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Abstract 

Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorder characterized by 
deficits in social interactions and communication. Protein function altering variants in many genes have been 
shown to contribute to ASD risk; however, understanding the biological convergence across so many genes has 
been difficult. Here, we demonstrate that coexpression patterns from human post-mortem brain samples 
(N=993) are significantly correlated with the transcriptional consequences of CRISPR perturbations (gene 
editing, interference and activation) of 15 neurodevelopmental genes in neuronal cell models. We find that 
across 70 ASD risk genes, there is significant tissue-specific transcriptional convergence that implicates 
synaptic pathways. We further show that the degree of convergence is significantly correlated with the level of 
association to ASD from sequencing studies (rho = -0.14, P = 4.75x10-63) as well as differential expression from 
transcription studies in post-mortem ASD brains (rho = -0.22, P = 3.62x10-41). After removing genes with 
minimal evidence of association with ASD, the remaining positively convergent genes are intolerant to 
mutation, have shorter coding lengths and are enriched for genes with suggestive evidence of contribution to 
ASD. These results indicate that leveraging convergent coexpression can identify novel ASD risk genes that are 
more likely to be underpowered and therefore missed by current large-scale sequencing studies. This work 
ultimately provides a simple approach to functionally proxy CRISPR perturbation, demonstrates significant 
context-specific transcriptional convergence among known ASD risk genes, and proposes several novel ASD 
risk gene candidates. 
 
Introduction 

Autism spectrum disorder (ASD) is a highly heritable neuropsychiatric disorder with a population 
prevalence of ~1%1. Sequencing studies have implicated dozens of genes contributing to risk of ASD based on 
an excess of rare deleterious variation in cases compared to controls2–5. These findings have highlighted 
biological pathways implicated in ASD, including synaptic function, chromatin and transcriptional 
regulation2,3.Transcriptomic studies provided evidence of downregulation of synaptic genes in post-mortem 
brains from individuals with idiopathic ASD as well as upregulation of immune genes6,7. More recently, the 
PsychENCODE Consortium corroborated these results in a much larger set of post-mortem human brain 
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samples with findings of downregulated neuronal and synaptic modules (sets of genes highly coexpressed with 
each other), and upregulated mitochondrial and microglial pathways8.  

Genetic perturbation studies involving induced pluripotent stem cells (iPSC) and CRISPR offer insight 
into context-specific cellular and transcriptomic consequences of perturbing ASD-associated genes individually, 
highlighting downstream genes or pathways that might be relevant for disease risk9,10. Loss of function (LoF) 
models of CHD8 and FOXP1, two transcriptional regulators with strong association to ASD, have shown 
dysregulation of multiple other ASD genes9,11. Although several ASD risk genes have been shown to have a 
direct molecular relationships with each other (e.g., CHD8 regulates and binds to other ASD risk genes like 
CTCF9,12), many altered genes lacked CHD8 and FOXP1 binding sites, suggesting that the effects of the 
perturbations can be propagated by downstream regulatory interactions9,11. In Xenopus tropicalis13, LoF 
CRISPR-mediated genome editing of ten ASD-implicated genes resulted in an increased ratio of neural 
progenitor cells to neurons in the telencephalon pointing to a convergent cellular outcome. Additional work 
using CRISPR-Cas9 to knock out ASD genes followed by single-cell RNA sequencing in the developing mouse 
brain identified recurrent glial and neuronal modules again pointing to cellular convergence14. Further, another 
study used a multiplexed iPSC platform and introduced frameshift mutations in 27 ASD genes. The ASD 
mutations were classified into two subgroups based on alterations in prefrontal cortex neurogenesis which then 
correlated with abnormal WNT signaling; one group inhibited and one group enhanced spontaneous cortical 
neurogenesis15, confirming the existence of convergent cellular and signaling phenotypes within this larger 
subset of ASD-associated genes. 

Although these functional studies have shed light on the interplay between multiple disease genes, 
determining convergent signatures across the large number of implicated ASD genes in human cell lines 
remains a technical and logistical challenge. These efforts are limited by the substantial time and cost required 
to generate human iPSCs, differentiate into a given cell type, edit the genes of interest, and investigate 
downstream consequences. Analysis of protein-protein interaction (PPI) networks and coexpression modules of 
ASD risk genes has shown that there is high connectivity, suggesting that there is more direct interaction than 
expected by chance16–20. Convergence in gene expression profiles has been demonstrated not only among ASD 
risk genes affected by rare protein truncation variants, but also for genes associated to ASD by large CNVs21,22 
and common variation23. Similarly, ASD risk genes have been shown to be highly coexpressed in the 
developing cortex18,24. Prior work has layered expression data onto to the genetic findings to predict novel ASD 
risk genes17 successfully identifying many genes that are now significant in larger genetic studies. The high 
degree of connectivity across ASD risk genes presents an opportunity to leverage coexpression to better 
understand molecular convergence in ASD. We hypothesized that coexpression from a relevant tissue would 
provide a meaningful proxy for the transcriptional effects of CRISPR perturbation in neurons and enable a 
large-scale in silico convergence experiment.  

