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Abstract	
Background	
Mycobacterium tuberculosis whole-genome sequencing (WGS) using Illumina technology has been widely adopted for genotypic 
drug susceptibility testing (DST) and outbreak investigation. Oxford Nanopore Technologies is reported to have higher error rates 
but has not been thoroughly evaluated for these applications. 
Methods	
We analyse 151 isolates from Madagascar, South Africa and England with phenotypic DST and matched Illumina and Nanopore 
data. Using PacBio assemblies, we select Nanopore filters for BCFtools (software) detection of single nucleotide polymorphisms 
(SNPs). We compare transmission clusters identified by Nanopore and the United Kingdom Health Security Agency Illumina 
pipeline (COMPASS). We compare Illumina and Nanopore WGS-based DST predictions using Mykrobe (software). 
Findings	
Nanopore/BCFtools identifies SNPs with median precision/recall of 99·5/90·2% compared with 99·6/91·9% for 
Illumina/COMPASS. Using a threshold of 12 SNPs for putative transmission clusters, Illumina identifies 98 isolates as unrelated 
and 53 as belonging to 19 distinct clusters (size range 2-7). Nanopore reproduces this distribution with addition of 5 singleton 
isolates to distinct clusters and merging of two cluster pairs. Illumina-based clusters are also replicated using a 5 SNP threshold. 
Clustering accuracy is maintained using mixed Illumina/Nanopore datasets. Genotyping resistance variants is highly concordant, 
with 0(4) discordant SNPs (indels) across 151 isolates genotyped at >3000 (60,000) SNPs (indels). 
Interpretation 
Illumina and Nanopore sequence data provide comparable cluster-identification and DST results. 
Funding	
Academy for Medical Sciences (SGL018\110), Oxford Wellcome Institutional Strategic Support Fund (ISSF TT17 4). Swiss 
South Africa Joint Research Award (Swiss national science Foundation and South African national research foundation). 

 
Research	in	context	
Evidence	before	this	study	
Two key types of information can be obtained from laboratory testing of M. tuberculosis isolates 
to help directly guide public health interventions: drug susceptibility testing (DST) to guide 
therapy, and bacterial typing to enrich understanding of the epidemiology and guide interventions 
to mitigate transmission. 
DST is typically performed by the “gold standard” culture-based phenotyping method or nucleic 
acid amplification assays targeting specific resistance-conferring mutations. Studies over the last 
7 years have shown that prediction of susceptibility profile using Illumina-technology genome 
sequence data is possible, and can be automated. In a key publication, the CRyPTIC consortium 
and UK 100,000 Genomes project evaluated the method on over 10,000 genomes including 
prospectively sampled isolates and showed that for first-line tuberculosis (TB) drugs (isoniazid, 
rifampicin, ethambutol, pyrazinamide) a pan-susceptibility profile is accurate enough to be used 
clinically. The genetic basis of resistance remains imperfectly understood for second-line TB 
drugs, in particular for new and repurposed drugs (bedaquiline, clofazimine, delamanid, 
linezolid). Prior work in the field of genotypic DST was heavily based on Illumina technology, 
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which provides short (70-300 base pair) sequence reads of very high quality. Many different 
softwares (e.g. TBProfiler, Mykrobe, MTBseq, kvarq) have been designed for sequence analysis 
and genotypic DST. However, the increasingly used Nanopore sequencing platforms yield very 
different data with much longer sequence reads (frequently over 1kb) and higher error rates 
including systematic biases. To date, very limited evaluation of Nanopore-based drug 
susceptibility prediction has been performed using the only two compatible tools (Mykrobe (n=5 
independent samples), TBProfiler (n=3 independent samples)). 

Molecular typing of M. tuberculosis allows lineage identification and detection of putative 
transmission clusters. In the last decade, multiple M. tuberculosis molecular epidemiology 
studies have shown how genomic information can complement traditional epidemiology in 
identifying person-to-person transmission clusters with a high level of resolution. Typically, the 
number of single nucleotide polymorphism (SNP) disagreements between genomes, or SNP 
distance, is calculated and single-linkage clustering is performed for genomes falling within 
retrospectively established transmission thresholds of either 5 or 12 SNPs. Just as with DST, 
these thresholds were established with Illumina sequencing data. The increased error rate in 
Nanopore sequencing is believed to lead to inflated SNP distances if standard genome analysis 
tools are used. Prior to this study it was unknown what impact on isolate-clustering this would 
incur. 

