1

1	A Systematic Review and Meta-analysis of Polycystic Ovary Syndrome and
2	Mental Health among Black Asian Minority Ethnic populations
3	
4	Authors
5	Gayathri DELANEROLLE, ^{1*} , Salma AYIS ^{2*} , Vanya BARZILOVA ^{3**} , Peter
6	PHIRI, ^{5,7*} **, Yutian ZENG ⁹ **, Sandali RANAWEERA, ⁶ **, Ashish SHETTY ^{3,4} **, Nyla
7	HAQUE ¹² , Debasish KAR ¹ , Kingshuk MAJUMDER ⁸ , Shanaya RATHOD ⁵ , Vanessa
8	RAYMONT, ¹² , Jian Qing SHI ^{9,10} ***, Dharani K. HAPANGAMA ^{3,7} ***
9	
10	Affiliations
11	¹ University of Oxford, Nuffield Department of Primary Health Care Sciences
12	² Kings College London
13	³ University of Liverpool
14	⁴ University College London Hospitals NHS Foundation Trust
15	⁵ University College London
16	⁶ Southern Health NHS Foundation Trust
17	⁷ Liverpool Women's NHS Foundation Trust
18	⁸ University of Southampton, School of Primary Care, Population Sciences and
19	Medical Education, Faculty of Medicine
20	⁹ University of Manchester NHS Foundation Trust
21	¹⁰ Southern University of Science and Technology
22	¹¹ Alan Turing Institute
23	¹² Department of Psychiatry, University of Oxford
24	
 20 21 22 23 24 	 ⁹University of Manchester NHS Foundation Trust ¹⁰Southern University of Science and Technology ¹¹Alan Turing Institute ¹²Department of Psychiatry, University of Oxford

25 Shared first authorship*

1		1	
	Z		

27 Shared last authorship***

28

29

30 **Conflicts of Interest**

- 31 PP has received research grant from Novo Nordisk, and other, educational from
- 32 Queen Mary University of London, other from John Wiley & Sons, other from Otsuka,
- 33 outside the submitted work.

34

- 35 SR reports research funding associated with other studies from Janssen, Otsuka and
- 36 Lundbeck.
- 37

38 GD reports grants from the NIHR and GSK, which have been received for studies

- 39 external to the ELEMI project.
- 40
- 41 DKH reports grants from MRC, Wellbeing for women, which has been received for
- 42 studies external to the ELEMI project.

43

- 44 The views expressed are those of the authors and not necessarily those of the NHS,
- the National Institute for Health Research, the Department of Health and Social Care
- 46 or the Academic institutions.

- 48
- 49 **PROSPERO registration number:** CRD42020210863
- 50

Ŀ,	-		
1		2	
	7		

F	1
Э	T

- 52 Correspondence to: <u>dharani@liv.ac.uk</u>
- 53 Professor Dharani K. Hapangama
- 54 Department of Women's and Children's Health,
- 55 Institute of Life Course and Medical Sciences,
- 56 University of Liverpool
- 57 Liverpool Women's Hospital NHS Trust
- 58 Crown Street, Liverpool L8 7SS, United Kingdom
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72 Word count (abstract): X
- 73 Word count (main text): X
- 74
- 75

6	
7	
2	
, N	
2	
3	
4	
5	
6	
7	
8	
9	
0	
1	
2	
2	
3	
4	
5	
0	
7	
8	
9	
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
0	
1	
,	
2	
5 1	
+ 5	
5	
/	
, ,	Abstract
	Background: Polycystic Ovary Syndrome (PCOS) is a chronic and a common
	Lucigicana. I orycystic ovary cynaronie (i 000) is a chronic and a common
	gynaecological condition impacting women of reproductive age. Women with PCOS

5

have hormonal, ovulatory and metabolic dysfunction resulting in multiple symptoms.
The correlation between hormonal disbalance and the impact on women's mental
health (MH) has been researched for decades. However, the prevalence among
different ethnicities has not been fully evaluated.

126

Methods: A systematic methodology was developed, and a protocol was published in PROSPERO (CRD42020210863) and a systematic review of publications between 1st January 1990- 30th January 2021 was conducted. Multiple electronic databases were explored using keywords and MeSH terms. The finalised dataset was analysed using statistical methods such as random-effect models, subgroup analysis and sensitivity analysis.

133

134 Findings: We included 30 studies reporting on 3,944 PCOS women. Majority of 135 studies addressed depression anxiety, and common mental health. Studies had fair 136 to poor methodological quality and includes observational studies and Randomised 137 Clinical Trials (RCTs). Overall, 17% (95% CI: 7% to 29%) of women with PCOS have 138 clinical diagnosis of major or severe depression; 33% (95% CI: 26% to 40%) have 139 elevated depressive symptoms or a clinical diagnosis of depression; 41% (95% CI: 140 28% to 54%) report anxiety symptoms, and 31% (95% CI: 15% to 51%) have a form 141 a common mental health or are takingpsychiatric medication for anxiety and / or 142 depression. The use of various tools to assess mental health symptoms was among 143 the reasons for the substantial heterogeneity across studies.

144

146 Interpretation:

147	PCOS is associated with an increased risk of mental health disorders including
148	depressive s, anxiety, and other mental health disorders. While BAME populations
149	account for about 20% of most of the samples studied, stratification by ethnicity was
150	rarely attempted which made it difficult to elucidate the MH impact of PCOS on
151	different communities.
152	Funding: Not applicable
153	
154	Keywords: Polycystic Ovary Syndrome, PCOS, BAME, Mental Health, Women's
155	Health and Wellbeing
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177	Introduction
179	Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in
180	women of reproductive age with significant reproductive, metabolic, and

181 psychological implications. An estimated 8-13% of women of reproductive age are

medRxiv preprint doi: https://doi.org/10.1101/2022.03.05.22271948; this version posted March 7, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

7

affected,¹⁻⁵ with a widely guoted similar prevalence between different ethnicities.⁶ 182 The Rotterdam criteria,^{5,7} which incorporates a combination of signs and symptoms 183 of androgen excess, ovarian dysfunction and polycystic ovarian morphology on 184 185 ultrasound is the globally accepted diagnostic criteria for PCOS. The phenotype between different ethnicities, can vary markedly^{5,8,9} with PCOS sufferers from 186 187 Hispanic, East Asian, South Asian and Middle Eastern backgrounds displaying higher prevalence of symptoms associated with hyperandrogenism^{8,9} than their 188 189 White counterparts. The precise aetiology of the syndrome is unclear, although 190 evidence suggests a genetic predisposition, and a role of environmental variables 191 including diet and lifestyle factors.^{10,11} The pathophysiology involves a dysfunctional 192 hypothalamic-pituitary-ovarian axis, with inappropriate gonadotropin-releasing 193 hormone (GnRH) pulsatility and increased pituitary secretion of luteinizing hormone (LH).¹² Those affected with PCOS present with a wide spectrum of clinical symptoms 194 195 and features, which can be reproductive (oligomenorrhoea, hirsutism, subfertility), metabolic^{13,14} (insulin resistance, type 2 diabetes, metabolic syndrome), and 196 psychological^{15,16} (depression, anxiety and low quality of life). 197

198

PCOS, due to its diversity in clinical presentation, remains undiagnosed in up to 70% of women,³ this may lead to various clinical sequelae that impact and complicate women's long-term health. For example women with PCOS have an increased risk of consequential complications such as type 2 diabetes mellitus, cardiovascular disease, endometrial cancer, pregnancy complications and psychological conditions.¹⁷⁻²⁰

205

206 One area lacking in PCOS research are the MH correlates of the syndrome. The 207 limited evidence available suggests that women with PCOS have higher rates of

medRxiv preprint doi: https://doi.org/10.1101/2022.03.05.22271948; this version posted March 7, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

8

depression, anxiety, binge eating disorders, bipolar disorder and other psychological symptoms,²¹⁻²³ most likely due to the androgenic, reproductive, and metabolic disorders or due to the associated symptoms of the disorder.^{24,25} Current treatment for PCOS focuses on physical symptom control and reducing complication rates.²⁶ At a global level, currently, there is limited recognition of mental health (MH) symptoms in women with PCOS.⁵ However, background MH sequelae may significantly impact treatment adherence and patient quality of life.⁵

215

216 MH disorders account for 14% of global burden of disease.²⁷ Yet significant 217 disparities persist in providing access to MH services for Black, Asian and Minority Ethnic (BAME) populations.²⁸ This is further exacerbated by the underreporting of 218 219 MH symptoms in BAME individuals who are less likely to contact their general practitioner regarding their MH compared to their White British counterparts.²⁸ This 220 221 can be explained by a combination of personal and environmental factors, including 222 inability to recognise MH symptoms, cultural identity and stigma, language barrier and poor communication with healthcare professionals.²⁸ Therefore, the prevalence 223 224 of MH disturbances in BAME women with PCOS remains unclear. The MH symptom 225 prevalence rates may differ significantly across races and ethnicities for women with 226 PCOS in the form of either symptoms and/or psychiatric disorders. Understanding 227 the multifactorial and heterogenic nature of PCOS presentation in BAME women is 228 crucial to improve clinical and patient reported outcomes.

229

An assessment of the existing evidence is vital to generate comprehensive knowledge and clinical practice improvements that are suitable for BAME

9
populations. Therefore, a systematic review was designed and developed within this
study.
Methods
A systematic methodology was developed and peer reviewed prior to publication in
PROSPERO in accordance with Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA).
Research question
To assess the prevalence of the disease sequalae between PCOS and mental
health symptoms and disorders among BAME populations.
Search Strategy
The search strategy involved multiple databases of EMBASE, PubMed, PsycINFO,
Science direct and Web of Science from inception to the 30 th of May 2021. The
searches were conducted through references initially followed by the review al their
abstracts and tracking of citations.
Eligibility criteria
All peer review publications in English were included to this study. Key words and
MeSH terms included depression, polycystic ovary syndrome, PCOS, bipolar,

dysthymia, major depressive disorder, anxiety, psychosis, somatic symptoms, 260

10

261 psychotic disorders, trauma, stress, post traumatic stress (PTSD), obsessive-262 compulsive spectrum disorders, ethnic minorities, BAME, BME and eating disorders. 263 Studies that included a psychiatric diagnosis or MH symptomatologies based on a 264 clinically structured diagnostic interview and/or clinically accepted screening tools 265 were eligible for this study. Meeting abstracts were excluded if there was no full 266 paper available.