Here, we employ a new approach to investigate the level of functional convergence among ASD risk 
genes by leveraging large-scale post-mortem brain tissue datasets and CRISPR-based neuronal models. We 
show that expression dysregulation due to CRISPR-mediated knockdown or activation is significantly and 
directionally correlated with coexpression with the perturbed gene. Meta-analyzed coexpression signals of high-
confidence ASD genes demonstrated highly significant convergence compared to expectation, with tissue 
specificity. We further show that convergently coexpressed genes are significantly enriched for 
neurodevelopmental disorder (NDD) genes after excluding the ASD-associated genes as well as for differential 
expression in post-mortem brains of ASD patients, and for genes included in genesets related to synaptic 
function. Finally, we were able to implicate genes as novel ASD risk candidates, including smaller genes and 
those highly intolerant to LoF variation which precluded their identification from current genetic studies. 
 
Methods 
 
CRISPR perturbation functional models 
 

We collected data from 17 newly generated and previously published CRISPR experiments targeting 15 
different ASD-associated genes. The transcriptomic data from all these CRISPR experiments were generated 
from isogenic iPSC-derived glutamatergic neurons induced by Neurogenin 2 (Ngn2) overexpression. Data of 
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previously published cellular models generated by CRISPR perturbation were ascertained from the NCBI’s 
Gene Expression Omnibus (GEO) and Synapse. For the CRISPR-mediated LoF gene editing models described 
in Deneault et al., gene counts and covariate information were ascertained from GEO (Accession # 
GSE107878). These consisted of 10 ASD-relevant genes (ANOS1, ASTN2, ATRX, CACNA1C, CHD8, 
DLGAP2, AFF2/FMR2, KCNQ2, SCN2A, TENM1). Gene counts and covariate information for MBD5 CRISPR-
mediated LoF gene editing model were ascertained from GEO (Accession #: GSE144279). For the CRISPR 
activation (CRISPRa) targets (TSNARE1, SNAP91, CLCN3, and FURIN), gene counts and covariate 
information were ascertained from Synapse (syn20502314)18. CRISPR interference (CRISPRi) for SCN2A was 
ascertained from Synapse (syn26970716). From those datasets, only neuronal lines were included, and 
experiments were removed if there was any evidence of ineffective perturbation such as discordant RNA and 
protein levels of the perturbed gene.  

Additionally, we used unpublished transcriptomic data from SCN2A and KCTD13 CRISPR-mediated 
LoF gene editing models which leveraged a dual-gRNA strategy to promote gene deletions. SCN2A sgRNAs 
targeted intron 4 and intron 11 (NM_001040142) to generate a 7.5kb partial gene deletion, and the crRNA 
sequences used were: 5'-tatcgtagggggaccaacc-3' and 5'-gcgtggatctagtgaactt-3'. KCTD13 sgRNAs targeted 5’ and 
3’ regions from KCTD13 (NM_178863) to generate a 23.3kb full gene deletion, and the crRNA sequences used 
were: 5’-taaaaaggatggatgtaggc-3’ and 5’-tgcctgtgttaggaggtatc-3’. 

The deletion lines were generated in the male control human iPSC line GM08330-8 using the Human 
Stem Cell Nucleofector Kit 1 (Lonza), transfecting 1µg CRISPR/Cas9 PX459 plasmid and 1µg of each gRNA 
using the Amaxa Nucleofection II device (Lonza), according to the manufacturer’s instructions. Cells were 
subsequently plated on Matrigel plates in mTeSR1 or Essential 8 medium supplemented with ROCK inhibitor 
for 24 hours. For clonal isolation of SCN2A models, puromycin selection was started 24 hours after transfection 
and resistant colonies were picked and expanded 48 hours after selection. For clonal isolation of KCTD13 
models, cells were separated by fluorescence-activated cell sorting (FACS) 48h after transfection. Genotyping 
of the resultant colonies for SCN2A and KCTD13 was performed by Sanger sequencing of the deletion-specific 
region and ddPCR assays for copy number. A total of 4-6 successfully edited clones with heterozygous 
deletions plus 2-6 unedited (i.e. WT-Cas9 exposed) clonal colonies were expanded per target. Prior to neuronal 
differentiation, iPSC clones were split into multiple replicates and each was manipulated in parallel during 
subsequent experiments. 

For differentiation of SCN2A and KCTD13 human iPSC models into glutamatergic neurons, Ngn2-
neuronal induction was performed as previously described25. Briefly, iPSCs were seeded at a density of 1e6 
cells/mL and transduced with a lentivirus expressing TetO-Ngn2-GFP-Puro or TetO-Ngn2-Puro along with 
rtTA. Twenty-four hours after transduction, doxycycline was added to initiate Ngn2 expression, and then 24h 
later the cells were selected with puromycin. Ngn2-glutamatergic iPSC-derived neurons were cultured in 
neuronal maintenance medium supplemented with BDNF and GDNF growth factors for an additional 22 days. 
Subsequent experiments were performed with 24 day-old Ngn2-glutamatergic neurons, using 6-34 total 
replicates per genotype (i.e. WT, heterozygous deletion) per target gene.  
 