Added	value	of	this	study	
Full-scale adoption of genomic sequencing in tuberculosis reference laboratories has so far taken 
place in a limited number of settings - England, the Netherlands, and New York State - all using 
Illumina-based sequencing data. Building on current evidence, specific WHO technical guidance 
and diversification and democratisation of technology, sequencing is expected to be increasingly 
used in tuberculosis control globally. For the first time, our study offers 4 key deliverables 
intended to inform adoption of Nanopore technology as an alternative, or a complement, to 
Illumina. First: a systematic head-to-head comparison of Nanopore and Illumina data for M. 
tuberculosis drug susceptibility profiling and isolate clustering, including quantitative metrics for 
cluster precision and recall. Second: an assessment of the impact of mixed Illumina and 
Nanopore data on clustering which represents an increasingly common challenge. Third: an 
open-source software pipeline allowing research and reference laboratories to replicate our 
analytical approach. Fourth: a publicly available curated test set of 151 isolates, including 
matched Illumina and Nanopore sequence data, and (for a subset of seven isolates) high-quality 
PacBio assemblies,  for method development and validation. 
Implications	of	all	the	available	evidence	
Catalogues of drug resistance conferring mutations will keep improving, especially for new and 
repurposed drugs. Our data confirms that Illumina and Nanopore sequencing technologies can be 
used to identify those mutations equally accurately in M. tuberculosis. Bacterial molecular typing 
is constantly shown to support the understanding of disease transmission and tuberculosis control 
in new settings. The bioinformatics tools and filters we have developed, assessed, and made 
publicly available allow the use of Nanopore or mixed-technology data to appropriately cluster 
genetically related isolates. We provide a measure of the expected level of over-clustering 
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associated with Nanopore technology. This study confirms that Illumina and Nanopore sequence 
data provide comparable DST results and isolate cluster-identification. 

Introduction	
Ten years of progress in reducing the global burden of tuberculosis (TB) have likely been lost due 
to the SARS-CoV-2 pandemic, with 1·4 million fewer patients diagnosed and treated in 2020 than 
in 2019.1,2 Accurate diagnosis and appropriate treatment are key to setting the global effort to end 
TB back on course.3 Understanding and interrupting transmission are equally important, as is 
implementing appropriate therapy for every patient. In high-income settings, whole-genome 
sequencing (WGS) has become an attractive solution to both these challenges, with some settings 
now relying predominantly on WGS for drug susceptibility testing (DST) and implementation of 
individualised therapeutic regimens,4 in addition to the well documented benefits of using these data 
for surveillance and outbreak control.5   
 
The necessary high capital outlay for sequencing platform acquisition has limited access to TB 
WGS analyses in many high-burden, low-income settings. With the availability of multiple DNA 
sequencing platforms, simplified access to interpretation of sequencing data5 and curated 
genomic databases,6 more countries are now integrating DNA sequencing within TB control 
programs for either or both DST and epidemiological surveillance.7 
 
Illumina sequencing platforms are the market leaders and are the established reference standard 
for TB genomic next generation sequencing (NGS). Per-base sequencing accuracy is extremely 
high, making this an attractive tool for both susceptibility testing and for surveillance, where just 
a few erroneous basecalls can be the difference between triggering public health interventions, or 
not. Significant validation and accreditation work has led to integration of this technology within 
routine clinical diagnostics in some settings (e.g. UK, the Netherlands, New York State). 
Illumina technology requires large capital outlay and significant testing volume to ensure 
clinically appropriate turn-around times while remaining cost-efficient. Oxford Nanopore 
Technologies (ONT) offer a more transportable solution in the form of their handheld MinION 
sequencing platform (referred to as Nanopore henceforth). To date, a major obstacle for ONT’s 
technology has been its basecalling error rate. However, as the technology has matured and its 
basecalling software has improved, it is now increasingly integrated in public health 
laboratories.8,9 Although laboratory infrastructure is still required for TB culture, DNA 
extraction, and library preparation, the Nanopore sequencing platform's inherent portability and 
relatively lower cost represent a clear opportunity for settings to benefit from WGS technology 
where it has hitherto been out of reach. 
To date, a few studies have evaluated the accuracy of Nanopore-based genotypic DST.9–12 
However, the impact of this sequencing technology on the clustering of isolates in the context of 
TB outbreak investigation remains poorly understood. We now take the opportunity to compare 
its performance to Illumina platforms in a head-to-head study and assess whether the accuracy of 
its outputs has improved sufficiently to justify its use for patient care and public health.    
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Methods	

