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Abstract

Superspreading events play an important role in the spread of SARS-CoV-2 and several
other pathogens. Hence, while the basic reproduction number of the original Wuhan
SARS-CoV-2 is estimated to be about 3 for Belgium, there is substantial inter-individual
variation in the number of secondary cases each infected individual causes. Multiple
factors contribute to the occurrence of superspreading events: heterogeneity in
infectiousness and susceptibility, variations in contact behavior, and the environment in
which transmission takes place. While superspreading has been included in several
infectious disease transmission models, our understanding of the effect that these
different forms of superspreading have on the spread of pathogens and the effectiveness
of control measures remains limited. To disentangle the effects of infectiousness-related
heterogeneity on the one hand and contact-related heterogeneity on the other, we
implemented both forms of superspreading in an individual-based model describing the
transmission and spread of SARS-CoV-2 in the Belgian population. We considered its
impact on viral spread as well as on the effectiveness of social distancing. We found that
the effects of superspreading driven by heterogeneity in infectiousness are very different
from the effects of superspreading driven by heterogeneity in contact behavior. On the
one hand, a higher level of infectiousness-related heterogeneity results in less outbreaks
occurring following the introduction of one infected individual. Outbreaks were also
slower, with a lower peak which occurred at a later point in time, and a lower herd
immunity threshold. Finally, the risk of resurgence of an outbreak following a period of
lockdown decreased. On the other hand, when contact-related heterogeneity was high,
this also led to smaller final sizes, but caused outbreaks to be more explosive in regard
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to other aspects (such as higher peaks which occurred earlier, and a higher herd
immunity threshold). Finally, the risk of resurgence of an outbreak following a period of
lockdown increased. Determining the contribution of both source of heterogeneity is
therefore important but left to be explored further.

Author summary

To investigate the effect of different sources of superspreading on disease dynamics, we
implemented superspreading driven by heterogeneity in infectiousness and heterogeneity
in contact behavior into an individual-based model for the transmission of SARS-CoV-2
in the Belgian population. We compared the impact of both forms of superspreading in
a scenario without interventions as well as in a scenario in which a period of strict social
distancing (i.e. a lockdown) is followed by a period of partial release. We found that
both forms of superspreading have very different effects. On the one hand, increasing
the level of infectiousness-related heterogeneity led to less outbreaks being observed
following the introduction of one infected individual in the population. Furthermore,
final outbreak sizes decreased, and outbreaks became slower, with lower and later peaks,
and a lower herd immunity threshold. Finally, the risk for resurgence of an outbreak
following a period of lockdown also decreased. On the other hand, when contact-related
heterogeneity was high, this also led to smaller final sizes, but caused outbreaks to be
more explosive regarding other aspects (such as higher peaks that occurred earlier). The
herd immunity threshold also increased, as did the risk of resurgence of outbreaks.

Introduction 1

As of December 2021, the SARS-CoV-2 pandemic has led to over 300 million confirmed 2

cases and more than 5 million confirmed deaths worldwide [1]. Mathematical modeling 3

has been instrumental in understanding transmission dynamics, as well as in evaluating 4

the impact of both pharmaceutical and non-pharmaceutical interventions [2–9]. A large 5

number of different models were developed to account for the multitude of factors that 6

were found to be important for the spread and control of SARS-CoV-2, including 7

age [10,11], seasonality [12,13], and superspreading [14–20]. 8

Through the analysis of contact tracing data and the reconstruction of transmission 9

clusters, superspreading events have been shown to be a driving factor in the spread of 10

several pathogens, among which are SARS-CoV-1, MERS, and, more recently, 11

SARS-CoV-2 [21–27]. This means that the number of secondary cases caused by a 12

single infectious individual is subject to substantial inter-individual variation. In other 13

words, a small number of infected persons generates the majority of new infections, 14

while most infected individuals cause only very few to no secondary cases. 15

In 2005, Lloyd-Smith et al. [28] proposed a framework to study superspreading 16

dynamics in which the expected number of secondary cases caused by an infected 17

individual, i.e., the individual reproduction number, is represented by a random variable, 18

following a distribution – Lloyd-Smith et al. use a Negative Binomial distribution – on 19

the positive real axis [28,29]. As such, superspreading events can be characterized as 20

occurrences in the right-hand tail of the aforementioned distribution. When such a 21

superspreading event occurs, different factors, such as for example heterogeneity in 22

infectiousness or heterogeneity in contact behavior, are at play [30]. Increased 23

infectiousness – defined here as the likelihood that a social contact between an infectious 24

and a susceptible individual leads to transmission – either due to behavioral, physical or 25

biological reasons, may play a role. For example, more virus particles are shed when 26

talking loudly or singing [31]. Furthermore, given the importance of aerosol transmission 27
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for the spread of SARS-CoV-2, differences in immune response among individuals may 28

