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ABSTRACT21

Clinical trial emulation, which is the process of mimicking targeted randomized controlled trials (RCT) with real-world data
(RWD), has attracted growing attention and interest in recent years from the pharmaceutical industry. Different from RCTs which
have stringent eligibility criteria for recruiting participants, RWD are more representative of real-world patients to whom the drugs
will be prescribed. One technical challenge for trial emulation is how to conduct effective confounding control with complex RWD
so that the treatment effects can be objectively derived. Recently many approaches, including deep learning algorithms, have
been proposed for this goal, but there is still no systematic evaluation and practical guidance on them. In this paper, we emulate
430,000 trials from two large-scale RWD warehouses, covering both electronic health records (EHR) and general claims, over
170 million patients spanning more than 10 years, aiming to identify new indications of approved drugs for Alzheimer’s disease
(AD). We have investigated the behaviors of multiple different approaches including logistic regression and deep learning
models, and propose a new model selection strategy that can significantly improve the performance of confounding balance of
the participants in different arms of emulated trials. We demonstrate that regularized logistic regression-based propensity score
(PS) model outperforms the deep learning-based PS model and others, which contradicts with our intuitions to a certain extent.
Finally, we identified 8 drugs whose original indications are not AD (pantoprazole, gabapentin, acetaminophen, atorvastatin,
albuterol, fluticasone, amoxicillin, and omeprazole), hold great potential of being beneficial to AD patients.

22

Pharmaceutical development of novel therapeutics for Alzheimer’s disease (AD) has consumed a large amount of resources23

over past decades but the majority of AD clinical trials have failed to produce positive results1. Drug repurposing, i.e.,24

identifying novel indications for already approved drugs with well-defined safety and toxicity profiles, can potentially serve25

as a cost-effective way to accelerate AD drug development with a higher success rate2. Although repurposing drugs for AD26

has received increasing attention, no success has been reported on clinical sites3. One important reason is that existing efforts27

have been mostly based on pre-clinical (e.g., -omics, chemical, etc.) data, however, due to the complexity of the disease, these28

insights may not be directly translational to clinical settings.29

On the other hand, large-scale real-world patient data (RWD), such as electronic health records (EHR) or administrative30

claims, has been accumulated in recent years and becoming readily available. Generating drug repurposing hypotheses from31

RWD through emulating randomized clinical trials (RCTs) with a causal analysis framework has demonstrated great potential32

in accelerating translation from bench to bedside for drug development and discovery4–7. This framework consists of two major33
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steps: high-throughput RCT emulation for a large set of drug candidates using RWD, and estimation of the treatment effect of34

each drug candidate with causal analysis methods (such as the inverse probability of treatment re-weighting, or IPTW) for35

screening at scale. Due to the complexity of RWD, trial emulation with large-scale RWD has become a great touchstone for36

advanced AI algorithms, including machine learning or deep learning-based propensity score methods, for effective inference37

of treatment effects of drugs by adjusting for complicated confounding issues inherent within the observational data. As an38

example, recently an advanced deep learning-based long short-term memory with attention propensity score (PS) model739

showed superior performance in balancing covariates than logistic regression-based PS model when applied in the IPTW40

method. However, the superiority of these deep learning-based PS models still lacks systematic studies and validations on41

high-throughput trial emulations on different RWD databases, and whether it can be applied to AD is largely unknown.42

In this study, with two large-scale RWD warehouses covering both electronic health records (EHR) and general claims, we43

systematically investigated the feasibility of generating AD repurposing hypotheses through high-throughput trial emulations,44

under an IPTW based framework with different ways of PS calculation. We emulated 430,000 RCTs for candidate drugs45

existing in RWD based on their impacts on the progression of patients with mild cognitive impairment (MCI) to AD. Inferring46

such treatment effects from large-scale RWD requires that different drug exposure groups to be balanced after IPTW with47

respect to high-dimensional baseline covariates4, 6–8. Interestingly, we observed that the state-of-the-art deep learning-based PS48

model failed to balance the majority of our emulated trials. Specifically, these models usually result in insufficient overlap in49

different exposure groups, namely some patients in one exposure group have zero probability of being assigned to another50

group. This violates the basic positivity assumption in IPTW and can lead to balance failure with RWD. Related to this issue,51

we further demonstrate that building a PS model by purely optimizing the performance of predicting the likelihood of treatment52

can lead to failure in balancing covariates for patients in different treatment arms in trial emulations in our empirical studies.53

We, therefore, propose a new model selection strategy tailored for building machine learning models for PS calculation which54

yields significantly better balancing performance than existing practice. With the proposed strategy, we found that a simple55

regularized logistic regression-based PS model outperformed other complicated machine learning models including deep56

learning, and we are able to identify eight drugs including gabapentin, acetaminophen, atorvastatin, albuterol, fluticasone,57

pantoprazole, amoxicillin, omeprazle, with significant and consistent reduced risk of AD within 2 years, which can potentially58

serve as repurposing candidates for AD. Fig. 1 illustrates the overall pipeline of our proposed framework, which includes the59

following main steps.60

First, we specify the protocols of targeted trials and their high-throughput emulations using two large-scale RWD warehouses,61

where we treat every single drug existing in RWD as a potential candidate (Fig. 1a). The details of the protocols are summarized62

in the Method section and their key components are provided in the extended data table 1. Briefly, the eligibility criteria of63

the treated groups of any emulated trial include MCI patients with age ≥ 50, with at least 1 year of records in the database64

before baseline (the date of the first prescription of the target drug) for collecting covariates, MCI diagnosis before baseline,65

and no AD or AD-related dementia diagnoses before baseline. For each target drug candidate, we emulate one hundred trials by66

constructing different control groups selected either from patients who took a random alternative drug or a similar drug under67

the same second-level Anatomical Therapeutic Chemical classification codes (ATC-L2) as the target drug. We further excluded68

patients from the control groups who were also in the treated group or took any trial drugs before baseline. All patients were69

followed up to 2 years or until AD diagnosis or loss to follow-up (censoring). There were over 4,300 unique drugs (grouped70

by their major active ingredients) in the two databases we investigated and for each drug we emulated 100 trials, leading to71

430,000 (referred to as high throughput) emulated trials in total.72

Next, we propose a new model selection strategy tailored for training, selecting, and evaluating PS calculation methods,73

by taking into account both goodness-of-balance and goodness-of-fit (Fig. 1b). In particular, we first randomly partition each74

emulated trial into mutually exclusive training, validation, and testing sets, and then a) train the PS model on the training set,75

b) select the best model according to the goodness-of-balance measure on the training and validation combined sets, and the76

goodness-of-fit measure on the validation set, and c) evaluate the selected best PS model according to the goodness-of-balance77

measure on the whole dataset and the goodness-of-fit measure on the test set. We quantify the goodness-of-balance by the78

standardized mean difference (SMD) and the goodness-of-fit by the area under the receiver operating characteristic (AUC). We79

tested 4 different PS calculation models including regularized logistic regression, long short-term memory network (LSTM,80

with attention mechanisms)7, gradient boosted decision trees (GBDT)9–11, and multi-layer perceptrons12, 13, and observed that81

i) all these models learned and selected by our proposed strategy balanced more emulated trials than existing model selection82

strategies, and ii) with our strategy, complicated machine learning models such as LSTM and GBDT did not necessarily83

outperform the simple regularized logistic regression PS model.84

Finally, we estimate the treatment effects from high-throughput emulated trials and based on which we screen and prioritize85

potential candidates of non-AD drugs that can be repurposed for treating AD (Fig. 1b). We compute the stabilized IPTW86

weights by the aforementioned PS models and use these learned weights to re-weight each emulated trial. We compute the87

number of unbalanced covariates of emulated trials by SMD before and after IPTW. We estimate the treatment effects (adjusted88
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Figure 1. Overview of our high-throughput clinical trial emulation system for Alzheimer’s Disease drug repurposing
driven by real-world data and machine learning. (a) High-throughput trial emulations of thousands of drug candidates
were conducted on two large-scale and longitudinal real-world healthcare databases: OneFlorida and MarketScan. Target trial
protocols (eligibility criteria, treatment strategies and assignment, follow-up, outcomes, etc.) were illustrated as a flow-chart
(details in Method section). For each drug candidate, treated group consisted of patients who were prescribed with the trial
drug, and control group was constructed by either random selection of alternative drug groups or using drug groups under the
same second-level Anatomical Therapeutic Chemical classification codes (ATC-L2) as trial drug group. Hundreds of trials
were emulated for each drug by constructing different control groups. *The number of patients in different groups and the
outcomes were varied across emulated trials. MCI, mild cognitive impairment; AD, Alzheimer’s Disease. (b) Causal effect
estimation for each emulated drug trial and high-throughput screening of drugs. State-of-the-art AI-based propensity score
(AI-PS) models were used and compared. Novel cross-validation framework for AI-PS models was proposed for training,
selecting, and evaluating AI-PS in terms of goodness-of-balance and goodness-of-fit performance. The optimally trained and
selected AI-PS model is used for inverse probability of treatment re-weighting (IPTW) high-dimensional patient baseline
covariates, including age, gender, disease comorbidities, medications, etc., for confounding control. AD event or censoring
event were tracked within two-year follow-up period, and estimated treatment effects were quantified by adjusted two-year
survival difference and adjusted hazard ratio (HR). Potentially repurposing drug candidates were selected if their estimated
treatment effects were significantly beneficial and consistent over emulated trials on different databases.

2-year survival difference and adjusted hazard ratio) of successfully balanced trials after IPTW. We propose two criteria,89

significant benefits, and consistency, to screen and prioritize drug candidates, based on which eight drugs were identified which90

show significantly beneficial effects on AD and their estimated beneficial effects are consistent over a large number of balanced91

emulated trials in both databases.92

Results93

Our model selection for propensity score calculation results in better balancing. We construct treatment groups consisting94

of eligible patients (Methods) for each unique drug ingredient existing in our databases and emulate trials for all of them. For95

each emulated drug trial, its treatment arm consists of patients from trial drug group, and its control arm is composed by either96

patients randomly selected from drug groups other than trial group, or patients from drug groups wherein drugs are under the97

same second-level Anatomical Therapeutic Chemical classification codes (ATC-L2) as the trial drug. To achieve statistical98

significance, we emulated 100 trials for each drug trial consisting of 50 emulations by constructing random control groups and99
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(a)

(b)

Figure 2. The proportion of successfully balanced drug trials, OneFlorida database, 2012-2020. PS models (a) LR-PS
and (b) LSTM-PS selected by our model selection strategy balanced many more emulated trails than existing practice.
Different color bars from left to right denote balancing performance by the best PS model selected under different strategies:
AUC score on the validation set, maximum SMD after IPTW on the validation set, and our model selection strategy based on
both the number of unbalanced covariates after IPTW on the training and validation combined set and AUC score on the
validation set. We reported drugs with ≥ 10% balanced trials. The error bars indicate 95% confidence intervals by 1000-times
bootstrapping. The (two-sided) independent two-samples T-test for testing the means of each two bars, and *, p < 0.05; **,
p < 0.01; ***, p < 0.001; not significant (ns), p≥ 0.05; LR-PS, regularized logistic regression-based propensity score models;
LSTM-PS, long short-term memory network with attention mechanisms-based propensity score models7; AUC, area under the
receiver operating characteristic curve; SMD, standardized mean difference; IPTW, inverse probability of treatment
re-weighting.

