study was approved by the Mass General

Brigham Institutional Review Board as a medical record review that did not require

patient consent.

We considered a GLMM with a binary outcome indicating whether a care encounter

was conducted virtually (coded as 1) or in-person (coded as 0). The covariates in

the model included patient age, gender, race/ethnicity (Hispanic, non-Hispanic white,

non-Hispanic black, non-Hispanic Asian and other non-Hispanic race/ethnicity), English

proficiency (whether the patient indicated English as the preferred language), the digital

patient portal status (whether the portal was activated or not for the care encounter

as a proxy for “digital literacy”), insurance status (whether the visit was billed to the

Medicaid as a proxy for social determinants of health), visit type (whether the visit

was completed in a primary care, behavioral health or specialty department), and an

indicator for whether the care happened on or after 5/29/2021 – the ending of social

restriction in Massachusetts (to approximate the beginning of “social normalization”

during the COVID-19 pandemic in the New England area). All covariates were entered

in the model linearly. We included a physician-level random intercept and a patient-level

random intercept to account for the correlations across encounters at different levels.

When applied to the centralized large EHR from a single facility (n=1,194,009) which

was split into 10 subsets, Fed-GLMM fit the model above for each subset separately.

With two crossed random effect terms in the model, Fed-GLMM provides accurate results

only when the data can be appropriately split such that the correlated observations are
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allocated to the same data subsets as much as possible. One way to achieve this is to

cluster physicians who shared patients together and then split data by physician clusters.

We examined the crossing structure of patients and physicians through physicians’

patient-sharing network. While existing network community detection algorithms can

be handy to cluster physicians, desired cluster numbers and uniform cluster sizes are not

always achievable for densely connected networks. Therefore, we proposed an algorithm,

summarized as Algorithm 2, to implement the clustering-based splitting strategy.

Algorithm 2: Clustering-based Data Splitting Strategy for Crossed Patient and

Physician Random Effects

Step 1: Obtain the edge list from the physicians’ patient-sharing

network

� Create a binary contingency table for patients and physicians from the large EHR

dataset, stored as matrix P , where each cell indicates if at least one visit

happened involving the corresponding patient and physician

� Construct physicians’ patient-sharing network from the weighted adjacency

matrix P TP

� Extract the weighted edge list from the network, where the weight of an edge

indicates the number of patients shared by the two physicians on the edge

Step 2: Cluster physicians according to edge weights

� Sort the edge list by edge weights in descending order

� To split the large-scale EHR data into A subsets, choose A− 1 cut points for the

edge weights to cut the full edge list into A sub-edge lists in sequence such that

the A subsets obtained in Step 3 have approximately uniform sizes.

� Allocate all physicians involved in the first sub-edge list (the one with the highest

weights) into the first cluster, and then allocate all physicians in the second

sub-edge list into the second cluster, excluding those already classified into the

first cluster; repeat the allocation steps through all sub-edge lists to obtain A

physician clusters

Step 3: Split the large-scale EHR into A subsets according to A

physician clusters

When applying Fed-GLMM to EHRs from all 8 facilities, we included facility-specific

intercepts (fixed effects) to account for the potential heterogeneity in the prevalence
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of the virtual visits across facilities. EHRs from the two large facilities both with

over 900,000 records were each split into 10 subsets using the clustering-based data

splitting approach to improve computation time, while other smaller EHRs were not split.
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