explain why some persons experience a more virulent infection than others, thereby 29

excreting more virus particles and producing more secondary cases [32–34]. 30

Additionally, timing is also important, i.e., individuals infected with SARS-CoV-2 are 31

most infectious during a short interval [35], a period which is not necessarily 32

accompanied by COVID-19 symptoms and associated behavioural change [36]. 33

Some individuals have a higher number of contacts, and thus more opportunity to 34

infect others, which is especially important during the short interval in which they are 35

most infectious [37]. Some persons might not have a higher number of total contacts, 36

but meet more susceptible individuals than others – such as for example in nursing 37

homes [38]. Finally, the environment also plays an important role in the genesis of 38

superspreading events: the risk of transmission is much higher in enclosed spaces than it 39

is outside, and ventilation works well to limit transmission indoors [38,39]. 40

Some transmission models for SARS-CoV-2 [14–20,40], as well as for other 41

pathogens like SARS-CoV-1 [41–43] and MERS [44], have taken superspreading into 42

account. These approaches include compartmental models [15,16], that divide the 43

population in different and exclusive subpopulations based on realistic disease states, 44

and branching process models [14,28], as well as network and individual-based 45

models [17–20,40–44], in which each individual in the population is represented as a 46

separate entity. Some models include the superspreading potential of individuals as a 47

general factor [14, 17, 28], while others implement superspreading events as the result of 48

heterogeneity in infectiousness [16], contact behavior [18,19,43], or a combination of 49

both [15,20,41,42,44]. 50

However, while some of these models do demonstrate that both factors contribute to 51

the occurrence of superspreading events [20], it is still poorly understood how exactly 52

these different forms of superspreading impact the spread of disease and the 53

effectiveness of control measures. To further investigate these questions in detail, we 54

tested the effect of different forms of superspreading on the spread of SARS-CoV-2 in 55

the Belgian population. To this end, we implemented both infectiousness-related and 56

contact-related heterogeneity into STRIDE, an individual-based model for the 57

transmission of SARS-CoV-2 [9, 45]. 58

In an individual-based model, each individual is represented by a separate entity 59

with a unique set of characteristics, such as age, health status, and behavioral traits. As 60

such, individual-based models are particularly suited to model superspreading, as they 61

allow for a direct integration of different sources of heterogeneity at the individual level. 62

We investigated the effects of superspreading caused by variation in infectiousness 63

versus heterogeneity in contact behaviour, in the absence of intervention measures. 64

Additionally, we looked at the impact of different modes of superspreading on the 65

effectiveness of social distancing – a non-pharmaceutical intervention which continues to 66

play an important role in the control of SARS-CoV-2. 67

Materials and methods 68

Implementation 69

We used STRIDE [45], an individual-based, stochastic model, which was recently 70

adapted to encompass the disease-specific features related to the transmission of 71

SARS-CoV-2 in the Belgian population [9]. In this model, individuals are assigned to 72

social contact pools representing their household, a workplace or school (depending on 73

the individual’s age and employment status), and more general communities 74

representing an individual’s leisure contacts, contacts on public transportation and 75

contacts in other locations. These latter communities consist of on average 500 persons 76
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Fig 1. Probability density function of the Gamma distributions considered for the
individual transmission probability (panel a) and the individual contact factor (panel b).

and differ for each person between week- and weekend days. 77

Simulations move forward in discrete time-steps of one day. Each day, individuals 78

can access the pools of which they are a member, depending on the day of the week and 79

their health status – e.g., children do not visit their school pool during the weekend, and 80

symptomatic individuals primarily remain within their household pool. The number of 81

contacts an individual makes each day in each of the above locations is based on their 82

age and the type of location (household, school, workplace, or community). More 83

specifically, daily contact rates are based on a social contact survey conducted in 84

Belgium in 2010-2011 [46]. 85

We adapted the model to represent both infectiousness-related and contact-related 86

heterogeneity. Infectiousness-related heterogeneity was implemented as follows. When a 87

person becomes infected, an ‘individual transmission probability’ is assigned to this 88

person. This probability determines whether an actual transmission event takes place 89

whenever a contact occurs between the infected individual and a susceptible individual. 90

We assume that this probability remains the same for the entire duration of an 91

individual’s infectious period – one of the limitations we elaborate on in the discussion. 92

Following the work of Lloyd-Smith et al. [28], we chose to represent inter-individual 93

variation by using a Gamma distribution. As such, each individual transmission 94

probability is drawn from a (right-)truncated Gamma distribution on the interval (0, 1]. 95

The truncated distribution is characterized by a shape parameter αi, which determines 96

the level of overdispersion of the distribution, and a mean – hereafter referred to as the 97

mean transmission probability. A lower value of αi entails more variation in the 98

individual transmission probability, and thus a higher level of superspreading, as shown 99

in Figure 1a. 100

To account for contact-related heterogeneity, we multiply an individual’s contact 101

rate in community and workplace pools by a factor, which is unique for each individual. 102