50 emulations by constructing ATC-L2 control groups. Taking the OneFlorida database (see Data Section) as our discovery set,100

we included 73,927 patients with MCI diagnosis from 2012 to 2020 (Fig. 1a). We found 1,825 unique drug ingredients and101

emulated 182,500 trials. We finally targeted at 66 drugs with 6,600 emulated trials of which each treatment group has ≥ 500102

patients. For each emulated trial, we randomly partitioned the data into mutually exclusive training, validation and testing103

subsets as standard practice. All PS calculation models were trained on the same training set, and the best-estimated model104

was selected by following three strategies: (a) goodness-of-fit performance on the (out-of-sample) validation set, quantified105

by the area under the receiver operating characteristic curve (AUC) score8, 14–16; (b) goodness-of-balance performance on the106

validation set, quantified by the maximum value of SMD scores over all baseline covariates after IPTW7; and (c) our proposed107

4
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strategy, which leverages goodness-of-balance on the training and validation combined set, and goodness-of-fit on the validation108

set (Method Algorithm 1). We evaluated the performance of selected models from two aspects: (i) the goodness-of-balance,109

which measures how similar the baseline covariates of different exposure groups are after IPTW on the whole data, and (ii) the110

goodness-of-fit, which measures how good the learned PS model predicts on the unseen test data (See Method Algorithm 2). Of111

note, the goodness-of-balance is the single most important criterion for evaluating trial emulations. We considered one covariate112

as balanced if its SMD value ≤ 0.117, and one emulated trial before/after IPTW is balanced if the ratio of unbalanced features113

among all covariates before/after IPTW ≤ 2%7. The goodness-of-fit was evaluated by the AUC score on the (unseen) test data,114

which is the most commonly used model evaluation strategy for machine learning models in general for binary classification.115

Figure 2 shows the proportion of successfully balanced trials (≥ 10% among all emulations) for different drugs after IPTW116

by different PS models including: a) regularized logistic regression-based PS models (LR-PS), b) deep learning based-PS117

model using long short-term memory network with attention mechanisms (LSTM-PS)7, which were trained and selected by118

different model selection strategies as described above. Please refer to Extended Data Fig. 1 for the other PS models, including119

multi-layer perceptron based PS model (MLP-PS)12, 13, and gradient boosted tree-based PS model (GBT-PS)9–11. We observed120

that PS models built with our proposed model selection strategy outperformed models selected by other strategies in terms121

of goodness-of-balance. The previous model selection strategies, either according to AUC (yellow bars in Fig. 2) or SMD122

(blue bars in Fig. 2) on validation data, failed to balance a large proportion of emulated trials (≤ 50%). By contrast, our123

strategy (red bars in Fig. 2) balanced many more emulated trials by large margins on all trial drugs. Taking atorvastatin as an124

example (Fig. 2a), LR-PS selected by our strategy balanced 96% [95% confidence interval (CI) 92%−99%] of all emulated125

trials, which was much better than the AUC-based strategy (39%, 95% CI 30%−48%) and the SMD-based strategy (47%,126

95% CI 37%−57%). The same phenomenon was observed on atorvastatin trials balanced by LSTM-PS (Fig. 2b), where our127

strategy (68%, 95% CI 58%−77%) balanced many more trials than AUC- (22%, 95% CI 14%−31%) or SMD-based strategy128

(53%, 95% CI 43%−63%). In addition, we also compared the performance of PS models built with different model selection129

strategies in terms of goodness-of-fit measured by AUC score on unseen test data. We observed that all of the above PS models130

selected by our proposed strategy achieved test AUC on par with models selected by AUC-on-validation strategy, and on par131

with or better than models selected by SMD-on-validation strategy (Extended Data Figs. 2 and 3). In summary, PS models132

selected by our proposed strategy balanced many more emulated trials than existing practice, and at the same time showed good133

generalized prediction performance on unseen data, and the proposed model training, selection, and testing processes were134

summarized in Algorithm 1 and 2.135

Does deep learning based models perform better? Recently deep learning-based models have demonstrated great136

promises in various applications and researchers have proposed to apply these models for PS calculation in trial emulation7.137

We evaluated the performance of the PS calculation model based on the long short-term memory network with attention138

mechanisms (LSTM-PS) used in Liu et al.7 on our data, and observed that LSTM-PS did not necessarily outperform simple139

LR-PS. As shown in Fig. 2, the LR-PS model selected by our model selection strategy balanced 21 drugs of which ≥ 10%140

emulated trials were successfully balanced, while the LSTM-PS model only balanced 15 drugs. The LR-PS also identified141

more drug candidates than MLP-PS (9 drugs) and GBT-PS (9 drugs) as illustrated in Extended Data Fig. 1. Furthermore, we142

compared the balancing performance of LR-PS versus LSTM-PS by comparing the number of unbalanced features before and143

after IPTW (the 6th and 7th columns in Table 1), from which we observed that both LR-PS and LSTM-PS can greatly reduce144

the number of unbalanced features after re-weighting. However, the number of unbalanced features after IPTW by LSTM-PS145

similar to or even worse than the LR-PS model (LSTM rows v.s. LR rows in the 7th column). Moreover, LSTM-PS introduced146

additional biases by consistently under-estimating the number of unbalanced features even before re-weighting (LSTM rows147

v.s. LR rows in the 6th column in Table 1), which could be originated from the fact that LSTM-PS compressed the original148

covariate space through the learned attention weights, and the SMD scores were evaluated on the compressed covariates.149

To test the generalizability of our conclusion, we further validated our proposed strategy on the MarketScan data, which150

is a national healthcare insurance claims database (see Data Section). Following the same procedures as we did with the151

OneFlorida data, we identified a total of 424,961 MCI patients from 2009 to 2020 and among which, there were 2,489 unique152

drug ingredients. We emulated 24,600 trials for 246 drugs which had ≥ 500 patients in their respective treated groups. With153

the MarketScan data, we were able to obtain the same conclusions: (a) our model selection strategy built better PS models154

which balanced more trials than existing model selection strategies over different PS classes; (b) with our proposed strategy,155

conventional models such as LR-PS outperforms deep learning models such as LSTM-PS7 (Extended Data Fig. 4). In the156

following, we applied our strategy into the process of identification of repurposing drug candidates for AD via high-throughput157

trial emulation.158

High-throughput screening of repurposing drug candidates for AD. With our proposed model selection strategy and159

the LR-PS model, we have emulated 430,000 drug trials on two large-scale RWD warehouses (Fig. 1a). The adjusted 2-year160

survival difference and adjusted hazard ratio (HR) with AD onset as the outcome event obtained from these emulated trials are161

demonstrated in Fig. 1b. The repurposable drug candidates were identified according to the following two criteria: (i) beneficial162
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Table 1. Screening of drug candidatesa, characteristics of high-throughput emulated trials, and their estimated
treatment effects b, OneFlorida, 2012-2020.

Drug Model Balanced
trials %

No. of
treated

No. of
control c

No. of
unbalanced

feat. d

No. of
unbalanced

feat.
after IPTW

Adjusted
2-yr survival
difference %

(95% CI) a

Adjusted
hazard ratio

(95% CI) a

Escitalopram LR 29 767 2301.0 45.2 3.1 3.7 (3.0,4.5)∗∗∗ 0.61 (0.55,0.67)∗∗∗

LSTM 26 767 2301.0 22.7 3.4 5.0 (4.1,5.8)∗∗∗ 0.50 (0.45,0.57)∗∗∗

Mirtazapine LR 32 810 2430.0 53.3 2.8 2.4 (1.7,3.1)∗∗∗ 0.76 (0.68,0.86)∗∗∗

LSTM 40 810 2430.0 24.7 2.6 3.4 (2.7,4.1)∗∗∗ 0.66 (0.59,0.73)∗∗∗

Pantoprazole LR 91 1100 2567.0 114.6 1.5 2.4 (2.2,2.6)∗∗∗ 0.57 (0.56,0.59)∗∗∗

LSTM 93 1100 2502.1 38.1 2.0 2.6 (2.5,2.7)∗∗∗ 0.51 (0.50,0.53)∗∗∗

Meloxicam LR 23 675 2025.0 68.1 4.2 2.3 (2.2,2.4)∗∗∗ 0.53 (0.51,0.54)∗∗∗

LSTM 0 — — — — — —
Gabapentin LR 59 1237 3260.3 89.6 1.5 2.1 (1.8,2.4)∗∗∗ 0.61 (0.58,0.64)∗∗∗

LSTM 41 1237 2636.8 46.0 3.5 2.0 (1.6,2.4)∗∗∗ 0.62 (0.59,0.66)∗∗∗

Sertraline LR 28 709 2127.0 48.5 3.1 2.1 (1.3,2.8)∗∗∗ 0.83 (0.73,0.92)∗∗

LSTM 33 709 2127.0 27.3 3.4 2.9 (2.1,3.6)∗∗∗ 0.75 (0.68,0.82)∗∗∗

Trazodone LR 66 1126 3370.9 95.9 2.3 1.6 (0.9,2.2)∗∗ 0.92 (0.82,1.01)ns

LSTM 55 1126 3378.0 38.8 2.7 2.7 (2.1,3.3)∗∗∗ 0.74 (0.67,0.82)∗∗∗

Acetaminophen LR 57 1837 4864.9 45.0 1.0 1.4 (1.2,1.7)∗∗∗ 0.76 (0.73,0.78)∗∗∗

LSTM 84 1837 3568.0 45.9 1.7 1.4 (1.3,1.6)∗∗∗ 0.76 (0.74,0.77)∗∗∗

Atorvastatin LR 96 1674 3151.6 67.5 1.0 1.2 (1.1,1.4)∗∗∗ 0.79 (0.77,0.81)∗∗∗

LSTM 68 1674 2700.1 25.9 1.8 1.7 (1.6,1.9)∗∗∗ 0.71 (0.69,0.72)∗∗∗

Albuterol LR 22 1045 2126.6 85.3 3.8 1.2 (0.9,1.5)∗∗∗ 0.78 (0.74,0.83)∗∗∗

LSTM 26 1045 2282.1 55.3 3.9 1.0 (0.7,1.3)∗∗∗ 0.80 (0.75,0.86)∗∗∗

Lisinopril LR 47 950 1864.4 46.4 3.0 0.8 (0.7,1.0)∗∗∗ 0.82 (0.80,0.84)∗∗∗

LSTM 29 950 1883.2 25.7 3.8 0.6 (0.4,0.9)∗∗∗ 0.85 (0.81,0.89)∗∗∗

Fluticasone LR 41 903 2709.0 82.6 3.9 0.7 (0.4,1.0)∗∗∗ 0.90 (0.84,0.94)∗∗∗

LSTM 0 — — — — — —
Amoxicillin LR 13 668 2004.0 57.9 3.8 0.6 (0.3,0.9)∗ 0.88 (0.82,0.95)∗