Mycobacterium	tuberculosis	clinical	isolates	
The M. tuberculosis isolates used in this study were selected in three distinct countries. In 
Madagascar (n=109), isolates consecutively referred to the national drug resistance surveillance 
program and confirmed as multi-drug resistant TB by culture were retrospectively included 
together with a 1:1 matched drug susceptible sample from the same sampling dates and 
geographical region. Ten patient samples had a second isolates taken 2 months later as per the 
National Tuberculosis Program “test of cure” recommendation. From South Africa (n=67), 
biobanked clinical isolates were selected from patients routinely diagnosed with rifampicin-
resistant TB in the Western Cape Province. From England’s National Mycobacteria Reference 
Service in Birmingham (n=32) samples were selected from routine sequencing of mycobacterial 
isolates, for a total of 208 isolates. In all locations this study involved only accessing stored 
bacterial cultured isolates, and not directly obtaining or processing human samples. See 
Supplementary Section S1 for further details of isolate selection. 

Genomic	sequencing,	data	preparation	and	quality	control	
Each isolate was sequenced on both Nanopore and Illumina platforms using extracted DNA from 
the same bacterial culture. See Suppl. Sections S1 for detailed DNA extraction methods, S2 for 
detailed sequencing methods, and S3 for human-read removal and quality control methods. After 
decontamination by aligning reads to a database of contaminants, data with mean read depth less 
than 20/30 (Illumina/Nanopore) were excluded from the study.13 
 
Variant	calling	
Illumina single nucleotide polymorphism (SNP) calls were made using the COMPASS pipeline13 
(https://github.com/oxfordmmm/CompassCompact) used by the United Kingdom Health 
Security Agency (UKHSA).7 Nanopore SNP calls were made using BCFtools (v1.13).14 See 
Suppl. Section S4 for details of variant calling and filtering. 

Evaluation	of	variant	call	precision	and	recall	
We evaluated the precision and recall of the SNP calls for isolates with PacBio “truth” 
assemblies (n=7, see Suppl. Section S5). Here, precision and recall are defined as the proportion 
of SNP calls that are true positives and the proportion of expected (“true”) SNP calls correctly 
identified, respectively. For this work, we optimise for precision following the policy of 
UKHSA/COMPASS.  

Assessing	clusters	based	on	SNP	thresholds	
We used the pairwise distance matrix to assess the impact of sequencing technologies on 
commonly used SNP thresholds for isolate clustering. For a given SNP threshold t, we 
constructed a clustering network (graph) by connecting isolates with a distance ≤ t. That is, a 
cluster is a subgraph within which a path exists between any two isolates, but no path exists to 
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any isolates in another cluster. With this definition, all clusters have a minimum of two members. 
Isolates that do not cluster with any others are deemed singletons. 
As we seek to show concordance of Nanopore data with UKHSA's Illumina-based strategy, we 
investigated SNP threshold values 5 and 12.15 Our goal was to establish whether Nanopore data 
can be used to reproduce equivalent clusters to those generated with Illumina data. We therefore 
treat Illumina as the established standard when comparing clustering, and consider Illumina 
clusters as “truth“. We define three metrics (formal definitions in Suppl. Section S6 and an 
illustrated example in Suppl. Section S7). Sample-averaged	cluster	recall	(SACR)	indicates	whether	
isolates	have	been	missed	by	Nanopore	clustering	(false	negatives)	and	sample-averaged	cluster	precision	
(SACP)	reflects	additional	isolates	being	clustered	by	Nanopore	(false	positives).	SACR	and	SACP	do	not	
account	for	Nanopore	clusters	composed	solely	of	Illumina	singletons,	so	we	define	the	excess	clustering	rate	
(XCR)	as	the	proportion	of	Illumina	singletons	that	are	clustered	by	Nanopore.	A	value	of	0·1	would	indicate	
that	10%	of	Illumina	singletons	were	part	of	a	Nanopore	cluster. 
Simulation	of	isolate	clusters	with	mixtures	of	sequencing	modalities	
To model the impact of using distinct sequencing platforms when supporting epidemiological 
investigations, we simulated mixed technology datasets by randomly choosing a technology for 
each isolate. We use Nanopore-to-Illumina ratios 0·01, 0·05, 0·1, 0·25, 0·5, 0·75, and 0·9. For 
each ratio and SNP threshold combination we performed the following 1000 times: i) randomly 
assign isolates to a technology in the relevant ratio, ii) calculate SACR, SACP, and XCR for the 
relevant SNP threshold. 