This factor is drawn from a Gamma distribution with shape parameter αc and mean 1, 103

upon creation of the individual. Again, a lower value of αc implies more variation in 104

contact rates and thus a higher level of superspreading, which is shown in Figure 1b. 105

The code of STRIDE is open-source and available at 106

https://github.com/lwillem/stride and https://github.com/elisekaa/stride. All code 107

used for the research in this paper will be made available on Zenodo upon acceptance of 108

the paper. 109
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Simulations 110

For an exhaustive overview of the population and parameters used in the simulations 111

described below, we refer to Supplementary Material S1 and earlier work conducted on 112

SARS-CoV-2 transmission using the STRIDE simulator [9]. As there is no standard 113

procedure to estimate the number of realisations necessary for the type of simulations 114

we conduct, we chose to run 200 stochastic simulations for each scenario described 115

below, which led to stable results. 116

Verification 117

We verified our implementation of superspreading in STRIDE in a number of ways. 118

First, we confirmed that the mean R0 was consistent between the different scenarios 119

regarding infectiousness-related and contacts-related heterogeneity. 120

We also checked that the baseline case – in which both the individual transmission 121

probability and the individual contact factor are constant – corresponds to a scenario in 122

which either the individual transmission probability or the individual contact 123

probability follows a Gamma distribution with respectively αi = 10 and αc = 10. This 124

should be the case, since, as the overdispersion parameter approaches infinity, the 125

distribution becomes more centered around the mean. 126

Furthermore, we calculated P80: the minimal proportion of infected individuals that 127

is responsible for 80% of cases – a measure commonly used in the superspreading 128

literature [22,28,29]. We calculated P80 for each simulation by ordering individuals that 129

were infectious during the simulation according to the number of secondary cases they 130

caused, in decreasing order. Next, we compute the proportion of individuals that are 131

responsible for 80% of the total number of infections caused over the entire simulation 132

run. We used this measure to verify that as we decreased either αi or αc, this resulted 133

in more heterogeneity in transmission – leading in turn to a lower P80. 134

Finally, we constructed a theoretical description for the transmission process in 135

STRIDE, which allowed us to calculate the expected number of secondary cases per 136

infected individual, as well as the variance of this quantity. We then compared the 137

results of this theoretical description with simulation results for different forms and 138

levels of superspreading. 139

For more details on the way in which these checks were conducted, and their results, 140

see Supplementary Material S2. 141

Superspreading effects in the absence of interventions 142

First, we investigated the effect of different modes of superspreading on the unmitigated 143

spread of SARS-CoV-2. To do this, we introduced one infected individual in a 144

completely susceptible population at the beginning of a simulation and tracked 145

transmission events over a period of 200 days. Typically, after this period, no more new 146

infections were recorded for all considered scenarios, so we assumed we had observed 147

most, if not all, of the epidemic curve. This is apparent from the plots depicting the 148

evolution of the number of new cases and the cumulative number of cases per day, as 149

shown in Supplementary Figures S23-S26. 150

To compare the effect of infectiousness-related heterogeneity to the effect of 151

contact-related heterogeneity, we varied the distribution of the individual transmission 152

probability and the individual contact factor as described in Table 1. The values for αi 153

and αc were chosen as follows: the value 10 represents a distribution in line with the 154

baseline scenario (i.e., a distribution which approaches a degenerate one), with low 155

levels of heterogeneity for either the individual transmission probability or the 156

individual contact factor, a value of 1 was chosen as an intermediate scenario, and 157
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Scenario Individual transmission probability Individual contact factor
Baseline 0.08 1.00

A Trunc. Gamma (αi = 10.0, mean = 0.08) 1.00
B Trunc. Gamma (αi = 1.0, mean = 0.08) 1.00
C Trunc. Gamma (αi = 0.6, mean = 0.08) 1.00
D Trunc. Gamma (αi = 0.4, mean = 0.08) 1.00
E Trunc. Gamma (αi = 0.2, mean = 0.08) 1.00
F 0.08 Gamma (αc = 10.0, mean = 1.0)
G 0.08 Gamma (αc = 1.0, mean = 1.0)
H 0.08 Gamma (αc = 0.6, mean = 1.0)
I 0.08 Gamma (αc = 0.4, mean = 1.0)
J 0.08 Gamma (αc = 0.2, mean = 1.0)

Table 1. Overview of scenarios based on the distribution considered for the individual
transmission probability and the individual contact factor.

values 0.6, 0.4 and 0.2 were chosen to represent a high level of heterogeneity, in line with 158

what we would expect to see in the transmission of SARS-CoV-2 [29]. The mean of the 159

truncated Gamma distribution considered for the individual transmission probability 160