- 267
- 268 Data extraction and analysis

269 Predefined clinical variables were used as part of the data extraction of rates of 270 depression, anxiety, stress, schizophrenia, psychosis and PTSD within the search 271 strategy. An evidence synthesis methods protocol was developed and has been 272 shown as supplementary document 1. The data extraction process was completed 273 as per the PRISMA guidelines whilst, the refinement protocol has been shown in the 274 supplementary document 1. The extracted data was reviewed using Endnote and 275 Microsoft Excel by 3 reviewers prior to the statistical analysis. All studies collated 276 were categorised based on MH symptoms versus psychiatric disorders and, where 277 possible synthesised based on prevalence and 95% confidence intervals. 278 Prevalence tables were developed to indicate any subgroup categories including 279 geographical location, race, heterogeneity, age, obesity scores and ethnicity. 280 Systematically included studies that did not meet the meta-analysis criteria due to 281 insufficient statistical data or poor quality were narratively synthesised and analysed 282 based on the disease, family, clinician and patient perspective. The narration would 283 include the reporting of common themes including potential barriers to identify and 284 report any themes or sub-themes that may be present in clinical guidelines.

11

286	
287	

288

289 Outcomes

The primary outcome was to assess the odds ratios and p-values associated with a possible mental health symptomatologies and/or psychiatric disorders among PCOS BAME populations.

293

294 Statistical analysis plan

295 Depression was measured by a range of scales and several tools including the Diagnostic and Statistical Manual of Mental Disorders (DSM)²⁹; the Patient Health 296 Questionnaire (PHQ)³⁰; the Hospital Anxiety and Depression (HAD)³¹; Beck 297 Depression Inventory (BDI)³²; Montgomery Åsberg Depression Rating Scale 298 (MADRS-S)³³; Center for Epidemiologic Studies Depression (CES-D)³⁴; Reynolds 299 Adolescent Depression Scale, 2nd Edition(RADS-2)³⁵; Quick Inventory Depressive 300 Symptomatology (QIDS)³⁶: Self-Reported Questionnaire Scale-20 (SRQ-20)³⁷: the 301 Generalized Anxiety Disorder (GAD)³⁸; the International Neuropsychiatric Interview 302 (MINI),³⁹ use of antidepressants or use of anti-anxiety medication; a diagnosis by a 303 304 MH professional, and self-reported history of depression.

12

The types of mental illness considered by most studies were anxiety, depression, both anxiety and depression, and generalised mental wellbeing. The prevalence of these was synthesised using a meta-analysis.

309

310 For the purpose of this study, depression was defined as a major depression 311 diagnosis or elevated depressive symptoms, as reported within the systematically 312 included studies. The diagnosis of major depressive disorder (MDD) was based on 313 clinical review which included suicidal ideations, or provided a definition of MDD based on thresholds of tools used, for example, BDI \geq 17, CES-D \geq 24.^{40,41} Elevated 314 315 depression included clinical depression, antidepressants use, and / or a threshold for 316 mild to moderate depression based on the scale used for assessment, for example 317 BDI \geq 11, HAD-D \geq 8, and CES-D \geq 16. For anxiety, a combinational approach was 318 used where the use of the term anxiety or use of anxiety medications were pooled 319 together, due to overlapping definitions, and lack of clear cuts for severity levels. 320 Generalised mental wellbeing on the other hand was defined, as having both 321 depression and anxiety, use of medication for psychiatric disorders as reported 322 within the studies, self-reported MH symptoms, or reported under the term "common mental health" (CMH) by a study authors based on scales such as SF-36.⁴²⁻⁴⁴ 323

324

A Random-effects models were used to calculate overall summary estimates of anxiety, depression, and CMH in PCOS patients.⁴⁵ The routine "metaprop" of the software STATA's (V.16) which provides pooled summary of proportions and 95% confidence intervals based on Newcombe exact binomial estimation was used.^{46,47} The routine also estimates the I-squared statistics which describes the percentage of

13

variation across studies that is due to heterogeneity rather than chance. (Higgins et
 al. 2003)⁴⁸

332

333 All studies systematically included demonstrate a range of study designs including of 334 observational and randomised clinical trials (RCTs). Where comparisons were made 335 between PCOS and non-CPOS groups in a study, only the PCOS groups were 336 included. At situations where PCOS population were stratified by certain criterion, for 337 example body mass Index (BMI) or age, the strata were combined where the sample 338 size was smaller than 30 for each group, and an overall prevalence was calculated. 339 For larger groups, each was treated a separate group. Sensitivity analyses in 340 addition, were used to highlight differences across strata where a criterion proven to 341 have an impact on heterogeneity.

342

Publication bias was assessed using funnel plots and Egger test, for symmetry and
 small study effects where the number of studies exceeded the recommended 10.^{49,50}

345

346 Risk of Bias (Quality assessment)

347 The Newcastle-Ottawa-Scale (NOS) was used to assess the risk of bias (RoB) for all

348 systematically included studies as demonstrated within the RoB table.

349

350 Sensitivity analysis

351 Sensitivity analysis was used to explore causes of heterogeneity. BMI, and tool of 352 assessment of assessments were used for stratification.

353

354

14

356 **Results**

357

Figure 1 displays the estimated prevalence and 95% confidence intervals (CI) for the mental health conditions classified as: (a) Major depressive disorder, (b) Elevated existing depression, (c) Anxiety and (d) Common mental health.

361

Overall, major depressive disorder affected 17% of PCOS patients, and vary between 0% to 67%. All studies except two have estimated a prevalence ≥ 10%. The higheset prevalence was reported in a Swedish study, followed by two Middle Eastern (ME) studies, with a prevalnce of 67%, 29%, and 22% for the three studies respectively.⁵¹⁻⁵³ Substantial heterogenity, I² of 93.98% was reported between regions, also considerably high within USA studies, I² of 71.33% but the two ME studies were homogeneous, Figure 1 (a).

369

Depression was summarised from 24 studies, including 3157 women with PCOS. The estimated average was 33% (95% CI: 26% to 40%). Where the estimated prevalance was startified by region, fairly similar estimates on average, were noted across regions, with India being the only exception where the highest prevalence of 64% (95% CI: 55% to 73%) was reported. Substantial heterogeneity observed within regions and between regions. The overall hetrogenity was 93.24%.

376

For anxiety, Figure 1 (C), the highest prevaluce of 75% was seen in a USA study, with 78% white and 22% non-white, mean age 33 years (SD: 7.5), followed by a prevalance of 74% in a European study with 80% white, 18% Asian, age 33 years (7.4), while the two studies didn't report BMI.^{54,55} Middle East, and Australia/ NZ

15

follow with an estimated averages of 42% and 38% respectively, and the overall
estimated prevaluce was 41% (95% CI: 28% to 54%).

383

- Figure 1 (d), common mental health overall prevalence was 31% (95% CI: 15% to
- 51%). Substantial heterogeneity shown by USA studies, only one study from ME,
- 386 and one from Brazil were included. A substantial lack of consistency across studies
- 387 was reflected by a heterogeneity I^2 of 97.29%.

388

- 389 Figure 1. The Prevalence of Mental Health Indicators in Women with PCOS
- 390 (a) Major depression by region

Author	Region		ES (95% CI)	% Weiaht	Ν
			. ,		
Middle East					
Cinar 2012	Middle East		0.22 (0.10, 0.39)	11.74	36
Acmaz 2013	Middle East		0.29 (0.20, 0.40)	12.76	86
Subtotal (I^2 = .%	, p = .)	\diamond	0.27 (0.19, 0.35)	24.50	
Europe					
Mansson 2008	Europe		 0.67 (0.52, 0.80)	12.18	49
USA					
Hollinrake 2006	USA -	•	0.14 (0.08, 0.22)	12.89	103
Pastore 2011	USA 🗕	÷.	0.10 (0.04, 0.20)	12.44	61
Pastore 2011	USA 🗕 🗕		0.00 (0.00, 0.11)	11.60	33
Greenwood 2015	USA 🝝		0.06 (0.03, 0.09)	13.36	301
Dokras 2016	USA 🚽	H	0.11 (0.07, 0.18)	13.04	132
Subtotal (I^2 = 71	.33%, p = 0.01) 🔇		0.08 (0.04, 0.13)	63.32	
Heterogeneity betw	veen groups: p = 0.0	ooo			
Overall (I^2 = 93.9	98%, p = 0.00); <	\Rightarrow	0.17 (0.07, 0.29)	100.00	
1	1	1			

391 392

393 Supplementary a1: Major depression by BMI (sensitivity)

394

16

			%	
Author	Region	ES (95% CI)	Weight	Ν
Normal weight				
Hollinrake 2006	USA -	0.14 (0.08, 0.22)	12.89	103
Mansson 2008	Europe	—— 0.67 (0.52, 0.80)	12.18	49
Pastore 2011	USA 🛏	0.00 (0.00, 0.11)	11.60	33
Cinar 2012	Middle East 🛛 🗕	0.22 (0.10, 0.39)	11.74	36
Acmaz 2013	Middle East	0.29 (0.20, 0.40)	12.76	86
Greenwood 2015	USA 🗕 🖶	0.06 (0.03, 0.09)	13.36	301
Subtotal (I^2 = 95.	67%, p = 0.00)	0.19 (0.05, 0.38)	74.52	
Overweight / Obes	e '			
Pastore 2011	USA -	0.10 (0.04, 0.20)	12.44	61
Dokras 2016	USA 📕	0.11 (0.07, 0.18)	13.04	1 32
Subtotal (I^2 = .%,	p = .)	0.11 (0.07, 0.16)	25.48	
Heterogeneity betw	veen groups: p = 0.312			
Overall (^2 = 93.9	8%, p = 0.00);	> 0.17 (0.07, 0.29)	100.00	