Phenotypic	drug	susceptibility	testing	

Phenotypic DST data was generated by Madagascar and South African laboratories according to 
local routine protocols (see Suppl. Section S8).16 In Madagascar, the indirect proportion method 
on Löwenstein-Jensen medium was performed to test the susceptibility of positive cultures 
against streptomycin, isoniazid, rifampicin, ethambutol, kanamycin, amikacin and capreomycin. 
The critical concentrations used were 4, 0.2, 40, 2, 30, 30, and 40 µg/ml, respectively. For the 
South African isolates, all phenotypic DST was done on Middlebrook 7H with concentrations 
0.2, 2.0 and 4.0 µg/ml for isoniazid, ofloxacin and amikacin respectively. No phenotypic DST 
data was available for the English isolates as this is no longer routinely done by UKHSA. 
 
Drug	resistance	prediction	from	sequencing	data	

We used Mykrobe (v0.10.0) to obtain predictions of each isolate’s drug susceptibility profile for 
11 drugs.10 See Suppl. Section S9 for detailed commands used. Mykrobe genotypes sequencing 
reads against a catalogue of resistance-conferring mutations. This process is independent of the 
variant calling steps outlined for isolate clustering. The catalogue of resistance mutations used by 
Mykrobe v0.10.0 consists of 476 SNPs defined at the amino acid level (which translates into 
3,352 at the nucleotide level), 60 promoter SNPs, and 1,904 nucleotide-level SNPs, insertions 
and deletions (dominated by those in the rifampicin resistance determining region (RRDR) of the 
gene rpoB). In addition, in order to detect isoniazid and pyrazinamide resistance-causing 
frameshifts in the genes katG and pncA, the catalogue contains an explicit list of all possible 1 
and 2bp frameshifts in those two genes, totalling 61,258.10 We chose not to use the recent 
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mutation catalogue from the WHO6 - which came out towards the end of this study - as there is 
no Mykrobe version of it yet, and the purpose of this study is to determine whether Nanopore 
genotypes of resistance mutations are consistent with Illumina, which is independent of the 
catalogue. 
 
Results	
There were 57 isolates that failed to pass quality control measures (see Genomic sequencing, data 
preparation and quality control), including insufficient depth for 44 isolates (37 Nanopore, 1 
Illumina, and 6 both). A single lineage call could not be determined for 12 isolates. Additionally, 
one isolate was found to have non-matched Illumina and Nanopore data, likely due to a labelling 
mix-up. This left 151 isolates, sequenced on both Illumina and Nanopore platforms, that passed 
quality control – 91, 41, and 19 from Madagascar, South Africa, and England, respectively – 
with seven (Madagascar) having associated PacBio data. 

For the 91 isolates from Madagascar, results for rifampicin (n=91), isoniazid (91), streptomycin 
(91), ethambutol (90), amikacin (51), kanamycin (51), capreomycin (51), and ofloxacin (51) 
were available. For the 41 South African isolates, amikacin (n=38), ofloxacin (36), isoniazid (8), 
capreomycin (1), ethambutol (1), kanamycin (1), and rifampicin (1) were available. Available 
drug susceptibility phenotypes are summarised in Figure 1. 
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Figure 1: Culture-based drug susceptibility data available for isolates. Each row is a drug, and the 
columns represent a set of isolates that have phenotype information for those drugs with a filled 
cell. The top panel shows the number of isolates in the set for that combination of drugs. The bar 
plot in the left panel shows the number of isolates with phenotype information for each drug. 
Phenotypic DST was performed by clinical laboratories according to local testing algorithms 
which included complementary molecular testing and reflex sequential testing of second-line 
drugs. This explains why not all antibiotics were tested on all isolates. 

Calibrated	filters	achieve	high	accuracy	
The seven isolates with PacBio truth assemblies (see Suppl. Section S5) allowed us to assess 
variant-calling filter thresholds and achieve different balances of precision versus recall. Since 
our goal was to determine whether Nanopore could be used as an alternative (or complement) to 
existing Illumina-based pipelines, including COMPASS used by UKHSA, we sought to match 
their approach, prioritising precision over recall. We show in Figure 2 the effect of applying 
successive filters (outlined in Variant calling). The final set of filters we used in the rest of this 
study are represented by the right-most boxes, leading to median SNP precision and recall of 
99·5% and 90·2%, respectively, for the seven validation isolates. By comparison, Illumina data 
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processed with COMPASS achieved median precision and recall values of 99·6% and 91·9%, 
respectively. 