(i.e., 0.08) was chosen so that it corresponds to an R0 value of about 3 in the baseline 161

scenario. This is in line with initial estimates for R0 for SARS-CoV-2 [3, 9, 47,48]. 162

We then compared epidemiological metrics between the different scenarios. First, we 163

looked at the probability of extinction, calculated as the fraction of simulation runs that 164

produce no more new cases after only a few (or no) initial secondary infections [49]. We 165

define what is regarded as extinction by looking at the final outbreak sizes after 200 166

simulation days, resulting from all simulations over all scenarios. After ordering these in 167

descending order, a sharp drop-off can be observed, separating runs with persistent 168

outbreaks from runs in which extinction occurs. As we found that outbreaks starting 169

from one initial case either remain below 15 cases, or grow much larger, we set the 170

threshold below which we will consider an outbreak to have gone extinct at 20 cases. In 171

Supplementary Figure S22, a histogram is shown depicting the frequency of final 172

outbreak sizes per scenario. 173

We also compared the attack rate of outbreaks, and looked at the peak size and the 174

timing of the peak. Furthermore, we investigated the evolution of the daily effective 175

reproduction number Rt. We approximated Rt by calculating the mean number of 176

secondary cases caused by individuals that contracted infection on day t. However, since 177

at the end of a simulation only a few infected individuals remain, thereby making 178

inference about Rt prone to substantial oscillations in daily estimates, we applied a 179

LOWESS smoothing approach for the time-varying Rt-values [50]. 180

To further gauge the effect of different forms of superspreading on epidemic spread, 181

we estimated the herd immunity threshold, the day this threshold is reached, and the 182

day on which the last infection is recorded. In the absence of a standard procedure to 183

define the herd immunity threshold in an individual-based model, we estimated this 184

measure as follows. We looked at the proportion of individuals that were no longer 185

susceptible (i.e., recovered or currently infected) on the last day for which the smoothed 186

Rt ≥ 1. 187

Finally, we kept track of the type of location (household, school, workplace or 188

community) in which infections occurred. 189

Superspreading effects in the presence of social distancing 190

We considered a scenario to investigate the impact of different forms of superspreading 191

on the effectiveness of a period with strong social distancing followed by a period of 192
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mild relaxations. 193

The scenario was implemented as follows: after the introduction of a single infected 194

individual in the population we simulated 30 days without interventions, after which a 195

‘lockdown’ period began, in which schools were closed (primary, secondary, and tertiary 196

education), contacts at the workplace were reduced by 94.51% and contacts in the 197

communities were reduced by 88.74%. These contact reductions were inferred based on 198

social contact data collected for Belgium from April to mid-May 2020 in the CoMix 199

study [51]. 200

After 60 days of lockdown (i.e. on day 90 of the simulation), a partial release of the 201

lockdown followed. Schools were re-opened and contacts in the workplace increased to 202

25.09% of pre-pandemic levels, while contacts in the community increased to 28.55% of 203

pre-pandemic levels. Again, these contact reductions were estimated based on data 204

collected in the CoMix study, from mid-May to August 2020. More information on how 205

these and the above estimates were obtained can be found in Supplementary 206

Material S1.2. 207

We tested the same distributions for the individual contact probability and for the 208

individual contact factor as listed in Table 1. We ran each simulation for 600 days (30 209

days pre-lockdown, 60 days lockdown and 510 days partial release), after which we 210

typically did not observe any new infections. This can be seen in the plots in 211

Supplementary Figures S35–S38, showing the number of new cases and the number of 212

cumulative cases per day. 213

We compared the number of cases before, during, and after the lockdown between 214

the different scenarios, as well as the attack rate over the entire simulation. We also 215

looked at the evolution of the number of new cases, the cumulative number of cases and 216

the effective Rt per day. Additionally, we calculated a ‘resurgence probability’, to 217

represent the chance that a lockdown followed by a partial release would not be effective 218

in stopping the epidemic in a particular scenario. This resurgence probability was 219

calculated as follows. As the effectiveness of a lockdown can only be gauged when the 220

epidemic is still ongoing, and we did not consider the importation of new cases, we only 221

took into account those runs in which new cases were still being observed when the 222

lockdown period started. As such, we excluded simulation runs in which 0 cases were 223

recorded during the entire lockdown period. Then, to define resurgence, we looked at 224

the distribution of the number of cases during the period of partial release. 225

For all scenarios, we observed that either at most 309 cases occurred during the 226

period of partial release, or a much larger number. As such we set the ‘resurgence 227

threshold’ at 500 cases. In Supplementary Figure S33, a histogram is shown depicting 228

the frequency of numbers of cases during the release period per scenario. 229

Sensitivity analysis 230

We conducted a sensitivity analysis regarding the mean transmission probability and 231

the number of infected cases introduced at the beginning of the simulation. More 232

information on this can be found in Supplementary Material S3. 233

Results 234

Superspreading effects in the absence of interventions 235

We investigated the spread of SARS-CoV-2 throughout the Belgian population, 236

following the introduction of one infected individual. First, we looked at the probability 237

of extinction. Using the extinction threshold of 20 cases, we calculated, for each 238

scenario, the proportion of simulation runs that lead to extinction. We observe that as 239
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(a) Varying αi for the Truncated Gamma
distribution considered for the individual
transmission probability.
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(b) Varying αc for the Gamma distribution
considered for the individual contact factor.