LSTM 0 — — — — — —
Omeprazole LR 48 917 2147.9 88.0 3.1 0.5 (0.4,0.7)∗∗∗ 0.88 (0.85,0.91)∗∗∗

LSTM 0 — — — — — —
Famotidine LR 77 842 2450.7 93.5 2.6 0.1 (-0.1,0.2)ns 0.99 (0.95,1.02)ns

LSTM 24 842 2457.8 25.9 4.0 0.0 (-0.3,0.2)ns 1.00 (0.96,1.05)ns

Folic acid LR 11 844 2532.0 60.8 3.0 -0.3 (-0.7,0.3)ns 1.06 (0.95,1.16)ns

LSTM 0 — — — — — —
Losartan LR 28 801 2193.0 73.0 3.5 -0.3 (-0.4,-0.2)∗∗∗ 1.00 (0.98,1.01)ns

LSTM 25 801 2209.8 40.1 2.8 0.0 (-0.1,0.1)ns 0.93 (0.91,0.95)∗∗∗

Metoprolol LR 19 892 2466.8 47.8 3.7 -0.6 (-0.9,-0.4)∗∗∗ 1.18 (1.10,1.29)∗∗∗

LSTM 0 — — — — — —
Ergocalciferol LR 13 996 2988.0 92.3 3.8 -0.6 (-1.0,-0.2)ns 1.14 (1.05,1.23)∗

LSTM 0 — — — — — —
Amlodipine LR 44 930 2789.6 51.8 3.0 -0.7 (-0.8,-0.6)∗∗∗ 1.18 (1.15,1.22)∗∗∗

LSTM 28 930 2790.0 32.9 3.9 -0.6 (-0.8,-0.4)∗∗∗ 1.17 (1.12,1.23)∗∗∗

Aspirin LR 87 1532 4573.5 50.3 1.7 -1.4 (-1.6,-1.2)∗∗∗ 1.31 (1.27,1.36)∗∗∗

LSTM 78 1532 4570.9 48.6 2.6 -1.6 (-1.8,-1.4)∗∗∗ 1.33 (1.28,1.37)∗∗∗

a Drugs were ranked by their estimated treatment effects. Drugs in shaded color showed beneficial effects estimated from OneFlorida database, and among
which highlighted drugs in bold also showed beneficial effects in the Marketscan database, 2009-2018. b 2-year AD-free survival differences and hazard ratios,
adjusted for 267 baseline covariates in total: age, sex, diagnoses codes, medications, and the time from MCI initiation date to the trial drug initiation date.
Inverse probability of treatment re-weighting (IPTW) were estimated by regularized logistic regression-based PS model (LR)18 and long short-term memory
neural network with attention mechanisms-based PS model (LSTM)7 using our proposed model selection strategy for confounding control. c Control groups are
constructed randomly, either from alternative drug cohorts or similar drug cohorts under ATC-L2. We set number of patients in the control group to maximum
3-folds as the treated group and we report the mean number of all balanced trials here. d The LSTM-based PS method estimated the number of unbalanced features
by summing over medication sequences and diagnosis sequences weighted by normalized temporal attention learned from training sets7. All statistics were sample
means over balanced trials. Bootstrapped p-values for one-sample T-test and 1,000 bootstrapped 95% confidence interval were reported here. P-value *, p < 0.05;
**, p < 0.01; ***, p < 0.001; not significant (ns), p≥ 0.05, and see sensitivity analysis in Discussion section for results under more stringent screening criteria;
AD, Alzheimer’s disease, MCI, mild cognitive impairment; IPTW, inverse probability of treatment re-weighting; CI, confidence interval.
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effects, meaning the estimated treatment effect of balanced trials for any target drug should be significantly beneficial for MCI163

to AD progression (≥ 10% emulations were balanced after IPTW, the sample mean of adjusted 2-yr survival difference > 0,164

adjusted HR < 1, and P-value < 0.05); and (ii) consistency, the estimated treatment effects of each drug candidate from both165

RWD warehouses (both EHRs and administrative claims) should be beneficial for MCI to AD progression. Table 1 summarizes166

the screening process and emulated trials: with the first criterion we were able to identify 14 drugs from the OneFlorida data167

(Table 1, marked in shaded color) and 28 drugs from the Marketscan data (Supplementary Table 3), among which 8 drugs168

showed consistent beneficial effects on both data sets (Table 1, marked in bold).169

We highlight these eight identified repurposable drug candidates in Fig. 3, and for each drug we also have conducted a rapid170

literature review19 for additional evidence:171

Pantoprazole is a proton pump inhibitors (PPI) drug for treating gastroesophageal reflux disease (GERD), a damaged172

esophagus, and high levels of stomach acid caused by tumors. We observed that pantoprazole was associated with a 43%173

reduced risk of AD [hazard ratio (HR) 0.57, 95% confidence interval (CI) 0.56-0.59] in OneFlorida compared with a 8%174

reduced risk of AD (HR 0.92, 95% CI 0.89-0.94) in MarketScan. The association between using PPI drugs and risk of incident175

AD or non-AD dementias were contradictory20, 21 in existing literature. Our study revealed one of the first large-scale RWD176

signals of pantoprazole for AD.177

Gabapentin is an anti-epileptic drug for treating seizures and pain. We observed that gabapentin was associated with a 39%178

reduced risk of AD (HR 0.61, 95% CI 0.58-0.64) in OneFlorida and a 28% reduced risk of AD (HR 0.72, 95% CI 0.70-0.74)179

in MarketScan. Previous research suggested possible benefit of gabapentin for behavioural and psychological symptoms of180

dementia in AD patients based on summarizing case reviews22, and revealed crucial role of gabapentin in the Amyloid Beta181

Toxicity Cascade23. Our study showed one of the first large-scale RWD signals of gabapentin for AD.182

Acetaminophen is used for treating mild to moderate pains and reducing fever. We observed that acetaminophen was183

associated with a 24% reduced risk of AD (HR 0.76, 95% CI 0.73-0.78) in OneFlorida and a 22% reduced risk of AD (HR184

0.78, 95% CI 0.76-0.81) in MarketScan. Previous studies only indicated a weak association of acetaminophen with reduced185

risk of AD without any significance24–26 (e.g. Relative Risk 0.87, 95% CI 0.40-1.91 in a meta-analysis24).186

Atorvastatin is used to treat high cholesterol and triglyceride levels, shows potentially beneficial but not significant effects187

on AD in27, 28. We observed that atorvastatin was associated with a 21% reduced risk of AD (HR 0.79, 95% CI 0.77-0.81) in188

OneFlorida and a 12% reduced risk of AD (HR 0.88, 95% CI 0.85-0.90) in MarketScan.189

Albuterol (also salbutamol) is a drug for asthma and chronic obstructive pulmonary disease (COPD). We observed that190

the albuterol was associated with a consistent 22% reduced risk of AD (HR 0.78, 95% CI 0.74-0.83) in OneFlorida and a191

22% reduced risk of AD (HR 0.78, 95% CI 0.76-0.80) in MarketScan. Previous literature generated AD signals from in-vivo192

screening29 or rats models30. To the best of our knowledge, our work showed the first RWD signal of albuterol for AD.193

Fluticasone is used to treat nasal symptoms, skin diseases, and also asthma. We observed that fluticasone was associated194

with a consistent 10% reduced risk of AD (HR 0.90, 95% CI 0.84-0.94) in OneFlorida and a 14% reduced risk of AD (HR195

0.86, 95% CI 0.83-0.90) in MarketScan. Instead of high-throughput screening repurposing signals from RWD, Xu et al.31
196

validated fluticasone from MarketScan on a case by case basis and showed a consistent decreased risk for AD (HR 0.86, 95% CI197

0.83–0.89) as ours, and Lehrer et al.32 also suggested a lower incidence of AD after taking fluticasone in another independent198

database, FDA MedWatch Adverse Events Database.199

Amoxicillin is used to treat a wide variety of bacterial infections and stomach ulcers. We observed that amoxicillin was200

associated with a 12% reduced risk of AD (HR 0.88, 95% CI 0.82-0.95) in OneFlorida and a 7% reduced risk of AD (HR201

0.93, 95% CI 0.90-0.96) in MarketScan. Jannis et al.33 revealed that the eradication of Helicobacter pylori (Hp) by a triple202

eradication regimen of omeprazole, clarithromycin and amoxicillin may positively influence AD manifestations in Hp-positive203

AD patients, and the action of different type of antibiotics in AD remains largely unknown34. To the best of our knowledge, our204

work revealed one of the first RWD signals of amoxicillin for AD.205

Omeprazole is another PPI drug similar to pantoprazole. We observed that omeprazole was associated with a 12% reduced206

risk of AD (HR 0.88, 95% CI 0.85-0.91) in OneFlorida and a 8% reduced risk of AD (HR 0.92, 95% CI 0.88-0.94) in207

MarketScan. There is still no consensus on the role of PPIs and AD20, 21, 35. Our study showed one of the first large-scale RWD208

signals of omeprazole for AD.209

Discussion210

We explored the problem of high-throughput clinical trial emulation on two large-scale RWD data warehouses, covering both211

EHRs and claims, in the context of identifying repurposable drug candidates for AD. There are several aspects we would like to212

highlight for our investigation.213

• First, we emulated hundreds of trials for each drug based on two different ways of constructing control groups, which214

allowed for potentially more robust estimation of treatment effects. In our investigation, indeed, we observed a large215
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(a) pantoprazole (b) gabapentin