 

Figure 2: Recall (left) and precision (right) of SNPs for COMPASS/Illumina (red) and a selection 
of BCFtools/Nanopore filters (blue). Note the non-linear y axis scale. Each point represents a 
single isolate with a PacBio assembly. #nofilter is BCFtools with no filtering of variants. Moving 
right from #nofilter, each box accumulates a new filter plus the previous ones. Each filter 
describes the criterion for removing a SNP. -QUAL<85 removes SNPs with a quality score less 
than 85; -FRS<90% removes SNPs where less than 90% of reads support the called allele; -
FED<20% removes SNPs with read depth below 20% of the isolate’s median depth; -SR<1% 
removes SNPs with less than 1% of read depth on either strand; -VDB<1e-5 removes SNPs with 
a variant distance bias less than 0·00001. 

Applying these filters to all 151 study isolates, we show in Suppl. Figure S2 the SNP distances 
between all pairs of isolates as measured by COMPASS on the Illumina data, and our BCFtools 
pipeline on the Nanopore data. The distances are highly correlated, but as expected, the lower 
recall of the Nanopore/BCFtools pipeline results in systematically lower estimated SNP 
differences (many points lie below y = x). Figure 3 additionally shows the distance correlation for 
those isolates within 20 Illumina SNPs of each other - i.e., the isolates most relevant to 
transmission investigations. Encouragingly, at a distance threshold of 12, only two pairs of 
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isolates (red points) would fail to be linked by Nanopore, although we will later show that this 
does not cause these isolates to be missed from their wider clustering. 

 

Figure 3: Pairwise SNP distance relationship between Illumina (COMPASS; x-axis) and 
Nanopore (BCFtools; y-axis) data. Each point represents the SNP distance between two isolates. 
The black, dashed line shows the identity line (i.e., y=x). The isolate pairs shown are all pairs 
where the COMPASS distance is ≤ 20. The red area and points indicate pairs with a Nanopore 
distance > 12 but an Illumina distance ≤ 12. These pairs are deemed false negative (FN) 
connections. The red area with stripes indicates pairs that are FN connections at an Illumina 
threshold of 5 (Nanopore threshold 6), but not when the threshold is expanded to 12. These pairs 
are shown as square points. The grey area and points are the inverse - i.e., false positive (FP) 
connections. Thus the grey striped area shows pairs of samples which are FP connections at an 
Illumina threshold of 5 (Nanopore threshold 6), but not when the threshold is expanded to 12. 

Nanopore-based	transmission	clusters	recapitulate	baseline	Illumina	clusters	
We compare the clusters obtained from COMPASS/Illumina and BCFtools/Nanopore SNP calls 
using single-linkage clustering with the standard 5- and 12-SNP thresholds previously reported to 
correspond to highly and moderately probable transmission events.15,17,18 We developed three 
metrics (SACR, SAC, XCR) to provide a quantitative assessment of how Nanopore clusters 
differed from baseline Illumina ones (see Assessing clusters based on SNP thresholds). 
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As we see in Figure 3, Illumina and Nanopore SNP distances do not lie exactly on y = x, and so 
we need to use slightly different Nanopore SNP-thresholds to match Illumina results. For 
Illumina thresholds 5 and 12, we selected the respective Nanopore SNP threshold that gave the 
best balance of SACR, SACP, and XCR values (Suppl. Section S11). As we sought to minimise 
the number of isolates missed from their true cluster, a higher SACR is favoured. We selected 
Nanopore SNP thresholds of 6 and 12 (see Suppl. Figure S3). In Figure 4 we show Illumina and 
Nanopore clusters at these thresholds. Nodes represent isolates, coloured according to their 
Illumina clusters. We find isolates clustered together by Illumina remain clustered with Nanopore 
(nodes of the same colour are connected). At threshold 5, the Illumina clusters are recapitulated, 
but two Illumina-singleton isolates are adjoined to cluster 2 (dark orange), and seven Illumina-
singleton isolates are combined into two new clusters of five and two isolates. At threshold 12, 
clusters 1 and 2, and clusters 7 and 8 are merged by Nanopore. In both cases, the Illumina 
maximal SNP distance between isolates included in these clusters is 13 - one above the 
established threshold. There are also five Illumina singletons which are adjoined to pre-existing 
clusters by Nanopore. Figure 4 also shows the metrics SACP, SACR, and XCR for each 
threshold, providing some intuition for how the values correspond to changes in clustering. Note, 
for example, that SACP for threshold 12 is 0·817. For both thresholds, the SACR value is 1·0, 
meaning Nanopore does not miss any isolates from their correct cluster. All clusters exclusively 
regroup isolates from a same single country. Additionally, isolates from the same patient (n=8) 
were also clustered together by both technologies.  
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Figure 4: Agreement of Illumina and Nanopore transmission clustering for two thresholds of 
interest: 5- Illumina/6-Nanopore (upper panels) and 12-both technologies (lower panels). The 
expected (Illumina/COMPASS) clusters are shown in the left panels, with the 
Nanopore/BCFtools clustering shown on the right. The title of each panel indicates the SNP 
threshold used for clustering. Nodes are coloured and numbered according to their Illumina 
cluster membership. Isolates clustered by Nanopore and not clustered (singletons) by Illumina 
are represented as white boxes with red stripes and are named “S”. Clusters are horizontally 
aligned and connected with black lines; however, the order of nodes and the length of edges has 
no significance. In addition, each Nanopore panel has a legend showing the SACR, SACP, and 
XCR value with respect to the Illumina clustering. SACR=sample-averaged cluster recall; 
SACP=sample-averaged cluster precision; XCR=excess clustering rate (with the raw numbers in 
parentheses). 