Fig 2. Extinction probabilities for scenarios investigating infectious-related
heterogeneity (panel a) and contact-related heterogeneity (panel b), defined as the
proportion of simulation runs (n = 200) that produces less than 20 cases. Orange error
bars represent 95% (Clopper-Pearson) confidence intervals.

infectiousness-related heterogeneity increases, the extinction probability also increases 240

(see Figure 2a). In the baseline scenario, where the transmission probability is the same 241

for all individuals, extinction occurs in 12.5% of all simulation runs. As αi decreases to 242

0.2, however, we see that as much as 72% of the simulation runs produce less than 20 243

cases. 244

A different trend can be observed when varying contact-related heterogeneity (see 245

Figure 2b). Here, varying αc has only little effect on the fraction of runs that lead to 246

extinction. While initially, with an intermediate value for αc of 1, the extinction 247

probability shows a limited increase, a slight downward trend can be noticed when αc 248

decreases from 0.6 to 0.2. 249

We also looked at the attack rate of outbreaks. In the baseline scenario, around 250

92.5% of the population is infected 200 days after the introduction of an infected 251

individual in the population, whenever extinction did not occur. When increasing 252

infectiousness-related heterogeneity as well as when increasing contact-related 253

heterogeneity, the final size of outbreaks lowers. However, this decrease is much more 254

pronounced in the case of contact heterogeneity. This is shown in Figure 3. 255

When looking at the size and timing of the peak of the epidemic curve of outbreaks 256

when no extinction occurs (see Figure 4), opposite trends can be observed for increasing 257

heterogeneity in infectiousness and contacts, respectively. When infectiousness-related 258

heterogeneity increases, the mean size of the peak decreases, while no effect is seen on 259

the time when the peak occurs. However, when contact-related heterogeneity increases, 260

the mean peak size becomes higher and also occurs earlier. Furthermore, contact-related 261

heterogeneity leads to more variability in peak size. 262

These trends can also be observed when looking at the evolution of the number of 263

new cases, the number of cumulative cases and the smoothed daily Rt values. The 264

number of new cases per day, the cumulative number of cases per day, and the smoothed 265

Rt per day for the different scenarios is shown in Supplementary Figures S23–S28. 266

We estimated the impact of different modes of superspreading on the herd immunity 267

threshold (see Figure 5). We observed that when infectiousness-related heterogeneity 268

increases as αi decreases from 10 to 0.2, the average herd immunity threshold decreases 269

from 58.97% to 32.66%. This strong decline is in part due to the increase in the number 270

of runs in which extinction occurs, but is still present when these runs are excluded, as 271
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(a) Varying αi for the Truncated Gamma
distribution considered for the individual
transmission probability.

(b) Varying αc for the Gamma distribution
considered for the individual contact factor.

Fig 3. Violin plots for the attack rate over 200 days for scenarios investigating the
infectiousness-related heterogeneity (panel a) and contact-related heterogeneity (panel
b). The orange dots represent the mean attack rate across the simulation runs without
extinction, i.e., simulation runs in which extinction occurs (< 20 cases) were excluded.

can be seen in Figure 5c. 272

However, when contact-related heterogeneity increases, an opposite trend can be 273

observed: the herd immunity threshold increases to 64.28% when αc decreases to 0.2. 274

We also looked at the day on which the herd immunity threshold is reached (see 275

Supplementary Figure S29), and the day on which the last transmission event is 276

observed (see Supplementary Figure S30). We observed that, with higher 277

infectiousness-related heterogeneity, the epidemic slows down, as the herd immunity 278

threshold is reached later – even though it is lower – and the last infections are observed 279

at a later time compared to the baseline scenario. Conversely, with higher 280

contact-related heterogeneity, the herd immunity threshold is reached faster and 281

infections stop occurring at an earlier point in the simulation. 282

Finally, we looked at the type of locations in which transmissions occurred (see 283