(c) acetaminophen (d) atorvastatin

(e) albuterol (f) fluticasone

(g) amoxicillin (h) omeprazole

Primary analysis on OneFlorida/MarketScan

Sensitivity analysis 1 on OneFlorida/MarketScan- As controlled by random drugs

Sensitivity analysis 2 on OneFlorida/MarketScan- As controlled by ATC-L2 drugs

(Lower risk) (Higher risk) (Lower risk) (Higher risk)

Figure 3. Eight repurposable drug candidates for AD with adjusted hazard ratios and 95% confidence intervals.
Trial emulations of these eight drugs (a-h) were performed using OneFlorida (FL) and MarketScan (MS) data separately. For
each drug, treated groups consisted of patients who prescribed the trial drug (eligibility criterion in the Methods section), and
control groups were built by either: (1) randomly selecting alternative drug groups, or (2) using drug groups under the same
second-level Anatomical Therapeutic Chemical classification codes (ATC-L2) as the trial drug. The primary analysis emulated
100 trials consisting of 50 random control groups and 50 ATC-L2 control groups (FL-All and MS-All), and two sensitivity
analyses were using only random controls (FL-Rand and MS-Rand) or only ATC-L2 controls (FL-ATC and MS-ATC). The best
regularized logistic regression-based propensity score (LR-PS) model selected by our proposed model selection strategy was
used to adjust for 267-dimensional baseline covariates for each emulation. Mean hazard ratio (HR) of balanced emulated trials
with 1,000-bootstrapped 95% confidence interval were reported.
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variability (e.g., a large range of 95% confidence interval) of estimated treatment effects within emulated trials for216

certain drugs (e.g., Fig. 3e, albuterol FL-Rand, HR 0.78, 95% CI 0.70-0.86), and sometimes a large discrepancy between217

emulated trials when building control groups in different ways (Fig. 3f, fluticasone, FL-Rand, HR 0.75, 95% CI 0.70-0.81218

versus FL-ATC, HR 1.01, 95% CI 0.97-1.05) These variabilities can become big challenges for existing observational219

studies that use a single control group36 or a single way of building multiple control groups (e.g. only random control220

groups)7.221

• Second, we observed inconsistent results across the two data sets. For example, escitalopram showed a reduced risk in222

OneFlorida data (HR 0.61, 95% CI 0.55-0.67, Table. 1) but an increased risk in MarketScan database (HR 1.55, 95% CI223

1.49-1.61, Table. 3). Potential explanations were rooted in intrinsic heterogeneity across the two datasets: OneFlorida is224

a regional database mainly covers patients’ EHRs in Florida area, while MarketScan is a nation-wide claims database225

across the US (Supplementary Tables 1). For example, the number of patients in escitalopram group in OneFlorida and226

MarketScan were 767 and 5,041 respectively. Such inconsistency highlights the necessity of leveraging at least two227

(different type of) data sets to derive robust and consistent evidence.228

• Third, we conducted multiple sensitivity analyses to guarantee the robustness of our findings. We have investigated the229

impact of different ways of building control groups on balance performance (Supplementary Figs. 6). Our proposed230

model selection strategy greatly improved the performance of different PS models over conventional approaches. We also231

examined the influence of the balance diagnostics on the generated repurposing hypotheses. For example, if we adopted232

a more stringent balance criteria by requiring zero tolerance of unbalanced covariates (compared with 2% used in our233

primary analyses) in each emulated trial after re-weighting, we still recovered top four drugs among our reported eight234

drugs–pantoprazole (HR 0.60, 95% CI 0.57-0.63, OneFlorida; HR 0.92, 95% CI 0.89-0.94, MarketScan), gabapentin235

(HR 0.55, 95% CI 0.50-0.60, OneFlorida; HR 0.72, 95% CI 0.70-0.74, MarketScan), acetaminophen (HR 0.74, 95%236

CI 0.70-0.79, OneFlorida; HR 0.78, 95% CI 0.76-0.81, MarketScan), and atorvastatin (HR 0.78, 95% CI 0.75-0.81,237

OneFlorida; HR 0.88, 95% CI 0.85-0.90, MarketScan), which again significantly and consistently reduced risks for238

AD on both OneFlorida (Supplementary Table 4) and MarketScan (Supplementary Table 3) databases. We also studied239

different ways of constructing control groups–random controls and ATC-L2 controls (Method Section)–on the estimated240

treatment effects which were consistent for most of drugs (Fig. 3), except for fluticasone estimated from ATC-L2 controls241

on OneFlorida (Fig. 3f, FL-ATC, HR 1.01, 95% CI 0.97-1.05) and amoxicillin estimated from ATC-L2 controls on242

MarketScan (Fig. 3g, MS-ATC, HR 1.06, 95% CI 1.05-1.06).243

• Last, compared with existing AD repurposing studies which typically focused on validating one or two hypotheses with244

a single type of RWD31, 37, 38, our study offered a high-throughput way of generating and validating AD repurposing245

hypotheses using both EHRs and claims39, which would further catalyze innovation in AD drug discovery at scale, or246

can be broadly applied to other diseases.247

Lots of recent research efforts have been devoted to developing complex deep learning-based models for propensity score248

based modeling7, 40–43In this paper, after emulating hundreds of thousands of trials from two large-scale RWD warehouses, we249

found that one LSTM-PS7, which is a representative deep learning based PS method, did not outperform LR-PS. Our study250

also highlighted the importance of model selection and we proposed our own strategy under which we demonstrated LR-PS251

outperformed gradient boosting tree-based PS models and deep multi-layer peceptron-based PS models as well in terms of252

balancing performance and the number of generated repurposing hypotheses. In addition, we also evaluated another model253

selection strategy widely used in literature4, 44–47, which did not follow the out-of-sample validation strategy by partitioning254

data into complementary subsets but just estimated and evaluated PS model on the entire data set. We observed that with this255

strategy, even simple regularized LR-PS model suffered from over-fitting issue and could not be generalized well to unseen data256

in our empirical studies as demonstrated in Extended Data Fig. 5, emphasizing the need for a better model selection strategy for257

PS calculation. With all these investigations, we were able to show that our proposed model selection strategy, together with258

model training and evaluation pipelines, could serve as a better choice than existing model selection strategies for PS models in259

terms of goodness-of-balance and goodness-of-fit performance on emulated trials.260

This study has several limitations. First, we identified MCI patients and AD onsets using ICD codes (Supplementary261

Tables 2) which were provided by physicians and validated in48, 49, yet there might be a certain level of inaccuracy due to262

mis- and under-diagnosis or the lack of clinical details in EHRs or claims39, 50. Information contained in clinical notes will be263

explored in the future through natural language processing to complement the structured codes. Second, although we balanced264

high-dimensional covariates collected during the baseline period, measurement error, residual confounding, and selection bias265

in the follow-up period were still possible. Therefore, adapting negative control51 for detecting residual confounding and266

selection bias to high-throughput trial emulation settings would be another promising direction.267
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Conclusion268

In this work, we proposed a high-throughput clinical trial emulation system for AD drug repurposing driven by RWD and269

propensity score-based causal inference with a tailored model selection strategy. On two large-scale RWD warehouses270

covering both EHRs and general claims, we demonstrated that our strategy identified eight drugs (pantoprazole, gabapentin,271

acetaminophen, atorvastatin, albuterol, fluticasone, amoxicillin, omeprazole) with different original indications could be272

potentially beneficial to AD patients. Our analyses highlighted model selection, rather than the PS model itself, is critical273

in balancing emulated trials at scale, which informs future RWD-based high-throughput trial emulation and can potentially274

accelerate the drug development process.275

Methods276

Data277

We used two large-scale real-world longitudinal patient-level healthcare warehouses, including OneFlorida Clinical Research278

Consortium and IBM MarketScan Commercial Claims and Encounters (Data availability section). The OneFlorida database279

contains robust patient-level electronic health record (EHR) data for nearly 15 million (14,883,388) patients majorly from280

Florida and selected cities in Georgia and Alabama from January 2012 to April 2020, and the IBM MarketScan database281

(formerly known as Truven) contains administrative claim records from January 2009 to June 2020 for over 164 million282

(164,148,434) enrollees across the US, serving as a nationally representative database of the US population (See Supplementary283

Tables 1 for the population characteristics of two database). Both databases contain comprehensive longitudinal information284

on demographics, diagnoses, procedures, prescriptions, and outpatient dispensing for all enrollees. Use of the above two285

de-identified databases was approved by the Institutional Review Board of Weill Cornell Medicine, New York, NY. The use286

of OneFlorida data for this study is approved under the University of Florida IRB number IRB202001888. Access to the287

MarketScan data analysed in this manuscript is provided by the University of Kentucky.288

High-throughput trial emulation for Alzheimer’s disease (AD)289

Instead of emulating one targeted randomized controlled trial on a case-by-case basis, here we tried to scale up trial emulation290

to a high-throughput setting, namely, to emulate hundreds of thousands of target trials to find potentially new indications of291

non-AD drugs for AD. We described the protocol of high-throughput trial emulations as follows and compared target trials and292

their emulations in the Extended Data Table 1. An illustration of the high-throughput cohort selection process was shown in293

Fig. 1a.294

Eligibility criteria. We included patients with at least one mild cognitive impairment (MCI) diagnosis between January295

2012 and April 2020 in the OneFlorida database (January 2009 to Jun 2020 in the MarketScan data). Other inclusion criteria296

were age at MCI diagnosis ≥ 50, no history of AD or AD-related dementia diagnoses before the baseline, the first MCI297

diagnosis date should be prior to the baseline, and ≥ 1 year of records before baseline. Of note, we defined the baseline as the298

first prescription date of the trial drug, and at baseline, all of the above criteria should have been met.299

Treatment strategies We compared two strategies for each drug trial: (0) no initiation of the trial drug before or after300

baseline (control group), and (1) initiation of the trial drug at baseline (treated group). We defined the treatment initiation date301

with the drug of interest as the first prescription date of the drug and we required at least two consecutive drug prescriptions302

over 30 days since the first prescription date in our database as a valid drug initiation.303

Treatment assignment procedures. We classified patients into different drug groups according to their baseline eligibility304

criteria and their treatment strategies. We assumed the treated group and control group were exchangeable at baseline conditional305

on high-dimensional baseline covariates, including diagnoses, medications, demographics, and time from the MCI diagnosis306

date to drug initiation date. The diagnosis covariates consisted of selected comorbidities from Chronic Conditions Data307

Warehouse52 and established risk factors for AD selected by experts, resulting in 64 covariates; each defined by a set of selected308