Clustering	with	mixed	technology	data	performs	consistently	
As an initial check, the “self-distance” was calculated - i.e., the SNP distance between the 
Nanopore- and Illumina-derived consensus genomic sequence for each isolate. The histogram of 
these values is shown in Suppl. Figure S4, confirming these distances were close to zero 
(mean=1·2; median=0). 
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Since our dataset consists of 151 isolates with both Illumina and Nanopore data, we are able to 
simulate a wide range of mixed technology datasets by randomly assigning either the Nanopore 
or Illumina data to each isolate (see Simulation of isolate clusters with mixtures of sequencing 
modalities). We generated 1000 simulated datasets for each value in a range of 
Nanopore:Illumina ratios (0·01, 0·05, 0·1, 0·25, 0·5, 0·75, and 0·9), and measured the impact on 
SACR, SACP, and XCR. As shown in Figure 5, as we increase the proportion of Nanopore data, 
the recall (SACR) behaves consistently, with median fixed at 1·0, and the precision (SACP) 
degrades smoothly from 1·0 (meaning near-pure Illumina data perfectly recapitulates pure 
Illumina clusters) to the value in the pure Nanopore dataset (0·964/0·817 for thresholds 5/12). 
XCR behaves in the same way as SACP; gradually decreasing to the pure Nanopore level. 

To give some intuition on these metrics, consider a simulated sample of 100 isolates including 
three clusters of size 2, 2, and 9, with 87 singletons. Half are sequenced on Nanopore and the 
other half on Illumina. The expected SACR/SACP/XCR from the simulations in this section are 
1·0/0·847/0·031 for a SNP threshold of 12. The recall (SACR) suggests we would expect all 
isolates in our hypothetical dataset to be clustered with their expected neighbours. The precision 
(SACP) of 0·847 in this example would be equivalent to the 2 two-member clusters being joined 
into a single cluster, while an XCR value of 0·031 could be caused by 3 singleton isolates forming 
a new cluster. 
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Figure 5: Simulating various ratios (x-axis) of Nanopore/Illumina isolate mixtures. The different 
thresholds (subplots) indicate the cut-off for defining isolates as part of a cluster. The y-axis 
depicts the sample-averaged cluster precision and recall (SACP/SACR) and excess clustering 
rate (XCR) distributions over all simulation runs. For each ratio/threshold combination we run 
1000 simulations where the Nanopore and Illumina data is randomly split into the relevant ratio 
and clusters are defined based on the relevant threshold. The titles for each subplot indicate the 
SNP threshold used when comparing Illumina, Nanopore, or mixed-technology isolate pairs (5/6 
is 5 for Illumina and 6 for Nanopore and mixed). 
	

Nanopore-based	genotyping	of	resistance	mutations	is	highly	concordant	with	Illumina	
We compared the Nanopore and Illumina genotype calls of Mykrobe at the 66,537 nucleotide-
level resistance conferring mutations for our 151 isolates (see Drug resistance prediction from 
sequencing data). In total, we found four genotype discordances. Three of these discrepant 
mutations were katG 1bp deletions at consecutive positions within a homopolymer in katG, all in 
the same isolate, effectively describing one deletion event - thus only affecting a single 
phenotype call. The other discrepancy was a katG 1bp deletion in a separate isolate. (There were 
also two further mutations (each in one isolate) which we did not classify as discrepant, where a 
resistance mutation was detected with both Nanopore and Illumina, but filtered in the Illumina 
calls due to low coverage (rrs a1401g and rrs a514c)). For further details see Suppl. Section 
S9.1. A summary of concordance of predictions is shown in Table 1. These results lead to the 
key observation for evaluating the utility of Nanopore data as a replacement or complement for 
Illumina for obtaining genotypic DST: if genotyping at resistance mutations is highly concordant 
(here 100% for SNPs and >99.99% for indels), then this concordance should be retained as 
catalogues of resistance mutations are improved.  