Supplementary Figures S31–S32). We found that neither increasing heterogeneity in 284

infectiousness nor increasing heterogeneity in contact behavior changed the locations 285

where most infections took place, which for all scenarios were communities and 286

households. 287

Superspreading effects in the presence of social distancing 288

We investigated the effect of different forms of superspreading on the outcome of a 289

social distancing scenario. We compared the number of cases before lockdown (day 0 – 290

day 30, see Figure 6a–b), during lockdown (day 30 – day 90, see Figure 6c–d) and 291

during the period of partial release (day 90 – day 600, see Figure 6e–f) between the 292

different scenarios. 293

The number of cases observed before lockdown confirmed what we observed when 294

examining unmitigated transmission: when contact-related heterogeneity is high, the 295

start of outbreaks is more explosive. On the contrary, when infectiousness-related 296

heterogeneity is high, many outbreaks stop after only a few cases. During lockdown, we 297

also observe more cases when there is higher contact-related heterogeneity. However, as 298

infectiousness-related heterogeneity increases, the average number of cases observed 299

during lockdown slightly decreases. Finally, the number of cases during the partial 300

release phase decreases sharply as infectiousness-related heterogeneity increases, while 301
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(a) Size of peak when varying αi for the
Truncated Gamma distribution considered for
the individual transmission probability.

(b) Size of peak when varying αc for the
Gamma distribution considered for the
individual contact factor.

(c) Day of peak when varying αi for the
Truncated Gamma distribution considered for
the individual transmission probability.

(d) Day of peak when varying αc for the
Gamma distribution considered for the
individual contact factor.

Fig 4. Violin plots for the size and day of peak across the different simulation runs for
scenarios investigating the infectiousness-related heterogeneity (panels a and c,
respectively) and contact-related heterogeneity (panels b and d, respectively). The
orange dots represent the mean of the simulated peak sizes and days at which the peak
is reached. Simulation runs in which extinction occurs (< 20 cases) were excluded.
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(a) Varying αi for the Truncated Gamma
distribution considered for the individual
transmission probability.

(b) Varying αc for the Gamma distribution
considered for the individual contact factor.

(c) Varying αi for the Truncated Gamma
distribution considered for the individual
transmission probability. Runs in which
extinction occurred (< 20 cases) were
excluded.

(d) Varying αc for the Gamma distribution
applied to the individual contact factor.
Runs in which extinction occurred (< 20
cases) were excluded.

Fig 5. Violin plots of the estimated herd immunity threshold values over the different
simulation runs including or excluding runs with extinction for scenarios investigating
the infectiousness-related heterogeneity (panels a and c, respectively) and
contact-related heterogeneity (panels b and d, respectively). The orange dots represent
the mean of the simulated values.
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changes in contact-related heterogeneity seem to have little impact on the number of 302

cases during this period. The same trends can be observed when looking at the attack 303

rate over the entire simulation period (see Supplementary Figure S34). 304

Furthermore, we looked at the evolution of the number of new cases per day, the 305

cumulative number of cases and the smoothed daily Rt values (see Supplementary 306

Figures S35–S40). We observed that with higher infectiousness-related heterogeneity, 307

outbreaks were slower to fade out during the period of partial release. When 308

contact-related heterogeneity was high outbreaks were more explosive and took off again 309

faster once social distancing measures were relaxed. However, what is remarkable here 310

as well is that, as contact-related heterogeneity increases, distinct waves can be observed 311

during the period of partial relaxations (see for example Supplementary Figure XX). 312

We calculated the resurgence probability for different forms and levels of 313

superspreading (see Figure 7). As infectiousness-related heterogeneity increases, the 314

resurgence probability decreases, meaning that it is less likely that the epidemic grows 315

large in size again when relaxing measures after a period of lockdown. However, 316

resurgence probabilities increase slightly as contact-related heterogeneity increases. 317

We assessed how the herd immunity threshold changes when social distancing is 318

applied (see Figure 8). For the baseline case, the estimated herd immunity threshold 319

lowered from 56.89% without interventions to 18.18% on average in the social distancing 320

scenario. When increasing infectiousness-related heterogeneity, the herd immunity 321

threshold decreased even further: to 2.28% when αi = 0.2. However, this is not the case 322

when contact-related heterogeneity is high. Even though the average herd immunity 323

threshold initially lowers from 16.94% to 13.89% when αc decreases from 10 to 0.6, it 324

again increases to 22.43% when αc is further decreased to 0.2. 325

Finally, we looked at the locations in which transmissions occurred (see 326

Supplementary Figures S41–S42). We found that social distancing had little effect on 327

where transmission happened: even though there were less transmissions overall, most 328

transmissions still occurred in households and communities for all scenarios. 329
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(a) Number of cases before lockdown (day
30), when varying αi for the Truncated
Gamma distribution considered for the
individual transmission probability.

(b) Number of cases before lockdown (day
30), when varying αc for the Gamma
distribution considered for the individual
contact factor.

(c) Number of cases during lockdown (day
30–day 90), when varying αi for the
Truncated Gamma distribution considered for
the individual transmission probability.

(d) Number of cases during lockdown (day
30–day 90), when varying αc for the Gamma
distribution considered for the individual
contact factor.