 
RNA sequencing of CRISPR perturbations 

SCN2A RNAseq libraries were prepared from 200 ng of total RNA using a TruSeq stranded mRNA 
Sample Prep Kit (Illumina cat# RS-122-2102). Libraries were multiplexed, pooled and sequenced on multiple 
lanes of the Illumina NovaSeq platform, generating an average of 30.7M paired-end 150 bp-cycle reads for 30 
samples (20 SCN2A+/-, 10 SCN2A+/+). RNAseq data was processed using a standard workflow, which includes 
quality assessment of fastq reads using FastQc (http://www.bioinformatics.babraham.ac.uk/projects/fastqc). 
Raw sequence reads were trimmed against Illumina adapters using Trimmomatic26 (v. 0.36) with parameters 
ILLUMINACLIP:adapter.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:75. 
Sequence reads were aligned to the human reference genome (GRCh37, Ensembl build 75) using STAR27 (v. 
2.5.2.a) with parameters ‘–outSAMunmapped Within –outFilterMultimapNmax 1 –
outFilterMismatchNoverLmax 0.1 –alignIntronMin 21 – alignIntronMax 0 –alignEndsType Local –quantMode 
GeneCounts –twopassMode Basic’. STAR aligner also generated gene level counts for all libraries relying on 
the human genome annotation provided for Ensembl GRCh37, build 75. Quality checking of alignments was 
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assessed by custom scripts utilizing PicardTools (https://broadinstitute.github.io/picard/), RNASeQC28, 
RSeQC29 and SamTools30. The deletion introduced by CRISPR on SCN2A loci was validated generating exon-
level coverage using DEXseq31 and visually investigating target loci using IGV32. KCTD13 was included in 
gene edited as a potential contributor to 16p11.2 genomic disorder33, and these lines are described elsewhere 
(Tai et al., in preparation). In brief, RNAseq libraries were prepared using a TruSeq stranded mRNA library kit 
(Illumina) and were multiplexed, pooled and sequenced on multiple lanes of Illumina HiSeq 2500 platform, 
generating an average of 46.5M paired-end reads of 75bp for 11 samples (5 KCTD13+/-, 6 KCTD13+/+). The 
same RNAseq data processing pipeline without trimming step as above was applied to KCTD13 RNAseq 
libraries. Processing of MBD5 RNAseq libraries were previously described elsewhere34. 

For the CRISPR-mediated LoF gene editing models described in Deneault et al., gene counts and 
covariate information were ascertained from NCBI’s Gene Expression Omnibus (GEO accession: GSE107878). 
The processing of samples followed standard RNA sequencing pipelines as previous described in Deneault et al. 
(2018)10.  
 
Differential expression analysis for CRISPR perturbations 

Gene counts were input into DESeq2 for differential expression analysis. Genes with normalized counts 
< 10 in at least half of samples were excluded. Covariates including RNA integrity number (RIN), batch, and 
processing date were included when available. A Wald’s test was used for differential expression and Z-scores 
were calculated by dividing the fold change by the standard error. Each CRISPR perturbation was analyzed 
separately.  
 
Post-mortem brain cohorts 

Two separate cohorts of post-mortem brain samples of the dorsolateral prefrontal cortex (DLPFC) were 
used. The CommonMind Consortium (CMC) included tissue samples from Mount Sinai NIH Brain Bank and 
Tissue Repository, The University of Pittsburgh NIH NeuroBioBank Brain and Tissue Repository, and the 
University of Pennsylvania Brain Bank of Psychiatric Illnesses and Alzheimer’s Disease Core Center. The 
DLPFC was dissected at each bank and sent to a centralized centre, the Icahn School of Medicine at Mount 
Sinai (ISMMS) for RNA extraction. Tissues from bipolar disorder (BD) or schizophrenia cases were included if 
they met the DSM-IV diagnostic criteria for schizoaffective disorder or schizophrenia, or for BD, which were 
determined in consensus conferences after reviewing of medical records, direct clinical assessments, and care 
provider interviews. Samples were excluded if donors had a history of Alzheimer’s disease, Parkinson’s 
disease, were on ventilators near time of death, or had acute neurological insults (anoxia, strokes and/or 
traumatic brain injury) before death. 

The Human Brain Core Collection (HBCC) cohort consisted of DLPFC samples from the NIMH HBCC. 
The samples were analyzed clinically, neuropathologically, and toxicologically. The DSM-IV clinical diagnosis 
was determined through review of medical records by two psychiatrists and family interviews. Non-psychiatric 
controls did not have a history of substance use disorder or psychiatric conditions. Across all 933 samples, there 
were 345 females and 588 males. The self-reported ethnicities were 637 Europeans, 249 African, 33 Hispanic, 
13 Asian and 1 other. Nearly fifty percent of samples were nonpsychiatric controls (N=462) and the remainder 
had a psychiatric diagnosis (113 BD, 350 schizophrenia, and 8 affective disorder)35. The research abided by 
ethical regulations and was approved by the Vanderbilt University Medical Center Review Board (IRB: 
220287).  
 