 
Drug FN(R) FP(S) FNR(95% CI) FPR(95% CI) PPV(95% CI) NPV(95% CI) 
Isoniazid 0(81) 1(70) 0·0% (0·0-4·5%) 1·4% (0·3-7·7%) 98·8% (93·4-99·8%) 100·0% (94·7 100·0%) 
Rifampicin 0(79) 0(72) 0·0% (0·0-4·6%) 0·0% (0·0-5·1%) 100·0% (95·4-100·0%) 100·0% (94·9-

100·0%) 
Ethambutol 0(54) 0(97) 0·0% (0·0-6·6%) 0·0% (0·0-3·8%) 100·0% (93·4-100·0%) 100·0% (96·2-

100·0%) 
Pyrazinamide 0(30) 0(121) 0·0% (0·0-11·4%) 0·0% (-0·0-3·1%) 100·0% (88·6-100·0%) 100·0% (96·9-

100·0%) 
Streptomycin 0(47) 1(104) 0·0% (0·0-7·6%) 1·0% (0·2-5·2%) 97·9% (89·1-99·6%) 100·0% (96·4-

100·0%) 
Amikacin 0(13) 1(138) 0·0% (0·0-22·8%) 0·7% (0·1-4·0%) 92·9% (68·5-98·7%) 100·0% (97·3-

100·0%) 
Capreomycin 0(13) 1(138) 0·0% (0·0-22·8%) 0·7% (0·1-4·0%) 92·9% (68·5-98·7%) 100·0% (97·3-

100·0%) 
Kanamycin 0(14) 1(137) 0·0% (0·0-21·5%) 0·7% (0·1-4·0%) 93·3% (70·2-98·8%) 100·0% (97·3-

100·0%) 
Ciprofloxacin 0(16) 0(135) 0·0% (0·0-19·4%) 0·0% (0·0-2·8%) 100·0% (80·6-100·0%) 100·0% (97·2-

100·0%) 
Moxifloxacin 0(16) 0(135) 0·0% (0·0-19·4%) 0·0% (0·0-2·8%) 100·0% (80·6-100·0%) 100·0% (97·2-

100·0%) 
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Ofloxacin 0(17) 0(134) 0·0% (0·0-18·4%) 0·0% (0·0-2·8%) 100·0% (81·6-100·0%) 100·0% (97·2-
100·0%) 

Table 1: Comparison of Mykrobe-derived Nanopore drug resistance predictions with Illumina 
predictions. For this comparison, we consider the Mykrobe resistance prediction from Illumina as 
the reference standard. FN=false negative, meaning Nanopore does not detect resistance where 
Illumina does; R=number of resistant isolates; FP=false positive, meaning Nanopore detects 
resistance where Illumina finds susceptible; S=number of (Illumina) susceptible isolates; 
FNR=false negative rate; FPR=false positive rate; PPV=positive predictive value; NPV=negative 
predictive value; CI=Wilson score confidence interval. 

 
Concordance with phenotypic DST (limited by catalogue, not technology) 
 
Finally, for completeness, we show the agreement of WGS predictions with culture-based 
phenotype. Figure 6 and Suppl. Table S2 show the results for all isolates and drugs with available 
DST phenotypes. As expected, we see the Nanopore and Illumina results are nearly identical. 
Nanopore produced 2 fewer missed resistance (FN) calls than Illumina (amikacin and 
streptomycin). However, Nanopore data lead to one extra false resistance (FP) call compared to 
Illumina (isoniazid). In addition, we found there was no relationship between low (Nanopore) 
read depth and reduced prediction performance (see Suppl. Section S14) - indicating we saw no 
improvement in prediction accuracy with high sequencing depth (>30x). 