(e) Number of cases during partial release
phase (day 90–day 600), when varying αi for
the Truncated Gamma distribution
considered for the individual transmission
probability.

(f) Number of cases during partial release
phase (day 90–day 600), when varying αc for
the Gamma distribution considered for the
individual contact factor.

Fig 6. Violin plots for the number of cases before lockdown (day 0–day 30), during
lockdown (day 30–day 90) and during partial release phase (day 90–day 600) for the
different scenarios tested. The orange dots represent the mean of the simulated values.
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(a) Varying αi for the Truncated Gamma
distribution considered for the individual
transmission probability.
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(b) Varying αc for the Gamma distribution
considered for the individual contact factor.

Fig 7. The proportion of simulation runs, in which the number of cases during
lockdown is greater than 0, that produces more than 500 cases during the partial release
phase. Orange error bars represent 95% (Clopper-Pearson) confidence intervals.

(a) Varying αi for the Truncated Gamma
distribution considered for the individual
transmission probability.

(b) Varying αc for the Gamma distribution
considered for the individual contact factor.

Fig 8. Violin plots for the herd immunity threshold as estimated for the social
distancing scenario. The orange dots represent the mean of the simulated values.
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Discussion 330

Conclusion 331

We investigated different forms of superspreading in an individual-based model by 332

considering both infectiousness-related heterogeneity and contact-related heterogeneity. 333

We found that these two types of superspreading have very different effects, both on the 334

unmitigated spread of SARS-CoV-2 as well as on the effectiveness of social distancing 335

measures. In the absence of containment measures, we observed that with high 336

infectiousness-related heterogeneity, the introduction of an infected individual in the 337

population led to large outbreaks less frequently. Furthermore, peak sizes were smaller 338

and occurred at a later time. The estimated herd immunity threshold also decreased. 339

On the other hand, when contact-related heterogeneity is high, we observed that the 340

introduction of an infected individual led to outbreaks slightly more often compared to 341

the baseline scenario in which the mean transmission probability is 0.08 for all 342

individuals and the individual contact factor is set to 1. Outbreaks that did not go 343

extinct after only a few secondary cases were also more explosive, with higher peaks 344

that occurred earlier. The herd immunity threshold also increased slightly. 345

The difference between the effects caused by these two forms of superspreading 346

might be explained by the fact that when infectiousness-based heterogeneity is high, 347

superspreaders have to infect other superspreaders to keep the epidemic going – leading 348

to more extinctions and a drawn-out, but less explosive, outbreak whenever extinction 349

does not occur. Furthermore, not all infected individuals with a very high individual 350

transmission probability will have a lot of contacts and thus the opportunity to realize 351

their ‘transmission potential’. However, when a person has a large number of contacts, 352

they not only have more opportunity to infect others once they are infected, but they 353

also have a disproportionally high chance to be exposed to infection themselves [37], 354

leading to faster, more explosive outbreaks. 355

We also observed that the total attack rate of outbreaks decreased much faster when 356

contact-related heterogeneity increased than when infectiousness-related heterogeneity 357

increased. This seems to be in contrast with the results described above, but can be 358

explained due to a faster depletion of superspreaders (and susceptible individuals in 359

general). This is enhanced by the fact that STRIDE uses a structured population, in 360

which individuals are limited in the contacts they can make by the constraints of the 361

contact pools (household, school, workplace, communities) they belong to. As such, 362

when a large fraction of the persons in their contact pools has already been infected, an 363

infected individual cannot cause a large number of secondary cases, no matter how 364

infectious they are, or how many contacts they have [52]. Furthermore, as 365

contact-related heterogeneity increases, more individuals will have no or very few 366

contacts, making them ‘unreachable’, thereby decreasing the maximum number of cases 367

that can be generated during an outbreak. 368

We should also note here that the same αi and αc parameters lead to different levels 369

of overdispersion in transmissions (as shown in Supplementary Figures S1–S2) – which 370

might explain some of the differences between both forms of superspreading. 371

Other models [16,42,44] that implement both heterogeneity in infectiousness and 372

heterogeneity in contacts also conclude that superspreading driven by contact-related 373

heterogeneity leads to more explosive outbreaks. These models (and others that only 374

consider infectiousness-related heterogeneity), however, do not capture the slowdown of 375

outbreaks due to infectiousness-related heterogeneity, since they do not implement a 376

structured population, and hence every highly infectious person is able to realize their 377

‘transmission potential’. 378

The current SARS-CoV-2 pandemic seems to exhibit characteristics of both these 379

modes of superspreading. It is likely that a combination of factors is responsible for the 380
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occurrence of SARS-CoV-2 superspreading events, such as a moderate heterogeneity in 381

infectiousness combined with a high heterogeneity in contact behavior [15,20]. 382