ICD-9/10 codes. We grouped drug prescriptions coded as National Drug Code (NDC) or RXNORM codes into their major309

active ingredients coded in RXNORM defined in Unified Medical Language System53 for the OneFlorida case, and into the310

Medi-Span Generic Product Identifier (GPI)54 by their first 8 digits for the MarketScan data. We used the first 200 most311

commonly prescribed drug ingredients for the co-prescribed medication covariates for each drug trial and thus the medication312

covariates varied in different drug trials. We used 2 covariates age and sex for demographics and 1 covariate for the time313

from the MCI diagnosis date to the drug initiation date. In total, there were 267 covariates to adjust for. In addition to the314

267 baseline covariates, we also considered the temporal sequences of each of diagnoses and medications for the deep long315

short-term memory network with attention mechanisms-based PS calculation7.316

Follow-up. We followed each patient from his/her baseline until the day of the first AD diagnosis, loss to follow-up317

(censoring), 2 years after baseline, or the end date of our databases, whichever came first.318
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Outcomes. The outcome of interest is the diagnosis of AD recorded in the database within his/her follow-up period, which319

was denoted as a positive event. If there was no AD diagnosis recorded in a patient’s follow-up period, and the last prescription320

date or the last diagnosis date recorded in the database came after the end of the follow-up, then we marked it as a negative event.321

A censoring event is a case where there was no AD diagnosis recorded in a patient’s follow-up period and the last prescription322

date and the last diagnosis date recorded in the database came before the end of the follow-up. The time to positive event is323

defined as the days between the baseline date and the first diagnosis of AD. The time to negative event is the time of follow-up.324

The time to censoring is defined as the days between the baseline date and the last prescription date or the last diagnosis date,325

whichever comes last. Clinical phenotypes were identified by the selected diagnosis codes by experts (Supplementary Tables 2).326

Causal contrasts of interest. The observational analogy of intention-to-treat effect of being assigned to trial drug initiation327

versus no initiation at baseline.328

High-throughput emulation. We emulated trials for all drugs appeared in our databases with at least 500 eligible patients329

in their treated groups. For each emulated trial, its treated group consists of eligible patients who initiated the trial drug, and its330

control group consists of eligible patients who had no initiation of the trial drug. We constructed the no-initiation patients group331

in two ways: a) randomly selecting eligible patients from other drug initiation group49, or selecting patients from similar drug332

groups that are under the same second-level Anatomical Therapeutic Chemical classification category55 (ATC-L2) as the target333

trial drug6. We further excluded any of those patients who were also in the trial drug group or prescribed the trial drug before334

baseline. To investigate statistically significance of results with varying control groups, we emulated 100 trials for each targeted335

drug and among which 50 emulated trials adopted random controls and the other 50 emulated trials adopted ATC-L2 controls336

as described above. Different combinations of control groups were studies as sensitivity analysis.337

Causal effect estimation and the screening of repurposing drugs.338

We used propensity score (PS) methods56 for confounding control and treatment effect estimation for high-throughput emulated339

trials, and proposed two criteria to screen and prioritize non-AD drugs for repurposing (Summarized in Fig. 1b).340

Propensity score and IPTW. For each emulated trial, we used propensity score (PS) framework56 to learn empirical
treatment assignment given baseline covariates, and used the inverse probability of treatment weighting (IPTW)57 to balance
treated and control groups. We used triplet (X ,Z,Y,T ) to represent data of both treated and control groups where X , Z, Y , T
represent the baseline covariates, treatment assignment, outcome indicator, and time to events, respectively. The PS is defined
as P(Z = 1|X)56 where Z is treatment assignment (Z = 1 and Z = 0 for treated and control respectively) and X denotes patients’
observed baseline covariates. The inverse probability of treatment weight (IPTW) is defined as Z

P(Z=1|X) +
1−Z

1−P(Z=1|X)
57, 58,

which tries to make original trial into a more balanced pseudo trial by re-weighting each data sample. We used an updated
version named stabilized IPTW, defined as

w =
Z ∗P(Z = 1)
P(Z = 1|X)

+
(1−Z)∗ (P(Z = 0))

1−P(Z = 1|X)
(1)

to deal with extreme re-weighting weights and thus potentially inflated sample size7, 59, 60.341

A machine learning (ML) or deep learning (DL)-based propensity score (ML/DL-PS) model is a binary classification model342

fθ ∈FΘ : X → Z, to approximate P(Z = 1|X) by fθ (X) with learnable parameters θ . Here, we use FΘ to denote a set of343

ML/DL models (e.g. a set of models with varying hyper-parameters) and fθ to denote one specific model instance in this set.344

We considered four classes of ML/DL FΘ: (a) regularized logistic regression-based PS models (LR-PS), encompassing its345

special case logistic regression (without any regularization term), which are most widely used model for PS calculation; (b) the346

state-of-the-art deep learning based-PS model, long short-term memory network with attention mechanisms-based PS models347

(LSTM-PS)7; c) multi-layer perception network-based PS models (MLP-PS)12, 13; and d) the state-of-the-art gradient boosted348

tree-based PS models (GBT-PS)9–11.349

Performance evaluation criteria. We evaluated the performance of estimated PS models in terms of two aspects: a) the350

goodness-of-balance, and b) the goodness-of-fit.351

The goodness-of-balance is measured by the standardized mean difference (SMD)17, 44, 61 on the whole dataset, defined as
follows:

SMD
(
xtreat,xcontrol

)
=

|µtreat −µcontrol |√
(streat 2 + scontrol

2)/2
(2)

where xtreat,xcontrol ∈ RD represent the vector representations of D covariates of treated group and control group respectively,
µtreat,µcontrol ∈RD are their sample means over the treated group and control group respectively. Similarly, streat

2,scontrol
2 ∈RD

are their sample variances. Suppose that we have learned sample weight wi for each patient i by IPTW, the weighted sample
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mean and variance are:

µweight =
∑wixi

∑wi

sweight =
∑wi

(∑wi)2−∑w2
i
∑wi(xi−µweight)

2
(3)

The weighted versions of sample mean and variance hold for both treated and control groups and thus we ignored their corner
marks for brevity. The SMDweight can be calculated by applying above weighted mean and variance to Eq.2. All operations in
Eq.2 and 3 are conducted in an element-wise way for each covariate. For each dimension d of either original SMD or weighted
SMD, it is considered balanced if its dth SMD value SMD(d)≤ 0.117, and the treated and control groups are balanced if the
total number of unbalanced features ≤ 2%∗D7. More stringent balance criteria (e.g., requiring non-unbalanced features) were
also considered as sensitivity analysis. Taking IPTW re-weighted case as an example, we can calculate the number of balanced
feature after IPTW by:

nweight =
D

∑
d=1

1[SMDweight(d)≤ 0.1]. (4)

The smaller the nweight is, the better the balance performance of IPTW is, and the less biased estimated causal effect is. As
shown in61, SMD is one of the top predictors of the bias of estimated causal effect. To quantify balance performance of
high-throughput emulation of one drug trials, we further defined the probability of successfully balancing one specific drug
M trial by a set of PS models FΘ as PM,FΘ

, which can be estimated by the fraction of successfully balanced trials over all
emulations as follows:

PM,FΘ
≈ ∑

ne
i=11[nweight ≤ 2%∗D | (X ,Z,Y,T )i, fbest ∈FΘ]

ne
(5)

where ne is the total number of emulated trials (X ,Z,Y,T )i, i = 1,2, ...,ne for drug M, fbest is the best PS model among352

FΘ learned from the ith emulated trial, and the IPTW and nweight are calculated by applying fbest to the ith emulated trial.353

We will discuss how to learn and select fbest ∈ FΘ in the next section. In general, the larger the balancing success rate354

PM(nweight ≤ 2%∗D |FΘ) is, the better the FΘ model balances the drug M trial.355

The goodness-of-fit is the generalized prediction performance of the PS model on the unseen data. We used the area under356

the receiver operating characteristic (AUC) measured on the (unseen) testing dataset to quantify it62, 63. The larger AUC on the357

testing set is, the better the generalization performance of the classification model is.358

Model training, selection and evaluation. Much existing literature used statistical models (e.g. logistic regression) for359

PS calculation in estimating treatment effect from observational data, and the PS model was both estimated from and applied360

to the whole dataset4, 44–47. By contrast, machine learning or deep learning (ML/DL) models, which are good at capturing361

complex data and usually have a large number of hyper-parameters, are faced with over-fitting and generalization trade-off64.362

Thus, to get more generalized ML/DL models, the conventional approach is to split the whole dataset into complementary363

training, validation, and testing sets; then train the model on the training set, select the best learned model according to the AUC364

performance for example (a goodness-of-fit measure; the larger the better) on the validation set, and finally evaluate the selected365

model on the testing set. This model validation strategy for ML/DL models is also known as the (one-round) cross-validation14.366

Following this conventional data splitting strategy, existing ML or DL-based PS models9–13, 49 selected the best model by the367

AUC (a goodness-of-fit measure; the larger the better) or the maximum SMD value (a goodness-of-balance measure; the smaller368

the better) measured on the validation set. However, following the above model selection strategies for PS model selection for369

balancing emulated trials, poor balance performance was observed in our high-throughput study in both two RWD warehouses.370

Here, we introduce our model training and selection algorithm tailored for ML/DL-based PS model in Algorithm 1, trying371

to get the best goodness-of-balance performance as well as the best possible goodness-of-fit performance. We used binary372

cross-entropy loss L as the objective function for learning empirical binary propensity scores. We also describe the evaluation373

(testing) algorithm for ML/DL-based PS models in Algorithm 2, to evaluate and benchmark different learned and selected374

models. Of note, the goodness-of-balance is the single most important criterion for evaluating trial emulations. If the balancing375

results are tied, the goodness-of-fit is evaluated.376

Statistical analysis. We reported adjusted 2-year survival difference by adjusted Kaplan–Meier estimator65, 66 and adjusted377

hazard ratio (HRs) modeled by the adjusted Cox proportional hazard model66, 67 for each of the emulated trials. The above378

outcome estimators were adjusted by inverse probability of treatment weighting (IPTW) based on the best PS calculation379

selected by our model selection strategy. For each drug we reported their sample means of different outcome estimators with380

95% confidence intervals68 over all the balanced trials. We used two ways of building different control groups (e.g., random381
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Algorithm 1 ML/DL-PS model training and selection algorithm
Input: (Xtrain, Ttrain), (Xval , Tval): training and validation sets of patient data; FΘ: a set of ML/DL-PS models;
Output: fbest: the best PS model learned from (Xtrain, Ttrain)