RNA sequencing of post-mortem samples 

Approximately 50 mg of homogenized tissue from the DLPFC was used to isolate RNA. The two 
cohorts were processed separately. Samples with age <18 were excluded prior to analysis. The RNA-seq 
processing is identical to that described in Han et al. (2020)36 except for not using surrogate variable analysis 
(SVA) here to avoid removing trans-regulatory effects. Briefly, STAR was used to align RNA sequencing reads 
to GRCh37. FeatureCounts (v1.5.2) was used to count uniquely mapped reads that overlapped genes using the 
Ensembl v75 annotations. Fixed/mixed effects modelling were used for library normalization and covariate 
adjustments. Genes that were expressed at levels > 1 counts per million (CPM) in at least half of the samples in 
each study were retained for analysis. Conditional quantile normalization was done to account for variation in 
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GC-content and gene length. A weighted-linear model using voom-limma was used to assess the sampling 
abundance confidence. Normalized log2(CPM) values were used for hierarchical clustering and principal 
component analysis to detect outlier samples. Samples were removed if deemed outliers using either method. 
For the CMC cohort, covariates were identified using a stepwise fixed/mixed effect regression model to identify 
covariates significantly associated with gene expression. The covariates were added if there was an association 
with principal components explaining greater than 1% of expression residual variance. For the HBCC cohort, 
model selection was determined through Bayesian information criteria (BIC). BIC were used to find fixed effect 
covariates that improved the model for most genes. Covariate adjustment was done using with a fixed/mixed 
effect linear regression variant, choosing mixed effect models when several samples were available per donor: 
gene expression ~ covariates + sex + diagnosis + (1|Donor). Observation weights were calculated using voom-
limma to adjust for the mean-variance relationship. The covariate-adjusted expression was generated after 
adding back the diagnostic component. This was done for both HBCC and CMC cohorts. 
 
Generating pairwise coexpression of genes in the DLPFC 

For each of the two cohorts, the covariate-adjusted expression was used to calculate coexpression values 
across all 16,992 genes. A pairwise Pearson’s correlation was calculated for each pair of genes and the 
correlation coefficient was subsequently transformed into a Z-score using a Fisher transformation. The 
coexpression Z-scores for each pair of genes were subsequently meta-analyzed across the two cohorts using 
Stouffer’s weighted Z-score method. 

 
Assessing relationship between CRISPR perturbation and coexpression 

For each experiment, we calculated Pearson correlation between the rank normalized differential 
expression and the perturbed gene’s coexpression profiles from the post-mortem brain tissue. ASD CRISPR 
perturbations were meta-analyzed using Stouffer’s weighted Z-score and compared to the meta-analyzed 
coexpression of the same genes. The relationship was subsequently assessed with a Pearson’s correlation.  

 
ASD convergent coexpression meta-analysis 

 We included 71 genes implicated in risk of ASD from a cross-consortia exome sequencing study that 
combined de novo and inherited single-nucleotide variant (SNV), indel, and CNV analyses (FDR < 0.001, 
approximating exome-wide Bonferroni correction)5. After filtering out genes due to low expression level, we 
performed a meta-analysis of 70 (out of 71) genes. Coexpression Z-scores were meta-analyzed using Stouffer’s 
weighted Z-score method to generate convergent effect sizes. To assess whether convergence of ASD risk genes 
is tissue specific, we used Genotype Tissue Consortium (GTEx) RNA-seq counts of skeletal muscle (N=803) 
and liver (N=251) as negative controls. We selected these as they are not derived from the ectoderm or 
previously implicated in ASD. Convergence was calculated using the same methods as described previously. To 
assess the null distribution for ASD convergence, we conducted 100,000,000 permutations where for each 
permutation a meta-analysis was performed using 70 randomly-selected genes, excluding the 70 ASD genes. 
The empirical p-values were calculated, as shown here: (# of absolute convergent Z-scores greater than or equal 
to the absolute convergent ASD Z-score + 1) / (Total # of permutations + 1). A Bonferroni-correction was then 
applied to the empirical p-values and a threshold of p < 0.01 after correction was used to increase stringency.  

To account for the potential effects of confounding from LoF observed/expected upper bound fraction 
(LOEUF), the permutation was repeated by matching on LOEUF scores within -/+ 0.05 of each gene. Genes 
that were Bonferroni-significant and large effect (absolute Z-score > 2) were input into ToppGene for pathway 
enrichment, with the background gene set being all unique genes with coexpression values. Afterwards, we 
sought to determine whether the convergent coexpression relates to differentially expressed ASD genes. 
Summary statistics from the ASD vs control post-mortem brain PsychENCODE dataset were ascertained and 
correlated against the convergent coexpression.  
 
Dissecting relationship between convergence, intolerance and ASD association  

Since ASD risk genes are strongly intolerant and intolerant genes are more coexpressed with each other, 
we wanted to assess whether among the significant convergent genes were also tolerant genes associated with 
ASD. To define intolerance, we divided the genes into two sets, tolerant (LOEUF >0.35) and intolerant 
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(LOEUF <0.35). The correlation was assessed between transcriptional convergence and the -log10(p) 
significance of the exome data. Next, we sought to identify whether transcriptional convergence can identify 
novel ASD genes that have not been previously implicated due to limitations of genetic studies. We defined 
ASD association as having a total Bayes factor (BF) > 2 for the exome data which is includes the presence of 
even a weak association. A BF of greater than 3 is typically used to represent meaningful significance. We 
assessed the correlation between LOEUF and transcriptional convergence for both associated and non-
associated ASD genes.  