We also investigated the impact of different forms of superspreading on the 383

effectiveness of social distancing. We found that, when superspreading is driven by 384

heterogeneity in infectiousness, a period of strict social distancing, followed by a partial 385

release is most effective and extinguishes almost all outbreaks. This is in line with the 386

conclusion of other models that also assume superspreading events are driven by 387

heterogeneity in infectiousness [18,19]. 388

However, when superspreading is driven by heterogeneity in contact behavior, we 389

found that while social distancing measures might limit cases during a strict lockdown, 390

the chance of resurgence of the epidemic following relaxations increases. Furthermore, 391

with high infectiousness-related heterogeneity, few outbreaks grow large in size after a 392

period of lockdown, but outbreaks that do not go extinct linger for a long time before 393

completely disappearing. 394

Limitations 395

Some limitations need to be taken into account when interpreting these results. 396

Each individual that is infected over the course of the simulation, eventually recovers 397

and gains immunity for the remainder of the simulation. As such, neither deaths nor 398

re-infections occur. We also did not model the waning of immunity, nor vaccination, 399

making these results more representative of the initial wave of the SARS-CoV-2 400

pandemic. Additionally, we only introduce infected individuals at the beginning of the 401

simulation, and do not take into account the continuous importation of infectious 402

individuals into the population. Furthermore, we focus on the initial course of the 403

infections, in which individuals can transmit the disease. We did not model 404

hospitalizations with case isolation, since we assume the transmission dynamics are 405

mostly shaped by the pre-symptomatic and mild symptomatic stages and individuals 406

exhibit adapted social contact patterns once they become symptomatic. To fully 407

capture the effect of superspreading on the spread of SARS-CoV-2, these factors would, 408

however, need to be taken into account. 409

We also did not explicitly model mass events, which may be an important factor in 410

the occurrence of superspreading events [25]. We did however model two different 411

community pools (for weekdays and weekend days, respectively), where individuals 412

could potentially contact a larger number (up to 500) of people, which could serve as a 413

proxy for attending a large event. However, large events also have a temporal aspect 414

that is not modeled through community contact pools. As such, explicitly modeling 415

mass gatherings might lead to new insights regarding the effect of different types of 416

superspreading on disease spread and on the effectiveness of interventions. 417

To represent heterogeneity in infectiousness and contact behavior, we used a 418

right-truncated and untruncated Gamma distribution respectively. However, other 419

distributions could be used to obtain similar levels of heterogeneity, which we did not 420

test in the current study [29]. 421

Finally, next to infectiousness-related heterogeneity and contact-related 422

heterogeneity, other factors, such as heterogeneity in susceptibility and the environment 423

(such as indoor venues) in which contacts occur, also contribute to the occurrence of 424

superspreading events [53–55]. Additionally, infectiousness may vary over time for the 425

same individual, while, in our model, it remains the same for the entire infectious period 426

of an individual [35]. 427
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Future work 428

Several extensions of this work could be useful in furthering our understanding of 429

superspreading both within the context of the current COVID-19 pandemic and within 430

a broader context. 431

Further research is needed to disentangle effects of both forms of superspreading. As 432

such, it would be possible to estimate the level of both infectiousness-related and 433

contact-related heterogeneity at play in the current SARS-CoV-2 pandemic. We plan to 434

use data collected during the CoMix study [51] to estimate the level of contact-related 435

heterogeneity during different phases of the SARS-CoV-2 pandemic. Subsequently, 436

assuming that the two forms of heterogeneity investigated in this paper are most 437

important for the occurrence of superspreading events, it is possible to estimate the 438

level of infectiousness-related heterogeneity from the overall observed heterogeneity in 439

transmissions. Further insight could also be gained by comparing the importance of 440

these two types of superspreading for the spread of different pathogens, as 441

contact-related heterogeneity presumably remains largely the same for a population 442

under the spread of different pathogens. 443

We implemented heterogeneity in contact behavior by applying a distribution to the 444

daily contact rate of individuals. There is however, in the context of social distancing, 445

another possible type of contact heterogeneity, namely non-compliance to social 446

distancing measures. It would be relevant to investigate how different forms of 447

superspreading modulate the negative effect of this phenomenon on the effectiveness of 448

social distancing measures. 449

Furthermore, while we investigated the impact of superspreading on the effectiveness 450

of social distancing, it is conceivable that superspreading also has an impact on other 451

interventions, both pharmaceutical and non-pharmaceutical, such as vaccination, 452

contact tracing and universal testing [14,56]. 453

Finally, we did not take into account person characteristics that might make an 454

individual more or less likely to be a superspreader, due to the lack of data about this 455

subject. Instead, the individual transmission probability and individual contact factor 456

were drawn at random from a distribution. However, some characteristics, such as age, 457

profession, or perception of the severity of COVID-19, might have an impact on how 458

likely an individual is to transmit the disease [17]. Taking such characteristics into 459

account when distributing transmission potential in the population would provide a 460

more accurate model of superspreading. 461
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