396 397

398

399 Supplementary a2: Major depression by assessment tool (sensitivity)

Author	Region	ES (95% CI)	% Weight	Ν
BDI	 			
Cinar 2012	Middle East 🕂	• 0.22 (0.10, 0.39)	11.74	36
Acmaz 2013	Middle East	••• 0.29 (0.20, 0.40)	12.76	86
Greenwood 2015	5 USA 🛛 🖶	0.06 (0.03, 0.09)	13.36	301
Subtotal $(I^2 = .)$	%, p = .)	0.17 (0.03, 0.39)	37.85	
PRIME-MD				
Hollinrake 2006	USA 🗕	- 0.14 (0.08, 0.22)	12.89	103
Dokras 2016	USA 🔫	• 0.11 (0.07, 0.18)	13.04	132
Subtotal (I^2 = .	%, p = .)	0.12 (0.08, 0.17)	25.93	
MINI Mansson 2008	Europe		12 18	10
QIDS Pastore 2011 Pastore 2011 Subtotal (I^2 = .	USA - USA ► %, p = .) ◇	- 0.10 (0.04, 0.20) 0.00 (0.00, 0.11) 0.05 (0.01, 0.11)	12.44 11.60 24.03	61 33
Heterogeneity be Overall (I^2 = 93	etween groups: p = 0. 8.98%, p = 0.00);	000 0.17 (0.07, 0.29)	100.00	
-1	0	1		
S: Quick Inven	tory of Depressive	e Symptomatology-Self Report 1	6, ¹	
II: MINI Internat	tional Neuropsych	iatric Interview, ³		

412 (b) Elevated depression by region

			%	
Author	Region	ES (95% CI)	Weight	Ν
Middle East				
Adali 2008	Middle East	0.33 (0.20, 0.50)	3.90	42
Soyupek 2008	Middle East	• 0.35 (0.20, 0.53)	3.81	37
Cinar 2011	Middle East 🗕 🛶	0.23 (0.17, 0.30)	4.50	185
Cinar 2011	Middle East	0.51 (0.35, 0.67)	3.88	41
Arshad 2012	Middle East —	0.32 (0.22, 0.45)	4.20	71
Acmaz 2013	Middle East	• 0.35 (0.25, 0.46)	4.28	86
Asik 2015	Middle East	0.42 (0.31, 0.55)	4.20	71
Sayyah-Melli 2015	Middle East 🔶	0.19 (0.16, 0.22)	4.67	742
Subtotal (I^2 = 85.45%, p	= 0.00)	0.33 (0.24, 0.41)	33.44	
Europe				
Lipton 2006	Europe	0.30 (0.20, 0.40)	4.29	88
Battaglia 2008	Europe	0.24 (0.09, 0.45)	3.49	25
Benson S 2008	Europe	0.46 (0.32, 0.59)	4.09	57
Mansson 2008	Europe	0.45 (0.31, 0.60)	4.00	49
Jedel 2010	Europe	0.50 (0.31, 0.69)	3.65	30
Jeanes 2017	Europe 🔶	0.07 (0.05, 0.10)	4.63	455
Subtotal (I^2 = 95.47%, p	= 0.00)	0.32 (0.13, 0.53)	24.15	
USA				
Clayton 2005	USA 🗕 🗕	0.30 (0.20, 0.40)	4.29	88
Himelein 2006	USA	0.28 (0.15, 0.44)	3.87	40
Hollinrake 2007	USA —	• 0.35 (0.26, 0.45)	4.35	103
Pastore 2011	USA	0.48 (0.35, 0.61)	4.12	61
Greenwood 2015	USA	0.38 (0.33, 0.44)	4.59	301
Dokras 2016	USA	0.24 (0.17, 0.32)	4.42	132
LEE 2017	USA 🗕 🛨	0.12 (0.07, 0.19)	4.45	148
Greenwood 2020	USA –	0.36 (0.29, 0.44)	4.48	164
Subtotal (I^2 = 86.40%, p	= 0.00)	0.31 (0.23, 0.39)	34.57	
ndia				
Bhattacharyia 2010	India	0.64 (0.55, 0.73)	4.39	117
Australia/NZ				
Moran 2012	Australia/NZ	0.25 (0.10, 0.47)	3.46	24
Heterogeneity between ar	ουρs: ρ = 0.000			
Overall (I [^] 2 = 93.24%, p	= 0.00);	0.33 (0.26, 0.40)	100.00	
1	I			
-1	0	1		

Supplementary b1: elevated depression by BMI (sensitivity)

Author	Region	ES (95% CI)	% Weight	N
Normal weight				
Himelein 2006	USA	0.28 (0.15, 0.44)	3.73	40
Lipton 2006	Europe	0.30 (0.20, 0.40)	4.13	88
Battaglia 2008	Europe	• 0.24 (0.09, 0.45)	3.37	25
Benson S 2008	Europe	• 0.46 (0.32, 0.59)	3.94	57
Mansson 2008	Europe	0.45 (0.31, 0.60)	3.85	49
Adali 2008	Middle East 🗕 📥	- 0.33 (0.20, 0.50)	3.76	42
Soyupek 2008	Middle East	- 0.35 (0.20, 0.53)	3.67	37
Jedel 2010	Europe	0.50 (0.31, 0.69)	3.52	30
Moran 2012	Australia/NZ	- 0.25 (0.10, 0.47)	3.33	24
Bhattacharyia 2010	India	0.64 (0.55, 0.73)	4.23	117
Pastore 2011	USA	0.42 (0.25, 0.61)	3.59	33
Cinar 2011	Middle East 🗕 🛨	0.23 (0.17, 0.30)	4.34	185
Arshad 2012	Middle East 🗕 🗕	0.32 (0.22, 0.45)	4.05	71
Acmaz 2013	Middle East —	- 0.35 (0.25, 0.46)	4.13	86
Asik 2015	Middle East	0.42 (0.31, 0.55)	4.05	71
Sayyah-Melli 2015	Middle East 🛛 🛨	0.19 (0.16, 0.22)	4.50	742
LEE 2017	USA 🔶	0.12 (0.07, 0.19)	4.29	148
Jeanes 2017	Europe 🖝	0.07 (0.05, 0.10)	4.47	455
Greenwood 2020	USA -	0.36 (0.29, 0.44)	4.32	164
Subtotal (I^2 = 93.69	%, p = 0.00)	0.32 (0.24, 0.40)	75.27	
Overweight / Obese				
Clayton 2005	USA —	0.30 (0.20, 0.40)	4.13	88
Hollinrake 2007	USA 🗕	• 0.35 (0.26, 0.45)	4.19	103
Pastore 2011	USA —	• 0.48 (0.35, 0.61)	3.97	61
Cinar 2011	Middle East 🚽 🗕	0.51 (0.35, 0.67)	3.74	41
Greenwood 2015	USA 😽	0.38 (0.33, 0.44)	4.42	301
Dokras 2016	USA 🗕 🛨	0.24 (0.17, 0.32)	4.27	132
Subtotal (I^2 = 72.23	%, p = 0.00)	0.36 (0.29, 0.44)	24.73	
Heterogeneity betwee	en groups: p = 0.438			
Overall (I^2 = 93.04%	6, p = 0.00);	0.33 (0.27, 0.40)	100.00	
Т	I	I		

426 Supplementary b2: elevated depression by assessment tool (sensitivity)

Author	Region	ES (95% CI)	Weight	N
	-	· ·	_	
BDI		1		
Himelein 2006	USA	0.28 (0.15, 0.44)	3.73	40
Battaglia 2008	Europe	0.24 (0.09, 0.45)	3.37	25
Benson S 2008	Europe	0.46 (0.32, 0.59)	3.94	57
Adali 2008	Middle East	0.33 (0.20, 0.50)	3.76	42
Soyupek 2008	Middle East	0.35 (0.20, 0.53)	3.67	37
Arshad 2012	Middle East	0.32 (0.22, 0.45)	4.05	71
Acmaz 2013	Middle East	• 0.35 (0.25, 0.46)	4.13	86
Greenwood 2015	USA	0.38 (0.33, 0.44)	4.42	301
Greenwood 2020	USA -	0.36 (0.29, 0.44)	4.32	164
Subtotal (I ² = 0.00%, p = 0.6	4)	0.36 (0.33, 0.39)	35.38	
HADS		1		
Clayton 2005	USA —	0.30 (0.20, 0.40)	4.13	88
Lipton 2006	Europe -	0.30 (0.20, 0.40)	4.13	88
Moran 2012	Australia/NZ	0.25 (0.10, 0.47)	3.33	24
Cinar 2011	Middle East	0.23 (0.17, 0.30)	4.34	185
Cinar 2011	Middle East	0.51 (0.35, 0.67)	3.74	41
Asik 2015	Middle East	0.42 (0.31, 0.55)	4.05	71
LEE 2017	USA	0.12 (0.07, 0.19)	4.29	148
Subtotal (I^2 = 85.06%, p = 0.	00)	0.29 (0.20, 0.39)	28.03	
History/SR				
Pastore 2011	LISA	0.48 (0.35.0.61)	3.97	61
Pastore 2011			3.59	33
Dokras 2016			4 27	132
Jeanes 2017	Europe		4.47	455
Subtotal (I^2 = 96.36%, p = 0.		0.28 (0.09, 0.51)	16.30	400
PHO				
Bhattacharyia 2010	India	0.64 (0.55, 0.73)	4.23	117
PRIME-MD Hollinrake 2007	USA 🗕	0.35 (0.26, 0.45)	4,19	103
Sayyah-Melli 2015	Middle East	0.19 (0.16. 0.22)	4.50	742
Subtotal (I^2 = .%, p = .)	\diamond	0.21 (0.18, 0.23)	8.69	
On medication				
Mansson 2008	Europe	0.45 (0.31, 0.60)	3.85	49
MDARS		i		
Jedel 2010	Europe	0.50 (0.31, 0.69)	3.52	30
Heterogeneity between groups:	p = 0.000			
Overall (I^2 = 93.04%, p = 0.0	0);	0.33 (0.27, 0.40)	100.00	
		<u>.</u>		