 
Classification of 71 ASD associated genes 

We categorized 71 ASD associated genes into three main functional groups including chromatin, 
transcription and synaptic by their association with chromatin function related GO terms 
("GOMF_CHROMATIN_BINDING", "GOMF_CHROMATIN_DNA_BINDING", 
"GOBP_REGULATION_OF_CHROMATIN_ASSEMBLY_OR_DISASSEMBLY","GOBP_CHROMATIN_
ORGANIZATION","GOBP_CHROMATIN_REMODELING","GOBP_REGULATION_OF_CHROMATIN_
BINDING","GOBP_CHROMATIN_MEDIATED_MAINTENANCE_OF_TRANSCRIPTION","GOBP_CHR
OMATIN_MAINTENANCE","GOBP_REGULATION_OF_CHROMATIN_ORGANIZATION" ) and 
transcription related GO terms ("GOBP_MRNA_TRANSCRIPTION", 
"GOBP_REGULATION_OF_TRANSCRIPTION_REGULATORY_REGION_DNA_BINDING", 
"GOBP_MRNA_TRANSCRIPTION_BY_RNA_POLYMERASE_II","GOBP_CHROMATIN_ORGANIZATI
ON_INVOLVED_IN_REGULATION_OF_TRANSCRIPTION","GOMF_RNA_POLYMERASE_II_TRANS
CRIPTION_FACTOR_BINDING","GOMF_TRANSCRIPTION_COREGULATOR_BINDING","GOMF_DN
A_BINDING_TRANSCRIPTION_FACTOR_ACTIVITY","GOMF_TRANSCRIPTION_FACTOR_BINDIN
G","GOMF_TRANSCRIPTION_REGULATOR_ACTIVITY") and synaptic function based on manual curation 
reported in SynGO v1.1 database37. The above listed GO terms and their associated genes were retrieved from 
MSigDB (v7.4) database. Genes that were not identified in any of these categories were manually further 
classified based on https://www.genecards.org/.  
 
 
 
Results 
 
Characterization of CRISPR-mediated perturbations  
 RNA-sequencing data from 17 CRISPR perturbation experiments in neurons comprising 15 unique 
genes were included from three independent sources (see Methods). In total, the CRISPR experiments included: 
twelve CRISPR-mediated heterozygous or homozygous LoF mutational models (AFF2, ANOS1, ASTN2, ATRX, 
CACNA1C, CHD8, KCTD13, KCNQ2, MBD5, SCN2A [2x], and TENM1)10,34, four CRISPR activation models 
(FURIN, SNAP91, TSNARE1, and CLCN3)38, and one CRISPR interference model (SCN2A). We tested for 
differential expression between the CRISPR edited cell lines and the unedited cell lines for each gene passing 
quality control including observing the expected effect in the perturbed gene (see Methods). Each experiment 
was analyzed separately, and the differential expression effect sizes were converted to Z-scores representing 
“CRISPR perturbation.” The experiments had variable impact on global expression patterns, with the total 
number of significantly differentially expressed genes identified ranging from 164 to 4,857 and lambda inflation 
factors ranging from 0.29 – 4.13 (Table 1).  

One gene (SCN2A) was perturbed in three independent experiments allowing us to quantify the 
variability of global gene expression changes due to CRISPR perturbation and genetic background. We found 
significant but modest Pearson correlations of differential expression across experiments that varied from 0.202 
between the two CRISPR-mediated gene editing experiments to 0.343 and 0.335 between the CRISPRi 
experiment and the two gene edit experiments (Supplementary Figure 1). 
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Table 1. CRISPR modelling experimental design and numbers of differentially expressed genes per expe
*Dataset described in Deneault et al.10 Hem: Hemizygous, Hom: Homozygous, Het: Heterozygous.  
 
Gene coexpression correlates with downstream transcriptional consequences of CRISPR perturbat

We hypothesized that gene coexpression would proxy differential expression driven by C
perturbations in the experiments described above. We leveraged 993 post-mortem brain samples fr
dorsolateral prefrontal cortex (DLPFC) and calculated pairwise gene coexpression using Pearson corr
(see Methods). We identified consistent and significant negative correlation between differential express
to CRISPR-mediated gene knockdown and the corresponding perturbed gene’s normalized coexpression
ranging from -0.089 to -0.45 (Figure 1A). The exception was the ANOS1 LoF model which had a nom
significant positive correlation (R=0.018, P=0.046). Overall, genes that are more significantly downregul
a specific CRISPR perturbation are more highly and positively coexpressed with the perturbed gene. Thi
true when CRISPR targets are downregulated via LoF mutation or CRISPRi as well as when th
upregulated using CRISPRa (Supplementary Figure 2).  
 