1: for every fθ in FΘ do
2: training fθ on the training set (Xtrain, Ttrain) by optimizing binary cross entropy loss L (Ttrain, fθ (Xtrain))
3: computing stabilized IPTW w by using fθ and Eq. 1 on (Xtrain∪Xval , Ttrain∪Tval)
4: computing re-weighted SMDweight on (Xtrain∪Xval , Ttrain∪Tval) by using w, Eq. 2 and Eq. 3
5: computing the number of unbalanced features nweight after IPTW by Eq. 4
6: computing the AUC of fθ on the validation set (Xval , Tval)
7: updating best selected model fbest← fθ if nweight is smaller than the current minimum nweight, or nweight is equal to the

current minimum nweight but the AUC is larger than the current maximum AUC

8: return fbest

Algorithm 2 ML/DL-PS model evaluation (testing) algorithm
Input: (Xtrain, Ttrain), (Xval , Tval), (Xtest , Ttest): training, validation and test sets of patient data; fθ : a PS model to be

evaluated;
Output: the goodness-of-balance and goodness-of-fit performance of fθ

1: computing stabilized IPTW w by using fθ and Eq. 1 on the whole dataset (Xtrain∪Xval ∪Xtest , Ttrain∪Tval ∪Ttest )
2: computing re-weighted SMDweight on (Xtrain∪Xval ∪Xtest , Ttrain∪Tval ∪Ttest ) by using w, Eq. 2 and Eq. 3
3: computing the number of unbalanced features nweight after IPTW by Eq. 4
4: computing the AUC of fθ on the test set (Xtest , Ttest )
5: return nweight, AUC

controls or ATC-L2 controls) and different balance criteria (e.g., different thresholds for SMD) to evaluate the robustness of our382

estimated effects in various sensitivity analyses.383

Screening and prioritization. To generate reliable and robust repurposing hypotheses for AD, we required that the384

estimated effects of repurposing drug candidates should be significantly and consistently beneficial. As for the significant385

(beneficial) effects, we require that the fraction of successfully balanced trials of a drug candidates after IPTW ≥ 10%, and386

their adjusted 2-yr survival difference of these balanced trials should be significant. We used bootstrapping hypothesis testing68
387

to test if the sample mean of the adjusted 2-yr survival difference from all the balanced trials is > 0 (< 1 for HRs), and we388

considered p-value < 0.05 as significant. As for the consistency of effects, we required that the estimated effects should be all389

significantly beneficial over different databases. We then ranked the drug candidates according to their estimated effects. More390

stringent screening criteria were considered in sensitivity analysis.391

Comparison with existing works. We replicated the analytic approach by Liu et al.7 and we found that their methods led392

to biased SMD estimation and worse balance performance as shown in Table 1 due to their deep LSTM-based PS methods.393

Besides, there are other major concerns. First, they selected patients at baseline according to patients’ treatment strategy over394

follow-up and such post-baseline information should not be used at baseline46. Second, they estimated treatment effect by the395

average treatment effect (ATE) ATE = E[Y1−Y0] (Y1 and Y0 are the potential outcomes for each patient under the treatment396

or the control respectively), which can introduce selection bias due to loss to follow-up (censoring)69. Third, they generated397

hypotheses only on one database and used only random controls, ignoring the potential variability we found over different398

databases and over emulations with different control groups.399

Experimental settings. We implemented our high-throughput clinical trial emulation system for drug repurposing by400

Python 3.9 and Pytorch 1.8 (https://pytorch.org/ and trained deep learning models by Adam optimizer70 on a Linux401

server with two GeForce RTX 2080 Ti GPUs and 16 CPU cores. We used python package lifelines-0.2666 for survival analysis,402

scikit-learn-0.2318 for machine learning models including regularized logistic regression, and lightgbm-3.211 for gradient403

boosted machine. We followed Liu et al.7 for their LSTM-PS implementations. We randomly partitioned each emulated trial404

into complementary training, validation and testing data sets with a ratio of 70:10:20. Please refer to our python package for405

more details.406

Code availability407

For reproducibility, we open-sourced our python code package at https://github.com/calvin-zcx/RWD4Drug.408
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Data Availability409

The OneFlorida data can be requested through https://onefloridaconsortium.org/front-door/. Since the410

OneFlorida data is a HIPAA-limited data set, a data use agreement needs to be established with the OneFlorida network. The Mar-411

ketScan dataset is available from IBM at https://www.ibm.com/products/marketscan-research-databases.412
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Extended Data Table 1. A summary of the protocol of target trials and high-throughput emulations to estimate
the effect of drugs on AD risk using real-world healthcare data OneFlorida (2012-2020) and MarketScan
(2009-2020).

Protocol component Target trial specification Target trial emulation

Eligibility criteria*

Patients with MCI between January 2012 and
April 2020 in OneFlorida database (January
2009 and June 2020 in MarketScan database)
Age ≥ 50 at MCI diagnosis, and no upper age
limit.
No history of AD or dementia before baseline
No trial drug prescription before baseline
Baseline is defined as date when all eligibility
criteria are met.
*The criteria were adapted from trail
NCT00151502 for the settings of high-
throughput emulation on RWD.

Same as for the target trial
We defined MCI diagnosis according to the selected
ICD-9/10 codes in patients’ baseline period to identify
probable and potential mild AD cohorts
We required ≥ 1 year from one individual’s first record
in database to his/her baseline
We required the first MCI diagnosis before baseline
Baseline is defined as the first date of the trial drug
prescription and at that time point all eligibility criteria
are met

Treatment strategies
Strategy 0: No initiation of any trial drug before
or after baseline.
Strategy 1: Initiation of trial drug at baseline.

Same as for the target trial
We defined the medication initiation date to be the first
date of a prescription of the trial drug and we require
≥ 2 prescriptions within ≥ 30 days from the initiation
date as a valid initiation.

Treatment assignment
Patients are randomly assigned to either treat-
ment strategy at baseline and are aware of the
strategy they are assigned to.

We classified patients into different groups according to
their baseline eligibility criteria and treatment strategy.
We assumed that the treated group and control group
were exchangeable by adjusting for high-dimensional
confounders collected before the baseline, including:
demographics, diagnoses, medications, time lag between
MCI initiation and index date, etc.

Outcomes Diagnosis of AD
Same as for the target trial, we defined the AD diagnosis
according to selected ICD-9/10 codes in the follow-up
period.

Follow-up

We followed each patient from his/her baseline
date until the date of his/her first AD diagnosis,
loss to follow-up, or 2 years (730 days) after the
baseline, whichever happens first.

Same as for the target trial

Causal contrast Intention-to-treat effect Observational analog of intention-to-treat effect

High-throughput
trials

For each drug among a large number of drug
candidates, we conducted a target trial following
the above protocol to estimate its effect.

We emulated trials for all the drugs in our database with
≥ 500 patients in the trial drug group, and for each drug
we emulated 100 trials by constructing different control
groups as follows.
For each emulated trial, the treated group consists of
patients who were eligible and adopted the trial drug
strategy according above protocol, and its control groups
consist of eligible patients either from randomly chosen
drug groups other than the trial drug group, or from
similar drug groups within the same second level ATC
category as the trial drug, and we further excluded any
of them who were also in the trial drug group or who
prescribed the trial drug before baseline.

Statistical analysis

Intention-to-treatment analysis as the time-to-
first event
Applying IPTW to adjust for baseline con-
founders
Non-parametric bootstrapping for 95% CIs

Same intention-to-treat analyses. Applying different
ML/DL-based PS models to adjust for high-dimensional
baseline covariates by IPTW. The best PS model was
selected by our proposed ML/DL-PS model selection
strategy.
Adjusted 2-yr survival difference by adjusted KM
method, and adjusted HRs by adjusted CoxPH, and we
report sample means with 95% bootstrapped CIs for bal-
anced trials from high-throughput emulations
Sensitivity: estimated effects by building different con-
trol groups (random controls or ATC-L2 controls), and
by different balance criteria.

MCI, mild cognitive impairment; AD, Alzheimer’s disease; KM, Kaplan-Meier; HR, hazard ratio; CoxPH, Cox proportional hazards; CIs, confidence
intervals; ML/DL, machine learning or deep learning; IPTW, inverse-probability treatment weights; PS, propensity score
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(a)

(b) 

MLP-PS

GBT-PS

Extended Data Fig. 1. Proportion of successfully balanced drug trials by (a) MLP-PS and (b) GBT-PS models
selected under different model selection strategies, OneFlorida database, 2012-2020. Propensity score models selected
by our model selection strategy balanced significantly more trials than other model selection methods for all target drugs. We
reported drug trials with at least 10% balanced trials based on 100 emulated trials for each drug. The error bars mean 95%
confidence intervals by 1000-times bootstrapping. The (two-sided) independent two-samples T-test for testing the means of
each two bars, and *, p < 0.05; **, p < 0.01; ***, p < 0.001; not significant (ns), p≥ 0.05; MLP-PS, multi-layer
perceptron-based propensity score models; GBT-PS, gradient boosted tree-based propensity score models.