- 434 (c) Prevalence of anxiety by region

Author	Region		ES (95% CI)	% Weight	N
Australia/NZ					
Moran 2012	Australia/NZ		0.38 (0.19, 0.59)	9.48	24
USA					
Clayton 2005	USA		0.75 (0.65, 0.84)	11.30	88
Dokras 2016	USA 🔸		0.13 (0.08, 0.20)	11.59	132
Maya 2020	USA	•	0.37 (0.23, 0.52)	10.60	46
Subtotal (I ² = .%	, p = .)		0.40 (0.06, 0.82)	33.49	
Middle East					
Cinar 2011	Middle East	-	0.42 (0.36, 0.49)	11.83	226
Sayyah-Melli 2015	Middle East	*	0.36 (0.32, 0.39)	12.09	742
Asik 2015	Middle East		0.35 (0.24, 0.47)	11.11	71
Subtotal (I ² = .%	, p = .)	\diamond	0.38 (0.33, 0.43)	35.03	
Europe	_	_		44.00	~~
Lipton 2006	Europe	·	0.74 (0.63, 0.83)	11.30	88
	Europe —		0.20 (0.10, 0.34)	10.69	49
Subtotal $(1^2 = .\%)$, p = .)	\sim	0.55 (0.46, 0.63)	21.99	
Heterogeneity betw	veen groups: p = 0.0	07			
Overall (I^2 = 94.8	33%, p = 0.00);		0.41 (0.28, 0.54)	100.00	
	1	 			
-1	0		1		2

445 Supplementary c1: Prevalence of anxiety by BMI (sensitivity)

						%	
Author	Region				ES (95% CI)	Weight	Ν
Normal weight							
Lipton 2006	Europe				0.74 (0.63, 0.83)	11.30	88
Mansson 2008	Europe		1		0.20 (0.10, 0.34)	10.69	49
Moran 2012	Australia/NZ				0.38 (0.19, 0.59)	9.48	24
Cinar 2011	Middle East	-	•		0.42 (0.36, 0.49)	11.83	226
Sayyah-Melli 2015	Middle East	-•	-i		0.36 (0.32, 0.39)	12.09	742
Asik 2015	Middle East		<u>+</u>		0.35 (0.24, 0.47)	11.11	71
Subtotal (I^2 = 91.3	5%, p = 0.00)	<	\rightarrow		0.41 (0.29, 0.53)	66.51	
Overweight / Obese							
Clayton 2005	USA				0.75 (0.65, 0.84)	11.30	88
Dokras 2016	USA				0.13 (0.08, 0.20)	11.59	132
Maya 2020	USA		÷		0.37 (0.23, 0.52)	10.60	46
Subtotal (I^2 = .%,	p = .)	\sim		>	0.40 (0.06, 0.82)	33.49	
Heterogeneity betwe	een groups: p =	0.974					
Overall (I^2 = 94.83	8%, p = 0.00);	<			0.41 (0.28, 0.54)	100.00	
			<u> </u>				

449 Supplementary c2: Prevalence of Anxiety by assessment tool (sensitivity)

Author	Region		ES (95% CI)	% Weight	N
HADS		1			
Clayton 2005	USA	¦ —	► 0.75 (0.65, 0.84)	11.30	88
Lipton 2006	Europe	•	► 0.74 (0.63, 0.83)	11.30	88
Moran 2012	Australia/NZ	•••	0.38 (0.19, 0.59)	9.48	24
Cinar 2011	Middle East		0.42 (0.36, 0.49)	11.83	226
Asik 2015	Middle East		0.35 (0.24, 0.47)	11.11	71
Subtotal (I^2 = 92.8	39%, p = 0.00)		0.54 (0.36, 0.71)	55.04	
History/SD		1			
Dokras 2016	1164			11 50	132
DORIAS 2010	USA		0.13 (0.00, 0.20)	11.00	102
Combined tools		I			
Maya 2020	USA		0.37 (0.23, 0.52)	10.60	46
PRIME-MD					
Savvah-Melli 2015	Middle East	-	0.36 (0.32, 0.39)	12.09	742
			,		
• • • •					
On medication	-	-		40.00	40
Mansson 2008	Europe		0.20 (0.10, 0.34)	10.69	49
		i I I			
Heterogeneity betw	een groups: p =	0.000			
Overall (I^2 = 94.83	3%, p = 0.00);	$\langle \rangle$	0.41 (0.28, 0.54)	100.00	
		 	1		
1	1				

24

461 (d) Common mental health by region

462

Author	Region		ES (95% CI)	% Weight	N
Middle East Cinar 2011	Middle East 🛛 🛥		0.15 (0.11, 0.21)	11.44	226
Europe Lipton 2006 Hillman 2020 Subtotal (I^2 = .	Europe — Europe %, p = .)		0.28 (0.19, 0.39) • 0.75 (0.70, 0.80) 0.65 (0.60, 0.69)	11.22 11.46 22.68	88 278
USA Pastore 2011 Pastore 2011 Mani 2018 Maya 2020 Subtotal (I^2 = 5	USA	*	0.00 (0.00, 0.11) 0.15 (0.07, 0.26) 0.35 (0.28, 0.43) 0.54 (0.39, 0.69) 0.22 (0.05, 0.47)	10.68 11.07 11.38 10.91 44.04	33 61 161 46
Brazil Rodrigues 2012 Rodrigues 2012 Subtotal (I^2 = .	Brazil Brazil %, p = .)	•	0.40 (0.26, 0.55) 0.40 (0.26, 0.56) 0.40 (0.30, 0.50)	10.94 10.90 21.84	48 45
Heterogeneity be Overall (I^2 = 9)	etween groups: p = 0.000 7.29%, p = 0.00);		0.31 (0.15, 0.51)	100.00	
-1	0	1	1		2

463

464

465 Supplementary d1: Common mental health by BMI (sensitivity)

25

Author	Region		ES (95% CI)	Weight	Ν
Normal weight					
Lipton 2006	Europe		0 28 (0 19 0 39)	11 22	88
Pastore 2011	USA +		0.00 (0.00, 0.11)	10.68	33
Cinar 2011	Middle Fast		0 15 (0 11 0 21)	11 44	226
Rodrigues 2012	Brazil		0.40 (0.26, 0.55)	10.94	48
Mani 2018	USA	<u>.</u>	0.35 (0.28, 0.43)	11.38	16
Subtotal (I^2 = 92	2.18%, p = 0.00)	\diamond	0.21 (0.10, 0.36)	55.65	
Overweight / Obe	se				
Pastore 2011	USA		0.15 (0.07, 0.26)	11.07	61
Rodrigues 2012	Brazil		0.40 (0.26, 0.56)	10.90	45
Maya 2020	USA		0.54 (0.39, 0.69)	10.91	46
Hillman 2020	Europe	-	- 0.75 (0.70, 0.80)	11.46	278
Subtotal (I^2 = 96	6.83%, p = 0.00)		0.46 (0.17, 0.76)	44.35	
Heterogeneity bet	ween groups: p = (0.146			
Overall (I^2 = 97.	29%, p = 0.00);		0.31 (0.15, 0.51)	100.00	

467

468

469 Supplementary d: Common mental health by assessment tool (sensitivity)

26

Author	Region		ES (95% CI)	% Weight	Ν
HADS					
Lipton 2006	Europe -		0.28 (0.19, 0.39)	11.22	88
History/SR					
Hillman 2020	Europe	-	0.75 (0.70, 0.80)	11.46	278
Combined tools					
Cinar 2011	Middle East 🛛 🛨		0.15 (0.11, 0.21)	11.44	226
Mani 2018	USA	<u>+</u>	0.35 (0.28, 0.43)	11.38	161
Maya 2020	USA		0 54 (0 39, 0 69)	10.91	46
Subtotal (I^2 = .9	%,p=.) <		0.33 (0.14, 0.55)	33.73	
On medication					
Pastore 2011	USA 🗕	1	0.00 (0.00, 0.11)	10.68	33
Pastore 2011	USA	- :	0.15 (0.07, 0.26)	11.07	61
	%, p = .)		0.07 (0.03, 0.14)	21.74	
SRQ SCALE-20 Rodrigues 2012	Brazil		0.40 (0.26, 0.55)	10 94	48
Rodrigues 2012	Brazil	•	0.40 (0.26, 0.56)	10.90	45
Subtotal (I^2 = 9	%, p = .)	\diamond	0.40 (0.30, 0.50)	21.84	
Heterogeneity be	tween groups: p = 0.000				
Overall (I^2 = 97	29%, p = 0 00);	\sum_{i}	0.31 (0.15, 0.51)	100.00	
-1	0		1		

471

FIGURE 2.

474 (a) Funnel Plot (Prevalence of elevated depression)

Note. The figure visually supports an asymmetrical shaped funnel plot. The no small
study effect null hypothesis (H0: no small-study effect) may therefore be rejected.
Using Egger test of H0: no small-study effects, p value = 0.004.

28

485

484

- 486
- 487 (c)

Note. The figure visually supports the symmetry of the effect size distribution. The
correlation between effect size and the corresponding standard error was not
strong, Egger's test p value = 0.65 supporting no small-study effect (symmetry)
hypothesis.