Gene
Type of CRISPR 

perturbation

Number of 

Edited 

Lines

Number of 

Unedited 

Lines

Number of 

significant 

negative 

genes 

(P<0.05)

Number of 

significant 

positive 

genes 

(P<0.05)

Number of 

significant 

genes 

(P<0.05)

Lambda

AFF2* Hem gene edit 5 4 151 146 297 0.48

ANOS1* Hem gene edit 4 4 122 42 164 0.29

ASTN2* Hom gene edit 3 4 455 173 628 0.75

ATRX* Hem gene edit 4 4 991 966 1957 1.39

CACNA1C* Hom gene edit 3 4 166 132 298 0.57

CHD8* Het gene edit 4 4 112 107 249 0.5

KCNQ2* Hom gene edit 4 4 381 329 710 1.29

KCTD13 Het gene edit 6 5 2167 2690 4857 4.13

MBD5 Het gene edit 6 3 81 177 258 0.72

SCN2A Het gene edit 20 10 573 1137 1710 1.84

SCN2A* Hom gene edit 4 4 143 80 223 0.53

SCN2A CRISPRi 2 2 2062 2525 4587 2.13

TENM1* Hem gene edit 5 4 1114 1280 2394 2.33

CLCN3 CRISPRa 6 6 1049 605 1654 1.31

FURIN CRISPRa 2 2 399 268 667 0.54

SNAP91 CRISPRa 2 2 434 764 1198 1.11

TSNARE1 CRISPRa 2 2 626 825 1451 1.07
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Figure 1. Coexpression proxies CRISPR-induced differential expression. (A) Correlation between 
differential expression profiles for ten CRISPR knockdown models (y-axis) with respective coexpression 
profiles (x-axis) for each gene (points). (B) Meta-analysis across 10 CRISPR perturbations with respective 
meta-analyzed coexpression.  Coexpression is represented as a Fisher transformed Pearson’s correlation Z-
score. A Pearson correlation was done to assess the correlation between coexpression and differential 
expression. The curve for each panel was fitted with a locally weighted smoothing (LOESS) regression.   
 

With a variably sized but consistently significant negative relationship seen across single gene CRISPR 
perturbation and coexpression, we next asked whether meta-analyzing differential expression from multiple 
CRISPR perturbations could also be proxied by a meta-analysis of the coexpression profiles of the perturbed 
genes. In other words, we wanted to assess whether genes that were consistently differentially expressed in the 
same direction across multiple gene perturbations (convergent genes) could be inferred from a similar 
convergence of coexpression of the respective genes from post-mortem brain tissue. When we separately meta-
analyzed all CRISPR-mediated gene edits and corresponding coexpression profiles for the perturbed genes, we 
found that convergent CRISPR perturbation was significantly negatively correlated with convergent 
coexpression (Pearson’s R = -0.44, P < 1x10-300, Figure 1B).  

Given the significant correlation between CRISPR perturbation and coexpression, we next assessed how 
that compared to the correlation of differential expression from different CRISPR perturbations of the same 
gene (SCN2A) across three different experiments. Significant Pearson correlation was observed between SCN2A 
coexpression and differential expression in each CRISPR experiment of SCN2A ranging from -0.25 – -0.43 
(Figure 2). The correlation statistics across CRISPR SCN2A experiments (0.2 – 0.34) were similar to those seen 
when compared to coexpression suggesting that coexpression provided a similar proxy to transcriptional 
dysregulation as an independent CRISPR experiment. After meta-analyzing the differential expression profiles 
from the three SCN2A CRISPR experiments, the correlation with coexpression was stronger than each 
individual experiment alone (Pearson’s R = -0.45, P < 1x10-300).  
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Figure 2. Coexpression consistently proxies differential expression for SCN2A across three independent 
perturbations. Coexpression represented as a Fisher transformed Pearson’s correlation Z-score (x-axis). A 
Pearson correlation was calculated to assess the correlation between coexpression and differential expression 
(y-axis) for each gene (points). The curve for each panel was fitted with a locally weighted smoothing (LOESS) 
regression.   
 
 
 
In silico functional convergence of ASD risk genes  
 We next sought to leverage coexpression to test convergence of risk genes implicated from the most 
recent ASD exome sequencing study5. Among the 71 implicated genes, 70 had coexpression data and could be 
meta-analyzed to calculate the convergent coexpression. After calculating meta-analysis effect sizes of Fisher’s 
transformed correlations, we assessed significance by running 100,000,000 permutations where the 
coexpression of 70 randomly selected genes (among those with coexpression) were meta-analyzed (see 
Methods). Significant overall convergence was identified by comparing the variance of the distribution of 
convergent coexpression of the ASD genes to the variance of the permuted random genes (ASD variance = 
1.70, mean permuted null variance = 0.131, p = 9.9x10-7). A total of 3,798 genes were found to be significantly 
convergently coexpressed at a Bonferroni-adjusted empirical p-value less than 0.01. Nearly 60% of those 
(n=2,271) were positively convergent suggesting that their expression was consistently in the same direction as 
the ASD genes.  

The analysis that identified the 70 ASD genes directly incorporated constraint against LoF variation 
(LOEUF39) into estimates of prior relative risk, which could inflate coexpression convergence among intolerant 
genes. To account for this potential confounding, we reran the permutation procedure randomly selecting 70 
genes with matching LOEUF scores to the ASD genes. The p-values between intolerance-matched permutation 
and not were strongly correlated (Spearman’s Rank Correlation, rho = 0.93, P < 1x10-300), suggesting that the 
models of ASD risk gene discovery did not significantly inflate discovery of convergent genes (Supplementary 
Figure 3). Further, an analysis based on a Fisher’s combined test using only de novo and missense variants 
without incorporating intolerance identified 49 ASD genes (FDR < 0.001) that showed no significant difference 
in intolerance scores compared to the 70 ASD genes (Two-sided Wilcoxon Test, W = 1825.5, p = 0.648). Given 
that intolerance did not seem to confound our analyses, we meta-analyzed the initial 70 genes for downstream 
analyses.  