19

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2022. ; https://doi.org/10.1101/2022.01.31.22270132doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.31.22270132
http://creativecommons.org/licenses/by-nc-nd/4.0/


ato
rva

sta
tin

pa
nto

pra
zol

e
asp

irin

fam
oti

din
e

tra
zod

on
e

ga
ba

pe
nti

n

ace
tam

ino
ph

en

om
ep

raz
ole

lisi
no

pri
l

am
lod

ipin
e

flu
tic

aso
ne

mirta
zap

ine

esc
ita

lop
ram

los
art

an

ser
tra

line

melo
xic

am

alb
ute

rol

meto
pro

lol

erg
oca

lcif
ero

l

am
ox

icil
lin

fol
ic a

cid

Drug Trials

0.5

0.6

0.7

0.8

Te
st

 A
UC

ns
ns

ns
ns

ns
ns

**
ns
***

*
ns

*

*
ns

ns ns
ns

ns
ns

ns
ns

***
ns

*
ns

ns
ns ns

ns
ns ns

ns
ns

ns
ns

ns ns
ns

ns ns
ns

ns

ns
ns

ns

ns
ns

ns
ns

ns
ns

*
ns

ns

ns
ns

ns

ns
ns

ns

ns
ns

*

Val-AUC Select
Val-SMD Select
Our Strategy
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(b) LSTM-PS, Goodness-of-fit by AUC on Test Set

Extended Data Fig. 2. Distribution of AUC performance on (unseen) test data by (a) LR-PS and (b) LSTM-PS
models selected under different model selection strategies, OneFlorida database, 2012-2020. We reported drugs with at
least 10% balanced trials based on 100 emulated trials for each drug. Box plots with 25th (Q1, lower quartile), median (central
vertical line), 75th (Q3, upper quartile), and whiskers extending to ±1.5× interquartile range (IQR=Q3-Q1). Triangle marks
represent sample means. The (two-sided) independent two-samples T-test for testing the means of each two bars, and *,
p < 0.05; **, p < 0.01; ***, p < 0.001; not significant (ns), p≥ 0.05; AUC, the area under the receiver operating
characteristic curve; LR-PS, regularized logistic regression-based propensity score models; LSTM-PS, long short-term memory
network with attention mechanisms-based propensity score models.
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(b) GBT-PS, Goodness-of-fit by AUC on Test Set

Extended Data Fig. 3. Distribution of AUC performance on (unseen) test data by (a) MLP-PS and (b) GBT-PS
models selected under different model selection strategies, OneFlorida database, 2012-2020. We reported drugs with at
least 10% balanced trials based on 100 emulated trials for each drug. Box plots with 25th (Q1, lower quartile), median (central
vertical line), 75th (Q3, upper quartile), and whiskers extending to ±1.5× interquartile range (IQR=Q3-Q1). Triangle marks
represent sample means. The (two-sided) independent two-samples T-test for testing the means of each two bars, and *,
p < 0.05; **, p < 0.01; ***, p < 0.001; not significant (ns), p≥ 0.05; AUC, the area under the receiver operating
characteristic curve; MLP-PS, multi-layer perceptron-based propensity score models; GBT-PS, gradient boosted tree-based
propensity score models.
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(b) LSTM-PS, More Model Selection Strategies

Extended Data Fig. 5. Proportion of successfully balanced drug trials by (a) LR-PS and (b) LSTM-PS models
selected under more model selection strategies, OneFlorida database, 2012-2020. Propensity score models selected by
our model selection strategy balanced significantly more trials than other model selection strategies. Different color bars
denoted balancing performance on the whole data by the best PS model selected under different model selection strategies,
including: (1) val_auc, model selection by AUC score on the validation set; (2) val_maxsmd, by maximum SMD after IPTW
on the validation set; (3) val_nsmd, by the number of unbalanced feature after IPTW on the validation set; (4) train_maxsmd,
by the maximum SMD after IPTW on the training set; (5) train_nsmd, by the number of unbalanced feature after IPTW on the
training set; (6) trainval_maxsmd, by the maximum SMD after IPTW on the training and validation combined set; (7)
trainval_nsmd, by the number of unbalanced feature after IPTW on the training and validation combined set; (8) trainval_final,
our model selection strategy based on both the number of unbalanced feature after IPTW on the training and validation
combined set and AUC score on the validation set. We reported drug trials with at least 10% balanced trials based on 100
emulated trials for each drug. The error bars mean 95% confidence intervals by 1000-times bootstrapping. The (two-sided)
independent two-samples T-test for testing the difference between each method versus our final strategy, and *, p < 0.05; **,
p < 0.01; ***, p < 0.001; not significant (ns), p≥ 0.05; LR-PS, regularized logistic regression-based propensity score models;
LSTM-PS, long short-term memory network with attention mechanisms-based propensity score models7; IPTW,
inverse-probability treatment weights; PS, propensity score.
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Supplementary Table 1. Characteristics of base population in the two real-world healthcare
databases for high-throughput trial emulation.

OneFlorida, January 2012 to April 2020, 14,883,388 patients
MCI AD MCI \ AD P-valuea

No. of patients 73,927 (100%) 10,530 (14.24%) 63,397 (85.76%) –
MCI age, median (IQR) c 66 (50, 77) 78 (71, 85) 64 (46, 75) 0.000
Sex-female 40,654 (54.99%) 6,681 (63.45%) 33,973 (53.59%) 0.000b

Sex-male 33,273 (45.01%) 3,849 (36.55%) 29,424 (46.41%) –
Antidiabetic medication 19,307 (26.12%) 2,563 (24.34%) 16,744 (26.41%) 0.000
Antihypertensives medication 10,909 (14.76%) 1,208 (11.47%) 9,701 (15.30%) 0.000
Alcohol Use Disorders 7,728 (10.45%) 709 (6.73%) 7,019 (11.07%) 0.000
Anxiety Disorders 38,602 (52.22%) 6,009 (57.07%) 32,593 (51.41%) 0.000
Depression 41,763 (56.49%) 6,979 (66.28%) 34,784 (54.87%) 0.000
Diabetes 29,761 (40.26%) 5,640 (53.56%) 24,121 (38.05%) 0.000
Heart Failure 17,842 (24.13%) 4,019 (38.17%) 13,823 (21.80%) 0.000
Hyperlipidemia 45,902 (62.09%) 8,185 (77.73%) 37,717 (59.49%) 0.000
Hypertension 52,834 (71.47%) 9,474 (89.97%) 43,360 (68.39%) 0.000
Ischemic Heart Disease 27,793 (37.60%) 6,001 (56.99%) 21,792 (34.37%) 0.000
Obesity 22,767 (30.80%) 2,739 (26.01%) 20,028 (31.59%) 0.000
Stroke/Transient Ischemic Attack 20,487 (27.71%) 4,143 (39.34%) 16,344 (25.78%) 0.000
Tobacco Use 16,344 (22.11%) 1,708 (16.22%) 14,636 (23.09%) 0.000
Traumatic Brain Injury 5,980 (8.09%) 720 (6.84%) 5,260 (8.30%) 0.000
Sleep disorders 29,691 (40.16%) 4,323 (41.05%) 25,368 (40.01%) 0.045
Periodontitis 1,024 (1.39%) 97 (0.92%) 927 (1.46%) 0.000
Menopause 289 (0.39%) 13 (0.12%) 276 (0.44%) 0.000

MarketScan, January 2009 to June 2020, 164,148,434 patients
MCI AD MCI \ AD P-value

No. of patients 424,961 (100%) 67,973 (16.00%) 356,988 (84.00%) –
MCI age, median (IQR)c 64 (49, 79) 80 (73, 86) 61 (45, 76) 0.000
Sex-female 230,732 (54.29%) 39,424 (58.00%) 191,308 (53.59%) 0.000b

Sex-male 194,229 (45.71%) 28,549 (42.00%) 165,680 (46.41%) –
Antidiabetic medication 65,093 (15.32%) 11,840 (17.42%) 53,253 (14.92%) 0.000
Antihypertensives medication 161,904 (38.10%) 33,403 (49.14%) 128,501 (36.00%) 0.000
Alcohol Use Disorders 27,112 (6.38%) 3,430 (5.05%) 23,682 (6.63%) 0.000
Anxiety Disorders 180,771 (42.54%) 29,012 (42.68%) 151,759 (42.51%) 0.412
Depression 210,388 (49.51%) 37,986 (55.88%) 172,402 (48.29%) 0.000
Diabetes 124,903 (29.39%) 25,232 (37.12%) 99,671 (27.92%) 0.000
Heart Failure 81,582 (19.20%) 21,745 (31.99%) 59,837 (16.76%) 0.000
Hyperlipidemia 266,840 (62.79%) 53,061 (78.06%) 213,779 (59.88%) 0.000
Hypertension 282,484 (66.47%) 59,938 (88.18%) 222,546 (62.34%) 0.000
Ischemic Heart Disease 135,972 (32.00%) 33,501 (49.29%) 102,471 (28.70%) 0.000
Obesity 84,530 (19.89%) 9,638 (14.18%) 74,892 (20.98%) 0.000
Stroke/Transient Ischemic Attack 122,531 (28.83%) 27,784 (40.88%) 94,747 (26.54%) 0.000
Tobacco Use 46,010 (10.83%) 5,145 (7.57%) 40,865 (11.45%) 0.000
Traumatic Brain Injury 42,635 (10.03%) 6,255 (9.20%) 36,380 (10.19%) 0.000
Sleep disorders 157,272 (37.01%) 23,566 (34.67%) 133,706 (37.45%) 0.000
Periodontitis 2,202 (0.52%) 361 (0.53%) 1,841 (0.52%) 0.629
Menopause 4,184 (0.98%) 328 (0.48%) 3,856 (1.08%) 0.000

a Two-sided T-test for the null hypothesis that two independent samples (population with AD diagnosis v.s. population without any AD
diagnosis) have identical average values, except for sex b Chi-square test of independence of the observed male and female frequencies. c

MCI age is the sample median with inter-quartile range (IQR, 25th to 75th percentile).
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Supplementary Table 2. Selected ICD-9/10 diagnosis codes for cognitive impairment (MCI) and Alzheimer’s Disease
(AD).

MCI

Usage: The definition of MCI in real-world healthcare data for selection of targeted population.
ICD-9 codes:
331.83 Mild cognitive impairment, so stated
294.9 Unspecified persistent mental disorders due to conditions classified elsewhere
ICD-10 codes:
G31.84 Mild cognitive impairment, so stated
F09 Unspecified mental disorder due to known physiological condition
To select patients with any of above codes in database
Python code: str.startswith((‘331.83’, ‘294.9’, ‘G31.84’, ‘F09’, ‘33183’, ‘2949’, ‘G3184’)

AD

Usage: The definition of AD in real-world healthcare data for selection of eligible individuals before
baseline and identification of outcome in follow-up.
ICD-9 codes:
331.0 Alzheimer’s disease
ICD-10 codes:
G30 Alzheimer’s disease
G30.0 Alzheimer’s disease with early onset
G30.1 Alzheimer’s disease with late onset
G30.8 Other Alzheimer’s disease
G30.9 Alzheimer’s disease, unspecified
To select patients with any of above codes in database
Python code: str.startswith((’331.0’, ’3310’, ’G30’), na=False)

AD related dementias

Usage: The definition of AD related dementias in real-world healthcare data for selection of eligible
individuals before baseline.
ICD-9 codes:
294.10 Dementia in conditions classified elsewhere without behavioral disturbance
294.11 Dementia in conditions classified elsewhere with behavioral disturbance
294.20 Dementia, unspecified, without behavioral disturbance.
294.21 Dementia, unspecified, with behavioral disturbance
290.* Dementias
ICD-10 codes:
F01.* Vascular dementia
F02.* Dementia in other diseases classified elsewhere
F03.* Unspecified dementia
To select patients with any of above codes in database
Python code: str.startswith((’F01’, ’F02’, ’F03’, ’290’,’294.10’, ’294.11’, ’294.20’, ’294.21’, ’2941’,
’29411’, ’2942’, ’29421’), na=False)

MCI, mild cognitive impairment; AD, Alzheimer’s disease; ICD-9/10, the International Classification of Diseases 9th or 10th Revision.
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Supplementary Table 3. Trial characteristics and estimated treatment effects a of drug candidates b from the
MarketScan, 2009-2020.