 

Figure 6: Number of resistant (left) and susceptible (right) phenotypes correctly predicted by 
Mykrobe from Illumina (blue) and Nanopore (purple) WGS data. The red bars indicate missed 
(FN) or incorrect (FP) predictions. The x-axis shows the drugs with available phenotype data. 
Am=amikacin; Cm=capreomycin; E=ethambutol; H=isoniazid; Km=kanamycin; Ofx=ofloxacin; 
R=rifampicin; S=streptomycin. 
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Discussion	
The need for precision diagnostics supporting TB DST and transmission interruption is 
imperative. There is an increasing range of settings in which M. tuberculosis genomic 
sequencing is deployed. The added value of this technology depends on local TB incidence, 
including that of drug-resistant infections and local disease transmission patterns. Although the 
resistance and transmission use cases may motivate the adoption of TB WGS, operational 
characteristics, costs, and analytical performance need consideration when committing to a 
sequencing platform. This paper compares the established Illumina and emerging Nanopore 
technologies in their ability to address the most pragmatic questions TB clinicians and control 
officers use bacterial genomic sequencing for: predicting drug resistance and identifying putative 
transmission clusters using SNPs.   
These tasks rest on two pillars. First, how well understood are the genetic determinants of 
resistance to the various antitubercular drugs and how can they be used to predict resistance from 
genotype. Second, how well the sequence data from an isolate can be “assayed” to either detect 
all SNPs (used for clustering) or evaluate a list of known polymorphic positions (used for 
genotypic DST). The first question is technology-independent and has been the subject of many 
studies over recent years. Multiple studies have compiled catalogues of resistance 
mutations,4,10,11,19 and recently the WHO has published a knowledgebase of high confidence 
mutations intended to provide a solid foundation for future catalogues.6 Given perfect 
sequencing, the catalogue determines how well DST can be predicted, which is inexorably 
improving as the global community collects progressively more data.20–23 In this study we take 
this as given, and ask whether Nanopore sequence data can provide as accurate genotyping of the 
resistance catalogue as Illumina data. If so, as catalogues improve, both Illumina and Nanopore 
data will provide concordant and progressively better results.  
Our analysis shows that it is now possible to obtain high-precision SNP calls in M. tuberculosis 
with current Nanopore data, with only a limited decrease in recall - we obtain median 
precision/recall of 99·5/90·2% with Nanopore data, compared with 99·6/91·9% for Illumina. 
These translate into 5- and 12-SNP clusters congruent with those produced by Illumina data. One 
can be highly confident that isolates will not be omitted from “true” transmission clusters - i.e., 
those that Illumina data would deem clustered. We find that where Nanopore over-clusters 
compared with Illumina, the additional isolates are closely related and just beyond the Illumina 
threshold. In terms of genotyping resistance-causing SNPs and indels, the two technologies give 
almost identical results using Mykrobe - four discordances amongst 151 isolates x 66,537 
nucleotide-level resistance-conferring mutations in the catalogue gives a concordance >99.99%. 
We conclude that (given >30x depth) Nanopore data can generate functionally equivalent data to 
Illumina for our specific pragmatic goals (resistance prediction and cluster detection). 

These results extend and improve on recent work evaluating Nanopore sequencing for M. 
tuberculosis clinical applications.9,24 In Smith et al., Illumina/Nanopore concordance at resistance 
SNPs was measured as 98·1% across 431 isolates.9 However SNP accuracy was not measured (as 
that needs a gold standard), and cluster concordance was not evaluated at all. This study fills 
those gaps: producing a high-quality truth set based on PacBio sequencing enabling us to 
measure ground truth as well as concordance; performing a thorough evaluation of clustering 
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using several novel metrics; an explicit assessment of mixed technology datasets on isolate 
clustering; and providing reproducible software workflows on which others can build. 
Our study, by design, did not include detailed conventional epidemiology data to compare with 
the molecular clusters. We acknowledge that pure SNP-based threshold clustering has 
shortcomings. Stimson et al. recently published a notable study showing that combining a SNP 
threshold approach with epidemiological data can lead to superior transmission cluster 
reconstruction than SNP threshold alone.25 The work we present here lays a foundation for 
investigating how Nanopore data performs with these more nuanced approaches.  
There has been a remarkable continual evolution and improvement of Nanopore data quality over 
the last five years, which appears to continue unabated. We found our results evolved over the 
course of the study as basecalling software and BCFtools were updated (data not shown). This 
required careful recalibration of variant filters. Newer R10 flow cells will likely also require 
recalibration of filters. As such, we strongly encourage validation of new software versions and 
flow cells – particularly basecalling and variant calling - and note that the data we present 
provides a valuable test set for this quality control.  
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