Convergent genes were overrepresented in genesets related to neuronal and synaptic function with the 
most significant pathways across categories including the synapse (p = 6.00x10-42), synaptic signaling (p = 
2.77x10-26), neuronal system (p = 7.66x10-16) and abnormal CNS synaptic transmission (p = 2.06x10-13) 
(Supplementary Table 1). Convergent genes also represented 126 of the 485 genes implicated in 
neurodevelopmental disorders from DisGeNet40 (p = 1.72x10-9) and 72 of the 239 genes in the cation channel 
complex (p = 5.23x10-7) . Next, we partitioned the significantly convergent genes by direction of effect and 
found that positively convergent genes were largely enriched in synaptic pathways (Supplementary Table 2) 
whereas negatively convergent genes had much less clear pattern of enrichment across pathways 
(Supplementary Tables 3). 

 
Convergence captures ASD signal from exome and post-mortem brain studies 

Given the strong enrichment of synaptic functions observed across convergent genes and the 
neurodevelopmental deficits observed in ASD, we reasoned that convergent genes that contribute to ASD 
etiology would display disease-relevant tissue specificity. We tested this hypothesis and found no meaningful 
convergence using either liver or muscle coexpression data from GTEx (Figure 3A). The mean absolute 
convergence Z-score for the liver and muscle were 0.254 and 0.234 respectively, while the mean absolute Z-
score from the DLPFC was 1.069 and was significantly different than both the liver and the muscle (Two-sided 
Wilcoxon Test, p < 2.2x10-16), suggesting tissue specificity of ASD convergence. To determine if the 
enrichment of convergent genes associated with synaptic terms was driven by ASD risk genes associated with 
synaptic functions, we assigned 60 of the 70 ASD genes to relevant pathway terms associated with synaptic, 
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transcription factor, and chromatin terms. The convergence permutations were rerun for each gene set 
found that convergence was strongly driven by synaptic genes, whereas the chromatin genes and transc
factors displayed progressively weaker convergence (Synaptic variance: 2.57, chromatin variance =
transcription variance = 0.18) (Supplementary Figure 4).  

Finally, we asked whether the convergent genes could inform on the biology of ASD. Excluding
ASD genes used to calculate convergence, there was a significant correlation between convergen
evidence for ASD risk based on the significance of each of the remaining genes to ASD (Spearman’
Correlation, rho = -0.14, p = 4.75x10-63) (Figure 3B). There was a significant enrichment of ASD
implicated through rare variant analyses (q-value <0.05) among the positively convergent genes (Z > 2
4.65 [2.99 - 7.10], p = 5.74x10-11). This effect size was larger when only including Bonferroni-significa
0.01) positively convergent genes (OR: 9.56 [3.85 - 28.41], p = 6.56x10-9). That is, genes most po
convergent were also most likely to be associated to ASD through rare variant analyses.  

 

 
Figure 3. Convergence is tissue specific and associated with ASD. (A) Distributions of transcri
convergence of 70 high-confidence ASD genes in different tissues. (B) Smoothed relationship with con
interval between ASD exome significance and significantly convergent coexpression effect sizes (Pbonf 
(C) Correlation between convergently coexpressed genes (Pbonf < 0.01) and differential expression of AS
mortem DLPFC compared to controls. The curve was fitted with a locally weighted smoothing (L
regression.   
 

ASD risk genes are biologically more likely to be intolerant. Convergent genes also are signif
more likely to be intolerant (mean LOEUF for convergent genes = 0.74, mean LOEUF for other gene
Wilcoxon p-value = 8 x 10-127). However, after splitting genes based on intolerance, we found a sign
correlation between convergence and ASD association for both tolerant (LOEUF > 0.35, Spearman’
Correlation, rho=0.17, P=5.51x10-16) and intolerant genes (LOEUF < 0.35, Spearman correlation, rho
P=2.07x10-5) (Supplementary Figure 5). A significant relationship also existed between convergen
differential expression of ASD post-mortem brain tissue compared to controls with the positive conve
being correlated with downregulation in ASD (Spearman’s R = -0.22, p = 3.62x10-41, Figure 3C).  
          