Drug Balanced
trials %

No. of
treated

No. of
control c

No. of
unbalanced

feat.

No. of
unbalanced

feat.
after IPTW

Adjusted
2-yr survival
difference %

(95% CI) a

Adjusted
hazard ratio

(95% CI) a

gabapentin 98 7625 15737.8 78.6 0.0 2.5 (2.2,2.9)∗∗∗ 0.72 (0.70,0.74)∗∗∗

acetaminophen 100 7449 13282.4 20.9 0.0 2.4 (1.9,2.9)∗∗∗ 0.78 (0.76,0.81)∗∗∗

aspirin 95 3412 10230.8 48.6 0.0 2.4 (2.2,2.5)∗∗∗ 0.70 (0.68,0.71)∗∗∗

amoxicillin 90 5530 9996.1 12.3 0.0 2.0 (1.6,2.6)∗∗∗ 0.79 (0.77,0.82)∗∗∗

methylprednisolone 70 3032 6976.6 77.6 0.0 1.8 (1.6,2.2)∗∗∗ 0.72 (0.70,0.73)∗∗∗

prednisone 86 5557 10216.7 35.2 0.0 1.8 (1.2,2.5)∗∗∗ 0.84 (0.80,0.88)∗∗∗

albuterol 89 4413 7937.2 20.6 0.0 1.8 (1.5,2.2)∗∗∗ 0.78 (0.76,0.80)∗∗∗

duloxetine 81 3940 11820.0 77.0 0.0 1.6 (1.1,2.2)∗∗∗ 0.88 (0.83,0.94)∗∗∗

furosemide 89 6067 11691.4 70.3 0.0 1.6 (1.2,2.1)∗∗∗ 0.87 (0.84,0.89)∗∗∗

fluticasone 86 5500 9760.8 19.6 0.0 1.5 (1.0,2.1)∗∗∗ 0.86 (0.83,0.90)∗∗∗

bupropion 66 3773 11319.0 57.8 0.0 1.4 (0.9,2.0)∗∗∗ 0.91 (0.85,0.97)∗

triamcinolone 95 2847 8541.0 17.9 0.0 1.4 (0.9,2.0)∗∗∗ 0.87 (0.85,0.89)∗∗∗

atorvastatin 95 9161 18304.3 25.6 0.0 1.4 (1.0,1.7)∗∗∗ 0.88 (0.85,0.90)∗∗∗

ketoconazole 65 1740 5220.0 27.8 0.0 1.3 (1.0,1.7)∗∗∗ 0.82 (0.80,0.84)∗∗∗

pantoprazole 97 5555 14643.9 41.4 0.0 1.3 (0.9,1.8)∗∗∗ 0.92 (0.89,0.94)∗∗∗

zolpidem 69 2617 5388.9 39.4 0.0 1.1 (0.8,1.5)∗∗∗ 0.88 (0.86,0.91)∗∗∗

amlodipine 79 6837 11951.4 39.0 0.0 1.1 (0.6,1.6)∗∗∗ 0.93 (0.89,0.97)∗∗∗

tizanidine 51 1648 4944.0 66.2 0.0 1.0 (0.9,1.2)∗∗∗ 0.78 (0.77,0.80)∗∗∗

metoprolol 82 6825 10577.4 35.1 0.0 1.0 (0.5,1.6)∗∗∗ 0.95 (0.91,0.98)∗∗∗

omeprazole 99 6966 14893.6 8.4 0.0 1.0 (0.5,1.6)∗∗∗ 0.92 (0.88,0.94)∗∗∗

venlafaxine 66 2497 7491.0 38.2 0.0 0.9 (0.4,1.4)∗∗∗ 0.94 (0.88,1.00)ns

warfarin 51 2764 3926.5 68.5 0.0 0.9 (0.3,1.9)∗∗ 0.98 (0.94,1.00)ns

penicillin 89 3808 8235.5 43.9 0.0 0.9 (0.4,1.5)∗∗∗ 0.93 (0.90,0.96)∗∗∗

tramadol 96 5544 14055.0 37.4 0.0 0.7 (0.3,1.3)∗∗∗ 0.95 (0.92,0.98)∗∗∗

losartan 87 5084 14384.5 34.0 0.0 0.5 (0.2,1.0)∗∗∗ 0.95 (0.92,0.97)∗∗∗

clotrimazole 73 1651 4953.0 16.4 0.0 0.5 (0.2,0.8)∗∗∗ 0.95 (0.93,0.98)∗∗∗

lidocaine 73 2116 6348.0 79.1 0.0 0.4 (0.2,0.7)∗∗∗ 1.00 (0.98,1.03)ns

mupirocin 75 2165 6495.0 33.5 0.0 0.4 (0.1,0.7)∗∗∗ 0.96 (0.94,0.98)∗∗∗

rosuvastatin 65 2663 7989.0 27.1 0.0 -0.2 (-0.3,-0.1)∗∗ 1.01 (0.99,1.02)ns

naproxen 54 1850 5550.0 19.4 0.0 -0.3 (-0.4,-0.2)∗∗∗ 1.03 (1.01,1.04)∗

cyclobenzaprine 61 2694 4121.7 34.0 0.0 -0.4 (-0.5,-0.3)∗∗∗ 1.09 (1.07,1.11)∗∗∗

clonazepam 69 2791 8373.0 64.0 0.0 -0.4 (-0.5,-0.3)∗∗∗ 1.08 (1.06,1.10)∗∗∗

alprazolam 88 2941 7152.6 22.1 0.0 -0.8 (-1.1,-0.4)∗∗∗ 1.11 (1.07,1.15)∗∗∗

benzonatate 58 2189 3579.0 50.4 0.0 -0.9 (-1.1,-0.7)∗∗∗ 1.20 (1.15,1.24)∗∗∗

citalopram 88 4298 12894.0 73.8 0.0 -2.1 (-2.6,-1.5)∗∗∗ 1.29 (1.22,1.36)∗∗∗

mirtazapine 87 3686 11056.1 49.0 0.0 -2.3 (-2.8,-1.8)∗∗∗ 1.29 (1.22,1.35)∗∗∗

lorazepam 93 3077 7563.9 33.0 0.0 -2.5 (-2.9,-2.0)∗∗∗ 1.44 (1.39,1.49)∗∗∗

sertraline 94 5524 16564.1 17.9 0.0 -3.2 (-3.6,-2.8)∗∗∗ 1.47 (1.42,1.53)∗∗∗

escitalopram 99 5041 15123.0 13.2 0.0 -4.3 (-4.7,-3.8)∗∗∗ 1.55 (1.49,1.61)∗∗∗

quetiapine 63 2934 5282.8 27.7 0.0 -4.6 (-5.4,-3.9)∗∗∗ 1.58 (1.43,1.71)∗∗∗

a 2-year standardized AD-free survival differences and hazard ratios after inverse probability of treatment re-weighting (IPTW) by regularized logistic
regression-based PS model (LR-PS) using our proposed model selection strategy, adjusted for 267 covariates in total: age, sex, diagnoses codes,
medications, and the time from MCI initiation date to the trial drug initiation date. Covariates were collected during baseline period. Drugs were ranked
by the estimated 2-yr survival differences after IPTW. b We selected drugs with at least 50% emulated trials were balanced and for each balanced trial all
the unbalanced features were balanced after IPTW. c Control groups are constructed randomly, either from alternative drug cohorts or similar drug cohorts
under ATC L2. We set number of patients in the control group to maximum 3-folds as the treated group and we report the mean number of all balanced
trials here. All statistics were sample means over balanced trials. Bootstrapped p-values for one-sample T-test and 1,000 bootstrapped 95% confidence
interval were reported here. *, p < 0.05; **, p < 0.01; ***, p < 0.001; not significant (ns), p≥ 0.05; AD, Alzheimer’s disease, MCI, mild cognitive
impairment; IPTW, inverse probability of treatment re-weighting; CI, confidence interval.
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Supplementary Table 4. Trial characteristics and estimated treatment effects a of drug candidates selected
by more stringent balance criteriab from the OneFlorida, 2012-2020.

Drug Balanced
trials %

No. of
treated

No. of
control c

No. of
unbalanced

feat.

No. of
unbalanced

feat.
after IPTW

Adjusted
2-yr survival
difference %

(95% CI) a

Adjusted
hazard ratio

(95% CI) a

gabapentin 17 1237 3711.0 83.4 0.0 2.6 (2.1,3.3)∗∗∗ 0.55 (0.50,0.60)∗∗∗

pantoprazole 28 1100 2840.6 111.1 0.0 2.1 (1.9,2.4)∗∗∗ 0.60 (0.57,0.63)∗∗∗

acetaminophen 25 1837 5306.6 43.4 0.0 1.5 (1.2,2.0)∗∗∗ 0.74 (0.70,0.79)∗∗∗

atorvastatin 38 1674 2714.1 71.9 0.0 1.4 (1.2,1.6)∗∗∗ 0.78 (0.75,0.81)∗∗∗

aspirin 24 1532 4569.3 46.0 0.0 -0.9 (-1.3,-0.5)∗∗ 1.19 (1.11,1.28)∗∗

a 2-year standardized AD-free survival differences and hazard ratios after inverse probability of treatment re-weighting (IPTW) by regularized
logistic regression-based PS model (LR-PS) using our proposed model selection strategy, adjusted for 267 covariates in total: age, sex, diagnoses
codes, medications, and the time from MCI initiation date to the trial drug initiation date. Covariates were collected during baseline period. Drugs
were ranked by the estimated 2-yr survival differences after IPTW. b We selected drugs with at least 10% emulated trials were balanced and we
require all covariates of balanced trial should be balanced (compared with a tolerance of 2% unbalanced covariates in our primary analyses) after
IPTW. c Control groups are constructed randomly, either from alternative drug cohorts or similar drug cohorts under ATC L2. We set number of
patients in the control group to maximum 3-folds as the treated group and we report the mean number of all balanced trials here. All statistics were
sample means over balanced trials. Bootstrapped p-values for one-sample T-test and 1,000 bootstrapped 95% confidence interval were reported
here. *, p < 0.05; **, p < 0.01; ***, p < 0.001; not significant (ns), p≥ 0.05; AD, Alzheimer’s disease, MCI, mild cognitive impairment; IPTW,
inverse probability of treatment re-weighting; CI, confidence interval.
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