492

493 Discussion

494

The meta-analysis identified 11 studies which reported a 20% prevalence of common MH symptoms of anxiety and depression primarily. However, there was substantial heterogeneity across all studies which is reflected by I² of 97.29%. Sources contributing to this heterogeneity may include differences in age range, body mass index (BMI), region, study design (including psychiatric assessments

medRxiv preprint doi: https://doi.org/10.1101/2022.03.05.22271948; this version posted March 7, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

29

used), sample size and methodology, population ethnicity and other characteristics.
The narrative synthesis identified several key themes including symptoms of
depression and anxiety, as well as diagnosed conditions of eating disorders, bipolar
disorder, PTSD and psychotic disorders as demonstrated in Table x.

504

505 Despite being the most common reproductive endocrine disorder that spans through 506 the entire reproductive life of a woman, PCOS is often associated with a significant 507 negative patient experience, including delayed diagnosis, that could attribute to exacerbation of symptoms.⁵⁶⁻⁵⁸ Due to the chronic nature of the disease, challenges 508 509 with persistent treatment adherence is a common issue, but lifestyle changes can be 510 useful to decrease the long-term consequences of the disease. However, once 511 diagnosed, only 19% of women report being aware of all conditions associated with PCOS following discussions with their general practitioner (GP).⁵⁹ The typical 512 513 symptoms of PCOS such as disturbed menstrual cycles, hirsutism, male-pattern baldness, acne, obesity, and infertility^{12,60-63} could have a further negative impact on 514 515 patient self-esteem leading to psychological burden. However, narrative accounts 516 point to considerable emphasis on a few symptoms such as infertility by the 517 clinicians, rather than taking a holistic view on all important features of the condition,⁵⁹ such as the long term physical and mental health segualae, and the 518 519 effect of diagnosis and treatments on guality of life of the woman. PCOS is also 520 associated with a higher rate of psychiatric disorders.⁵⁶ In keeping with this, our 521 meta-analysis reported 31% prevalence of common MH symptoms and diagnoses in 522 women with PCOS. Similarly, Hillman et al. found an overwhelming 74.9% of women 523 diagnosed with PCOS in their study, to have reported that the condition has adversely affected their MH.⁵⁹ However, despite the considerable negative effect on 524

30

525 psychological wellbeing, as many as 34.9% of women in the study chose not to discuss associated MH symptoms with their GP.⁵⁹ An important factor contributing to 526 527 this may be the ethnic background of the patient. Hillman et al. report that caucasian 528 women in UK diagnosed with PCOS were more likely to discuss their MH with their 529 GP when compared with asian women in UK with PCOS (odds ratio [OR] = 1.66; 95% confidence interval [CI] = 1.04 to 2.63).⁵⁹ Clinicians and healthcare providers 530 531 should better evaluate the needs of BAME communities. This would allow 532 personalised care to be delivered in a culturally sensitive way, which may improve 533 overall patient and clinical outcomes.

534 Around 1 in 6 adults in England meet the diagnostic criteria for common MH 535 disorders.⁶⁴ BAME ethnic groups are more likely to be detained under the Mental 536 Health Act compared to their White British counterparts, and this can be explained by higher rates of mental illness observed and poorer levels of support.⁶⁵ Several 537 538 studies have explored beliefs about mental illness within BAME communities, and 539 the barriers faced when accessing care. Factors which account for poor presentation 540 rates with mental illness amongst the BAME community include associated stigma, 541 including those with PCOS, poor English language skills, previous negative experiences with healthcare professionals, and being aware of available services.⁶⁶ 542 543 The MH of patients with PCOS may be severely impacted by these issues and 544 reluctance to seek help may further exacerbate pre-existing psychiatric conditions, or 545 limit the recognition of new MH symptoms. Therefore, a thorough assessment of MH 546 illness risk is particularly important in BAME women with PCOS. In agreement, the 547 Royal College of Obstetricians and Gynaecologists (RCOG) recommends the routine screening for psychological symptoms in all women with PCOS.⁶⁷ Yet, our meta-548 549 analysis depicts that there is limited number of studies exploring psychological

31

550 comorbidities in PCOS patients, both in UK and worldwide. Additionally, our meta-551 analysis was unable to meet most pre-planned outcomes, including the effects of 552 ethnicity and race on MH sequelae in PCOS women, due to the lack of data 553 identified within systematically pooled studies. This was largely due to the non-554 reporting of patient race and ethnicity in PCOS studies examining patient MH.

555 The two most identified MH conditions amongst PCOS patients in our systematic 556 review were depression and anxiety. Indeed, several existing studies comment on 557 the high risk of both existing and new diagnoses of depression in women with 558 PCOS.^{68,69} Our meta-analysis confirmed these findings, as major depression 559 affected 17% of PCOS patients, and elevated existing depression affected 33%, with 560 a considerably high heterogeneity in both subthemes within and between regions. 561 Existing literature in the field measuring true prevalence of depression in BAME 562 patients with PCOS is contradictory. This meta-analysis could not pool race or 563 ethnicity with the data due to differences in research study designs and clinical 564 practices, as well as the lack of BAME patient representation within studies. 565 Therefore, the true prevalence of elevated existing depression and newly diagnosed 566 major depression amongst BAME PCOS women could not be estimated. However, 567 our narrative synthesis identified certain races/ethnicities to carry higher rates of 568 depression than Caucasian PCOS patients.

569

Anxiety disorders include generalised anxiety disorder, panic disorder, separation anxiety disorder, social anxiety disorder and specific phobias⁷⁰ and may impair daily functioning. Women are twice as likely to develop anxiety disorders than men,⁷⁰ with women with PCOS have a significantly higher prevalence of generalised anxiety symptoms than women without PCOS.⁷¹ This study revealed that there are a small

32

575 number of published studies commenting on anxiety prevalence in women with 576 PCOS. Of these, we identified 41% prevalence of generalised anxiety disorder 577 among women with PCOS, however, heterogeneity was high at 94.83%. This 578 heterogeneity extended to results from different regions suggests lack of difference 579 between geographical locations in prevalence of anxiety amongst women with 580 PCOS. Similar to our depression subtheme analysis, we were unable to establish the 581 prevalence of anxiety amongst different ethnicities and races in women with PCOS 582 due to lack of robust data.

583

584 Eating Disorders (EDs) have high prevalence particularly in young women 585 worldwide.⁷² Body image disturbances and self-esteem are central to the development of common EDs and conditions that may affect body image has been 586 found to contribute to the development of EDs.⁷³ The body dissatisfaction associated 587 588 with features such as weight gain, hyperandrogenism, hirsutism, acne, and 589 androgenic alopecia often contribute to disturbed body image perception linked with 590 EDs. Existing literature, although informative on the relationship between PCOS and 591 EDs, struggles to report findings on ethnic differences in ED and PCOS. Only two observational studies were identified addressing EDs in BAME PCOS patients.74,75 592 593 and although they report an increased risk of disordered eating habits in PCOS 594 women compared with the control populations, in agreement, one study found Black. 595 Hispanic and Mixed race women with PCOS to have higher EDE-Q scores (a self-596 rating questionnaire of the range and severity of ED features) compared with White women⁷⁵ vet the other reported EDs to be similar in the BAME PCOS population.⁷⁵ 597 598 However, discordant methodology and the use of external cohorts from a different 599 country, makes the available evidence to be substandard to draw firm conclusions

33

on the specific prevalence of EDs in BAME women with PCOS, indicating the need
for further research to understanding ethnic differences in PCOS and associated
EDs.

603

604 Psychotic disorders, such as schizophrenia have been reported to be significantly more prevalent in patients with PCOS in a national study in Sweden.⁷⁶ However, 605 606 there is a dearth of studies investigating the associations between conditions. 607 Although people from BAME background had been reported to experience a higher prevalence rate of psychosis⁷⁷ compared to the Caucasian population in UK, only 608 609 one cohort study explored the prevalence of psychotic disorders in Taiwanese PCOS 610 patients,⁷⁸ and reported no statistical difference in prevalence of schizophrenia between the two populations.⁷⁸ This highlights the need for future high quality 611 612 studies to assess psychotic illnesses relevant to PCOS amongst different ethnicities.

613

Bipolar disorder (BD) has been reported to be more prevalent in women with 614 615 PCOS⁷⁹ compared to the general population and since it carries a 12-fold increased 616 risk of suicide,⁸⁰ it is especially important to examine any causative common 617 mechanistic relations between the two conditions. However, there is a caveat, in that 618 there is a reported high prevalence of menstrual disorders in women receiving treatment for BD.⁸¹ Therefore, accounting for confounding variables such as 619 620 medication and pre-existing conditions is vital in studies that assess prevalence of 621 MH sequalae, such as BD, in BAME PCOS women. A study from Kashmir Valley⁸² 622 reported BD rates of 2.72% compared to 0.00% in control participants while a nationwide cohort study from Taiwan⁷⁸ found no significant alteration in prevalence 623 of BD in PCOS women compared to a control population. Further research is thus 624

34

required in order to develop understanding of the prevalence in different populations,

as associations cannot be drawn with the limited data available.

627

This systematic review had further revealed the heterogeneity of diagnosing psychiatric disorders. Clinicians have adopted 8 different self-report questionnaires in their methodologies highlighted by this review. This limits our study's generalisability as well as any estimate of prevalence of a given psychiatric disorder.

632

Overall, although most studies used Rotterdam Criteria in the diagnosis of PCOS,⁵ 4 studies adopted the National Institutes of Health Criteria, 1990 to diagnose PCOS, which will bring obvious diagnostic bias.⁸³⁻⁸⁶ Future studies should strive to adapt internationally accepted, standardised criteria for the diagnosis of both PCOS and MH disorder to avoid sampling bias.

638

639 Medical practitioners may not be aware of the impact different cultures may have on 640 patient's reporting of both physical and psychiatric symptoms. In general, members 641 of BAME communities are less likely to engage with MH services or seek help before symptoms severely impact their function.^{87,88} Simkhada et al. found that members of 642 643 Nepali and Iranian communities report improved MH care and support by healthcare professionals who were trained on different cultural practices.⁸⁹ Furthermore, 644 645 clinicians in the study stated that a better understanding of different cultures to be 646 beneficial for providing a culturally sensitive service. Therefore, training healthcare 647 professionals in cultural norms within BAME communities is vital to better 648 understand their knowledge and beliefs of MH symptoms, thereby allowing clinicians 649 to provide a holistic, effective treatment approach when working with diverse

35

650 populations. Cultural competency training may also increase patient trust in clinicians 651 and lead to early discussions of how PCOS may be affecting patients psychosocially 652 within distinct BAME communities. This will therefore aid in early detection and 653 effective and lasting treatment of MH sequelae of PCOS and personalise patient 654 clinical care.

655

656 Limitations

657 Several limitations affected our systematic review and meta-analysis findings. Whilst 658 studies listed often identified severe emotional distress amongst PCOS women, 659 some of this was self-reported and therefore subjective, without the presence of a 660 clinical diagnosis. This may mask the true prevalence of common MH conditions, 661 such as depression and anxiety, amongst women with PCOS. A further limitation 662 includes the high heterogeneity observed across all subtheme meta-analyses. 663 Several sources of heterogeneity were behind the variations across estimates. 664 These include the range of scales used, the choice of threshold, although many are equivalent but nonetheless, some disagreement remains and contributes to 665 666 variations. Other factors such as differences in age range, body mass index (BMI), 667 region, study design, sample size and methodology, population ethnicity and other 668 charactersitics, and the established unobserved heterogeneity, all tapping into the 669 differences observed across studies.

The cultural differences in reporting MH symptoms across different regions, potentially further impacted by complex interaction with stigma and accepted norms within BAME communities may have specific effects on different populations. Moreover, the difference in reporting MH symptoms and diagnoses is a further limitation of all studies included in this review. Several diverse assessment tools

36

were used in the assessment of risk of key psychiatric disorders, including selfreported symptoms, self-reported use of psychiatric medication and clinical diagnosis, thereby introducing heterogeneity in studies included in this review. This may limit the generalisability of the data obtained, may mask the true prevalence of a given psychiatric disorder due to questionnaires' tendency to screen rather than diagnose.

681

682

683 Conclusion

684

685 This study demonstrates the lack of ethnic minority representation in research 686 studies conducted among PCOS patients exploring a possible MH sequalae. To 687 determine if there is a bi-directional relationship between PCOS and MH conditions 688 among ethnic minorities, comprehensive research studies should be designed and 689 conducted as part of a global initiative. A key attribute to the changing needs within 690 women's physical and MH is the migratory patterns that changes the regional and 691 global population. The associated nuances influence both clinical practice and the 692 access to the health-care system, and therefore, regular, and careful scrutiny of 693 contemporary evidence is essential to optimise the overall clinical care offered to 694 these patients. As a result, cultural appropriation based training should be made 695 available and accessible to healthcare professionals within primary and secondary 696 care settings.

697

698

700 Data sharing statement

- All data used within this study has been publicly available. The authors will consider
- the sharing the dataset gathered upon request.
- 703

704 **Contributors**

- 705 GD and DKH developed the systematic review protocol and embedded this within 706 the ELEMI project's evidence synthesis phase. GD, VB, DKH, SR, + SA wrote the 707 first draft of the manuscript. This was furthered by PP, AS, WG, NT, YZ, JS and SR. 708 KM, GD, YZ, VB and JS shared database searches, study selection and extraction 709 for analysis. SA and GD conducted the analysis including the design of the statistical 710 analysis plan. GD, YZ, DKH, PP, KE, WG, NT, YZ, JS, KM, VR, AS, PB, HM, AM, 711 WG and KM critically appraised and finalised the manuscript. All authors approved 712 the final version of the manuscript.
- 713
- 714
- 715

716 Acknowledgements

The authors acknowledge support from Southern Health NHS Foundation Trust, and Liverpool Women's hospital. We would like to acknowledge Mrs Nyla Haque who inspired the discussion of BAME groups within the context of this study.

720

This paper is part of the multifaceted ELEMI project that is sponsored by Southern
Health NHS Foundation Trust and in collaboration with the University of Liverpool,
University College London, University College London NHS Foundation Trust,
Liverpool Women's Hospital, Robinson Research Institute (University of Adelaide),

- 725 Ramaiah Memorial Hospital (India), University of Geneva and Manchester University
- 726 NHS Foundation Trust.
- 727

728 Supplementary Materials

- All supplementary materials associated with this article can be found in the attached
- 730 Appendices.
- 731

732	References
733	
734	Abu Hashim H. Twenty years of ovulation induction with metformin for PCOS; what
735	is the best available evidence?. Reprod Biomed Online. 2016;32(1):44-53.
736	doi:10.1016/j.rbmo.2015.09.015
737	
738	Bjonnes AC, Saxena R, Welt CK. Relationship between polycystic ovary syndrome
739	and ancestry in European Americans. Fertil Steril. 2016;106(7):1772-1777.
740	doi:10.1016/j.fertnstert.2016.08.033
741	
742	Ding T, Hardiman PJ, Petersen I, Wang FF, Qu F, Baio G. The prevalence of
743	polycystic ovary syndrome in reproductive-aged women of different ethnicity: a
744	systematic review and meta-analysis. Oncotarget. 2017;8(56):96351-96358.
745	doi:10.18632/oncotarget.19180
746	
747	Gibson-Helm M, Teede H, Dunaif A, Dokras A. Delayed Diagnosis and a Lack of
748	Information Associated With Dissatisfaction in Women With Polycystic Ovary
749	Syndrome. J Clin Endocrinol Metab. 2017;102(2):604-612. doi:10.1210/jc.2016-2963
750	
751	Greenhill C. Mechanism underlying beneficial effects of exercise in PCOS identified.
752	Nat Rev Endocrinol. 2018;14(8):441. doi:10.1038/s41574-018-0041-1
753	
754	Koch L. Androgens inversely related to depression in PCOS. Nat Rev Endocrinol.
755	2011;7:438. doi:10.1038/nrendo.2011.97
756	

757	Tzalazidis R, Oinonen KA. Continuum of Symptoms in Polycystic Ovary Syndrome
758	(PCOS): Links with Sexual Behavior and Unrestricted Sociosexuality. J Sex Res.
759	2020;1-13.
760	
761	Yildizhan R, Gokce AI, Yildizhan B, Cim N. Comparison of the effects of
762	chlormadinone acetate versus drospirenone containing oral contraceptives on
763	metabolic and hormonal parameters in women with PCOS for a period of two-year
764	follow-up. <i>Gynecol Endocrinol.</i> 2015;31(5):396-400.
765	doi:10.3109/09513590.2015.1006187
766	
767	The Lancet Diabetes Endocrinology. Empowering women with PCOS. Lancet
768	Diabetes Endocrinol. 2019;7(10):737. doi:10.1016/S2213-8587(19)30289-X
769	
770	
771	
772	
773	
774	
775	
776	
777	
778	
779	
780	
781	

782	References
783	
784	1. Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF,
785	Futterweit W. Position statement: criteria for defining polycystic ovary
786	syndrome as a predominantly hyperandrogenic syndrome: an Androgen
787	Excess Society guideline. J Clin Endocrinol Metab. 2006;91(11):4237-4245.
788	doi:10.1210/jc.2006-0178
789	2. Diamanti-Kandarakis E, Kandarakis H, Legro RS. The role of genes and
790	environment in the etiology of PCOS. Endocrine. 2006;30(1):19-26.
791	doi:10.1385/ENDO:30:1:19
792	3. March WA, Moore VM, Willson KJ, Phillips DI, Norman RJ, Davies MJ. The
793	prevalence of polycystic ovary syndrome in a community sample assessed
794	under contrasting diagnostic criteria. Hum Reprod. 2010;25(2):544-551.
795	doi:10.1093/humrep/dep399
796	4. Bozdag G, Mumusoglu S, Zengin D, Karabulut E, Yildiz BO. The prevalence and
797	phenotypic features of polycystic ovary syndrome: a systematic review and
798	meta-analysis. <i>Human Reprod</i> . 2016;31(12):2841-2855.
799	doi:10.1093/humrep/dew218
800	5. Teede H, Misso M, Costello M, et al. International evidence-based guideline for
801	the assessment and management of polycystic ovary syndrome (PCOS).
802	European Society of Human Reproduction and Embryology. 2018.
803	https://www.eshre.eu/Guidelines-and-Legal/Guidelines/Polycystic-Ovary-
804	Syndrome

805	6. Wolf WM, Wattick RA, Kinkade ON, Olfert MD. Geographical Prevalence of
806	Polycystic Ovary Syndrome as Determined by Region and Race/Ethnicity. Int
807	J Environ Res Public Health. 2018;15(11):2589. doi:10.3390/ijerph15112589
808	7. The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group.
809	Revised 2003 consensus on diagnostic criteria and long-term health risks
810	related to polycystic ovary syndrome. Fertil Steril. 2004;81(1):19-25.
811	doi:10.1016/j.fertnstert.2003.10.004
812	8. Sendur SN, Yildiz BO. Influence of ethnicity on different aspects of polycystic
813	ovary syndrome: a systematic review. Reprod BioMed Online.
814	2021;42(4):799-818. doi: 10.1016/j.rbmo.2020.12.006
815	9. Engmann L, Jin S, Sun F, et al. Racial and ethnic differences in the polycystic
816	ovary syndrome metabolic phenotype. Am J Obstet Gynecol.
817	2017;216(5):493.e1-493.e13. doi:10.1016/j.ajog.2017.01.003
818	10. Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis
819	and treatment. Nat Rev Endocrinol. 2018;14(5):270-284.
820	doi:10.1038/nrendo.2018.24
821	11. Amato P, Simpson JL. The genetics of polycystic ovary syndrome. Best Pract
821 822	11. Amato P, Simpson JL. The genetics of polycystic ovary syndrome. Best PractResClinObstetGynaecol.2004;18(5):707-718.
821 822 823	11. Amato P, Simpson JL. The genetics of polycystic ovary syndrome. <i>Best Pract</i> <i>Res Clin Obstet Gynaecol.</i> 2004;18(5):707-718. doi:10.1016/j.bpobgyn.2004.05.002
821822823824	 11. Amato P, Simpson JL. The genetics of polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol. 2004;18(5):707-718. doi:10.1016/j.bpobgyn.2004.05.002 12. Azziz R, Carmina E, Chen Z, et al. Polycystic ovary syndrome. Nat Rev Dis
821822823824825	 11. Amato P, Simpson JL. The genetics of polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol. 2004;18(5):707-718. doi:10.1016/j.bpobgyn.2004.05.002 12. Azziz R, Carmina E, Chen Z, et al. Polycystic ovary syndrome. Nat Rev Dis Primers. 2016;2:16057. doi:10.1038/nrdp.2016.57
 821 822 823 824 825 826 	 11. Amato P, Simpson JL. The genetics of polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol. 2004;18(5):707-718. doi:10.1016/j.bpobgyn.2004.05.002 12. Azziz R, Carmina E, Chen Z, et al. Polycystic ovary syndrome. Nat Rev Dis Primers. 2016;2:16057. doi:10.1038/nrdp.2016.57 13. Apridonidze T, Essah PA, Iuorno MJ, Nestler JE. Prevalence and characteristics
 821 822 823 824 825 826 827 	 11. Amato P, Simpson JL. The genetics of polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol. 2004;18(5):707-718. doi:10.1016/j.bpobgyn.2004.05.002 12. Azziz R, Carmina E, Chen Z, et al. Polycystic ovary syndrome. Nat Rev Dis Primers. 2016;2:16057. doi:10.1038/nrdp.2016.57 13. Apridonidze T, Essah PA, luorno MJ, Nestler JE. Prevalence and characteristics of the metabolic syndrome in women with polycystic ovary syndrome. J Clin

43

I. Legro RS, Kunselman AR, Dodson WC, Dunaif A. Prevalence and predictors of
risk for type 2 diabetes mellitus and impaired glucose tolerance in polycystic
ovary syndrome: a prospective, controlled study in 254 affected women. J Clin
Endocrinol Metab. 1999;84(1):165-169. doi:10.1210/jcem.84.1.5393
5. Teede H, Deeks A, Moran L. Polycystic ovary syndrome: a complex condition
with psychological, reproductive and metabolic manifestations that impacts on
health across the lifespan. BMC Medicine. 2010;8(41):1-10.
doi:10.1186/1741-7015-8-41
S. Moran L, Gibson-Helm M, Teede H, Deeks A. Polycystic ovary syndrome: a
biopsychosocial understanding in young women to improve knowledge and
treatment options. J Psychosom Obstet Gynecol. 2010;31(1):24-31.
doi:10.3109/01674820903477593
7. Hillman SC, Bryce C, Caleyachetty R, Dale J. Women's experiences of diagnosis
and management of polycystic ovary syndrome: a mixed-methods study in
general practice. Br J Gen Pract. 2020;70(694):e322-e329.
doi:10.3399/bjgp20X708881
3. Dokras A, Stener-Victorin E, Yildiz BO, et al. Androgen excess - Polycystic
Ovary Syndrome Society: position statement on depression, anxiety, quality of
life, and eating disorders in polycystic ovary syndrome. Fertil Steril.
2018;109(5):888-899. doi:10.1016/j.fertnstert.2018.01.038

19. Balen A. Polycystic ovary syndrome. *InnovAiT*. 2016;9(3):144-150.

850 20. Kumarendran B, Sumilo D, O'Reilly MW, et al. Increased risk of obstructive sleep
851 apnoea in women with polycystic ovary syndrome: a population-based cohort
852 study. *Eur J Endocrinol.* 2019;180(4):265-272. doi:10.1530/EJE-18-0693

44

21. Dokras A. Mood and anxiety disorders in women with PCOS. Steroids.
2012;77(4):338-341. doi:10.1016/j.steroids.2011.12.008
22. Davari-Tanha F, Hosseini Rashidi B, Ghajarzadeh M, Noorbala AA. Bipolar
disorder in women with polycystic ovarian syndrome (PCO). Acta Med Iran.
2014;52(1):46-48.
23. Kerchner A, Lester W, Stuart SP, Dokras A. Risk of depression and other mental
health disorders in women with polycystic ovary syndrome: a longitudinal
study. Fertil Steril. 2009;91(1):207-212. doi:10.1016/j.fertnstert.2007.11.022
24. Farrell K, Antoni MH. Insulin resistance, obesity, inflammation, and depression in
polycystic ovary syndrome: biobehavioral mechanisms and interventions.
Fertil Steril. 2010;94(5):1565-1574. doi:10.1016/j.fertnstert.2010.03.081
25. Hollinrake E, Abreu A, Maifeld M, Van Voorhis BJ, Dokras A. Increased risk of
depressive disorders in women with polycystic ovary syndrome. Fertil Steril.
2007;87(6):1369-1376. doi:10.1016/j.fertnstert.2006.11.039
26. Yin X, Ji Y, Chan CLW, Chan CHY. The mental health of women with polycystic
ovary syndrome: a systematic review and meta-analysis. Arch Womens Ment
<i>Health</i> . 2021;24(1):11-27. doi:10.1007/s00737-020-01043-x
27. Prince M, Patel V, Saxena S, et al. No health without mental health. Lancet.
2007;370(9590):859-877. doi:10.1016/S0140-6736(07)61238-0
28. Memon A, Taylor K, Mohebati LM, et al. Perceived barriers to accessing mental
health services among black and minority ethnic (BME) communities: a
qualitative study in Southeast England. BMJ Open. 2016;6:e012337.
doi:10.1136/bmjopen-2016-012337

876 29. American Psychiatric Association. *Diagnostic and statistical manual of mental*877 *disorders*. 5th ed. 2013:21.

-	30. Spitzer RL, Kroenke K, Williams JB. Validation and utility of a self-report version
	of PRIME-MD: the PHQ primary care study. Primary Care Evaluation of
	Mental Disorders. Patient Health Questionnaire. JAMA. 1999;282(18):1737-
	1744. doi:10.1001/jama.282.18.1737
	31. Snaith RP, Zigmond AS. The hospital anxiety and depression scale. Br Med J
	(Clin Res Ed). 1986;292(6516):344. doi:10.1136/bmj.292.6516.344
3	32. Beck AT, Steer RA, Brown GK. Beck depression inventory (BDI-II). Pearson;
	1996.
3	33. Davidson J, Turnbull CD, Strickland R, et al. The Montgomery - Åsberg
	Depression Scale: reliability and validity. Acta Psychiatr Scand.
	1986;73(5):544-548. doi:10.1111/j.1600-0447.1986.tb02723.x
3	34. Devins GM, Orme CM, Costello CG, et al. Measuring depressive symptoms in
	illness populations: Psychometric properties of the Center for Epidemiologic
	Studies Depression (CES-D) scale. Psychology and Health. 1988;2(2):139-
	156. doi:10.1080/08870448808400349
3	35. Score IRC. The Reynolds Adolescent Depression Scale-(RADS-2).
	Comprehensive Handbook of Psychological Assessment, Volume 2:
	Personality Assessment. 2003;2:224.
	36. REFERENCE MISSING
	37. REFERENCE MISSING
	38. Spitzer RL, Kroenke K, Williams JB, et al. A brief measure for assessing
	generalized anxiety disorder: the GAD-7. Arch Interl Med. 2006;166(10):1092-
	1097. doi:10.1001/archinte.166.10.1092
	39. REFERENCE MISSING

46

902	40. Cinar N, Harmanci A, Demir B, et al. Effect of an oral contraceptive on emotional
903	distress, anxiety and depression of women with polycystic ovary syndrome: a
904	prospective study. Hum Reprod. 2012;27(6):1840-1845.
905	doi:10.1093/humrep/des113
906	41. Benson J, Severn C, Hudnut-Beumler J, et al. Depression in Girls With Obesity
907	and Polycystic Ovary Syndrome and/or Type 2 Diabetes. Can J Diabetes.
908	2020;44(6):507-513. doi:10.1016/j.jcjd.2020.05.015
909	42. Pastore LM, Patrie JT, Morris WL, et al. Depression symptoms and body
910	dissatisfaction association among polycystic ovary syndrome women. J
911	Psychosom Res. 2011;71(4):270-276. doi:10.1016/j.jpsychores.2011.02.005
912	43. Maya J, Siegel J, Cheng TQ, et al. Prevalence and risk factors of polycystic
913	ovarian syndrome among an ethnically diverse overweight/obese adolescent
914	population. Int J Adolesc Med Health. 2020. doi:10.1515/ijamh-2019-0109
915	44. Rodrigues CE, Ferreira Lde L, Jansen K, et al. Evaluation of common mental
916	disorders in women with polycystic ovary syndrome and its relationship with
917	body mass index. Rev Bras Ginecol Obstet. 2012;34(10):442-446.
918	doi:10.1590/s0100-72032012001000002
919	45. DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled clinical trials.
920	1986;7(3):177-188. doi:10.1016/0197-2456(86)90046-2
921	46. Newcombe RG. Interval estimation for the difference between independent
922	proportions: comparison of eleven methods. Statistics in medicine.

923 1998;17(8):873-890. doi:10.1002/(sici)1097-0258(19980430)17:8<873::aid-

924 sim779>3.0.co;2-i

925	47.	Newcombe	RG.	Two	- sided	confidence	intervals	for	the	single	proportion:
-----	-----	----------	-----	-----	---------	------------	-----------	-----	-----	--------	-------------

- 926 comparison of seven methods. *Statistics in medicine.* 1998;17(8):857-872.
- 927 doi:10.1002/(sici)1097-0258(19980430)17:8<857::aid-sim777>3.0.co;2-e
- 48. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-
- 929 analyses. *Bmj* 2003;327(7414):557-560. doi:10.1136/bmj.327.7414.557
- 930 **49. REFERENCE MISSING**
- 931 **50. REFERENCE MISSING**
- 932 51. REFERENCE MISSING
- 933 52. REFERENCE MISSING
- 934 53. REFERENCE MISISNG
- 935 54. REFERENCE MISSING
- 936 55. REFERENCE MISSING
- 56. Hoeger KM, Dokras A, Piltonen T. Update on PCOS: Consequences,
 Challenges, and Guiding Treatment. J Clin Endocrinol Metab.
 2021;106(3):e1071-e1083. doi:10.1210/clinem/dgaa839
- 940 57. Witchel SF, Teede HJ, Peña AS. Curtailing PCOS. *Pediatr Res.* 2020;87(2):353-
- 941 361. doi:10.1038/s41390-019-0615-1
- 58. Lin AW, Bergomi EJ, Dollahite JS, Sobal J, Hoeger KM, Lujan ME. Trust in
 Physicians and Medical Experience Beliefs Differ Between Women With and
 Without Polycystic Ovary Syndrome. *J Endocr Soc.* 2018;2(9):1001-1009.
- 945 doi:10.1210/js.2018-00181
- 59. Hillman SC, Bryce C, Caleyachetty R, Dale J. Women's experiences of
 diagnosis and management of polycystic ovary syndrome: a mixed-methods
 study in general practice. *Br J Gen Pract.* 2020;70(694):e322-e329.
 doi:10.3399/bjgp20X708881

950	60. Saidunnisa BG, Shariff A, Ayman G, Mohammad B, Housam R, Khaled N.
951	Assessment of Risk Factors for development of Polycystic Ovarian Syndrome.
952	Int J Contemp Med Research. 2017;4(1):164-167.
953	61. Lo JC, Feigenbaum SL, Yang J, Pressman AR, Selby JV, Go AS. Epidemiology
954	and Adverse Cardiovascular Risk Profile of Diagnosed Polycystic Ovary
955	Syndrome. J Clin Endocrinol Metab. 2006;91(4):1357-1363.
956	doi:10.1210/jc.2005-2430
957	62. Cooney LG, Dokras A. (2018) Beyond fertility: polycystic ovary syndrome and
958	long-term health. <i>Fertil Steril</i> . 2018;110(5):794-809.
959	doi:10.1016/j.fertnstert.2018.08.021
960	63. Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO. The
961	prevalence and features of the polycystic ovary syndrome in an unselected
962	population. J Clin Endocrinol Metab. 2004;89(6):2745-2749.
963	doi:10.1210/jc.2003-032046
964	64. McManus S, Bebbington P, Jenkins R, Brugha T, eds. Mental health and
965	wellbeing in England: Adult Psychiatric Morbidity Survey 2014. NHS Digital;
966	2016.
967	65. Gajwani R, Parsons H, Birchwood M, Singh SP. Ethnicity and detention: are
968	Black and minority ethnic (BME) groups disproportionately detained under the
969	Mental Health Act 2007?. Soc Psychiatry Psychiatr Epidemiol.
970	2016;51(5):703-711. doi:10.1007/s00127-016-1181-z
971	66. Linney C, Ye S, Redwood S, et al. "Crazy person is crazy person. It doesn't

differentiate": an exploration into Somali views of mental health and access to

973 healthcare in an established UK Somali community. Int J Equi	/ Health.
--	-----------

- 974 2020;19(1):190. doi:10.1186/s12939-020-01295-0
- 975 67. Ledger WL, Atkin SL, Sathyapalan T. Long-term Consequences of Polycystic
- 976 Ovary Syndrome: Green-top Guideline No. 33. 3rd ed. Royal College of
- 977 Obstetricians and Gynaecologists; 2014.
- 978 https://www.rcog.org.uk/globalassets/documents/guidelines/gtg_33.pdf
- 68. Greenwood EA, Yaffe K, Wellons MF, Cedars MI, Huddleston HG. Depression
- 980 over the lifespan in a population-based cohort of women with polycystic ovary
- 981 syndrome: longitudinal analysis. J Clin Endocrinol Metab. 2019;104(7):2809-
- 982 2819. doi:10.1210/jc.2019-00234
- 983 69. Cooney LG, Dokras A. Depression and Anxiety in Polycystic Ovary Syndrome:
- 984 Etiology and Treatment. *Curr Psychiatry Rep.* 2017;19(11):83.
- 985 doi:10.1007/s11920-017-0834-2
- 986 70. Craske MG, Stein MB. Anxiety. *Lancet.* 2016;388(10063):3048-3059.
- 987 doi:10.1016/S0140-6736(16)30381-6

988 **71. REFERENCE MISSING**

- 989 72. Galmiche M, Déchelotte P, Lambert G, Tavolacci MP. Prevalence of eating
- 990 disorders over the 2000-2018 period: a systematic literature review. *Am J Clin*
- 991 *Nutr.* 2019;109(5):1402-1413. doi:10.1093/ajcn/nqy342
- 992 73. Tay CT, Teede HJ, Hill B, Loxton D, Joham AE. Increased prevalence of eating
- 993 disorders, low self-esteem, and psychological distress in women with
- 994 polycystic ovary syndrome: a community-based cohort study. *Fertil Steril*.
- 995 2019;112(2):353-361. doi:10.1016/j.fertnstert.2019.03.027

996	74. Greenwood EA, Pasch LA, Cedars MI, Huddleston HG. Obesity and depression
997	are risk factors for future eating disorder-related attitudes and behaviors in
998	women with polycystic ovary syndrome. Fertil Steril. 2020;113(5):1039-1049.
999	doi:10.1016/j.fertnstert.2020.01.016
1000	75. Lee I, Cooney LG, Saini S, et al. Increased risk of disordered eating in polycystic
1001	ovary syndrome. Fertil Steril. 2017;107(3):796-802.
1002	doi:10.1016/j.fertnstert.2016.12.014
1003	76. Cesta CE, Månsson M, Palm C, Lichtenstein P, Iliadou AN, Landén M. Polycystic
1004	ovary syndrome and psychiatric disorders: Co-morbidity and heritability in a
1005	nationwide Swedish cohort. Psychoneuroendocrinology. 2016;73:196-203.
1006	doi:10.1016/j.psyneuen.2016.08.005
1007	77. Qassem T, Bebbington P, Spiers N, McManus S, Jenkins R, Dein S. Prevalence
1008	of psychosis in black ethnic minorities in Britain: analysis based on three
1009	national surveys. Soc Psychiatry Psychiatr Epidemiol. 2015;50(7):1057-1064.
1010	doi:10.1007/s00127-014-0960-7
1011	78. Hung JH, Hu LY, Tsai SJ, et al. Risk of psychiatric disorders following polycystic
1012	ovary syndrome: a nationwide population-based cohort study. PLoS One.
1013	2014;9(5):e97041. doi:10.1371/journal.pone.0097041
1014	79. Brutocao C, Zaiem F, Alsawas M, Morrow AS, Murad MH, Javed A. Psychiatric
1015	disorders in women with polycystic ovary syndrome: a systematic review and
1016	meta-analysis. Endocrine. 2018;62(2):318-325. doi:10.1007/s12020-018-
1017	1692-3

1018	80. Grui	nze H.	Chapter	40 - B	ipolar	Disorder.	In: Zic	amond MJ,	Rowland Ll	P, Coyle
								, , , , , , , , , , , , , , , , , , , ,		· ·

- JT, eds. *Neurobiology of Brain Disorders*. Academic Press, San Diego;
 2015:655-673.
- 1021 81. Rasgon NL, Altshuler LL, Fairbanks L, et al. Reproductive function and risk for
- 1022 PCOS in women treated for bipolar disorder. *Bipolar Disord*. 2005;7(3):246-
- 1023 259. doi:10.1111/j.1399-5618.2005.00201.x
- 1024 82. Hussain A, Chandel RK, Ganie MA, et al. Prevalence of psychiatric disorders in
- 1025 patients with a diagnosis of polycystic ovary syndrome in kashmir. Indian J
- 1026 Psychol Med. 2015;37(1):66-70. doi:10.4103/0253-7176.150822
- 1027 83. REFERENCE MISSING
- 1028 84. REFERENCE MISSING
- 1029 85. REFERENCE MISSING
- 1030 86. REFERENCE MISSING
- 1031 87. Casey, M. Health Needs Assessment of the Nepali Community in Rushmoor.
- 1032 Hampshire County Council. Updated October, 2010.
- $1033 \qquad https://documents.hants.gov.uk/public-health/NepaliHealthNeedsAssessment2010.pdf$
- 1034 88. Cooper C, Spiers N, Livingston G, et al. Ethnic inequalities in the use of health
- services for common mental disorders in England. Soc Psychiatry Psychiatr
- 1036 Epidemiol. 2013;48(5):685-692. doi:10.1007/s00127-012-0565-y
- 1037 89. Simkhada B, Vahdaninia M, van Teijlingen E, Blunt H. Cultural issues on
- 1038 accessing mental health services in Nepali and Iranian migrants communities in the
- 1039 UK. Int J Ment Health Nurs. 2021. doi:10.1111/inm.12913

1040			
1041			
1042			
1043			
1044			
1045			