Potential to identify novel ASD genes missing from current genetic analyses 

Genes with shorter coding sequences will have reduced power in genetic analyses that require m
deleterious variants among cases to quantify risk. Similar issues could exist for genes where dele
variation is inviable but less deleterious modulation could contribute to ASD risk. Given the sign
relationship between convergence and ASD association, we asked whether our set of convergent genes in
potential ASD risk genes with properties that current genetic studies might be underpowered to identify. 
the most significantly associated 71 ASD risk genes, there was a highly significant skew towards longer
sequence (median = 3,642bp) compared to 1,293bp among all other genes. After splitting our p
convergent genes into those with even a weak association to ASD (BF > 2) or not, we identified signif
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increased median coding sequence lengths in the ASD associated genes compared to the rest (median
associated coding sequence length = 2,702 bp; median non-ASD -associated coding sequence length 
bp, p = 1.94x10-26 Wilcoxon Signed Rank Test, Figure 4A). The most positively convergent gen
associated to ASD had similar intolerance scores to those that were linked to ASD (Figure 4B). We sho
positive convergence is more significantly correlated with the ASD effect size driven by missense than p
truncating variation (Spearman’s Rank Correlation, missense type A, missense variants with missense b
Polyphen-2, and constraint [MPC]41 scores between 1 and 2 : rho = 0.177, p = 2.57x10-13; missense 
missense variants with MPC scores greater than or equal to 2: rho = 0.113, p = 3.66x10-6; protein-trun
rho = 0.109, p = 6.99x10-6).  

Finally, we sought to assess whether convergence may increase power to detect genes that hav
level of evidence linking them to ASD risk but have not been implicated in exome-consortia analy
address this question, we leveraged the manually curated database of genes implicated in ASD susceptib
the Simons Foundation Autism Research Initiative (SFARI, https://gene.sfari.org/). Genes in this databas
from large-scale sequencing studies but also from functional studies, clinical reports and genetic stu
common variation. After excluding all genes associated with ASD using the same criteria as before (B
there was a significant enrichment of the remaining positively convergent genes among this broade
geneset (Fisher’s Exact Test, OR: 3.31 [2.48 – 4.35], p = 3.65x10-14) (Supplementary Table 4). This 
suggests that convergence may provide a useful supplement to sequencing studies in searching for add
ASD risk genes. 
 

Figure 4. Convergence captures novel intolerant and small genes implicated in ASD risk. (A) Distri
and medians (colored vertical lines) of coding sequence lengths for significant positively convergen
stratified by their association with ASD. High confidence ASD exome genes (purple) consist of the 71
with a q-value < 0.001. A Bayes factor (BF) > 2 in the ASD exome data is considered ASD-associate
positive convergent genes are split by those with BF > 2 (green) and those with BF < 2 (yellow
Relationship between convergent coexpression and intolerance (LOEUF scores) stratified by associatio
ASD amongst significantly convergent genes. Significant convergence defined as Pbonf < 0.01.  
 
 
Discussion 

 
Understanding the context-specific functional consequences of perturbing genes will be impo

elucidating the molecular underpinnings of disease. Since in vitro experiments remain costly and challen
scale, in silico approaches provide immediate opportunities to improve understanding. Here, we sho
coexpression can proxy the regulatory consequences of CRISPR perturbation across shared contex
similar correlation to replicate CRISPR experiments involving the same gene. Post-mortem brain coexp
meta-analyzed across 70 genes implicated in ASD was then used to demonstrate highly significant reg
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support linking them to ASD but without definitive statistical evidence from large-scale genetic studies, which 
are underpowered to evaluate genes with short coding sequence length and high intolerance. 

Our hypothesis was that gene-gene coexpression would capture some proportion of the downstream 
transcriptional consequences of perturbing a gene through CRISPR in a shared context, providing an 
opportunity to “proxy” these effects in silico and assess functional effects shared across many disease genes 
(“convergence”). Regardless of whether a CRISPR target gene was upregulated or downregulated, genes that 
were positively coexpressed with the target gene experienced transcriptional dysregulation in the same direction 
as the target. For CRISPRi gene knockdown experiments, genes positively coexpressed with the perturbed gene 
showed decreased expression, and for CRISPRa, such genes showed increased expression. Importantly, we 
show that the correlation of coexpression and CRISPR perturbation is similar to the correlation of different 
CRISPR experiments modulating the same gene. Furthermore, the meta-analysis incorporating multiple 
CRISPR experiments is even more highly correlated with coexpression, highlighting the variability in 
perturbation across CRISPR experiments and potential benefits of repeated experiments with different variants 
and backgrounds. Additionally, we found that the convergent differential expression from multiple CRISPR 
perturbations could be inferred by convergent coexpression of the same perturbed genes. These results suggest 
that coexpression could be used to assess transcriptional convergence of disease-relevant genes.  

We explored this possibility by assessing the transcriptional convergence of 70 ASD risk genes and 
found that there was highly significant coexpression convergence. The degree of convergence was context-
specific, absent in expression data from liver or muscle but with a strong signature in brain tissue. Significant 
convergence was also correlated with evidence of association to ASD from sequencing studies and with 
differential expression between ASD cases and controls in post-mortem brain tissue. Moreover, there are 
multiple pathways relevant to neurodevelopmental disorders significantly enriched for the convergent genes, 
including pathways involving the synapse and ion channels42–44, reinforcing the link to ASD. Intriguingly, the 
relationship between convergence and ASD is predominantly a product of positive convergence, or genes 
positively coexpressed with many of the ASD risk genes. In general, there are more strongly positively 
convergent genes than negative. However, despite there being many significant negative convergent genes, 
these genes as a class lack existing evidence for ASD association, and compared to the positive convergent 
genes, they do not show enrichment within previously implicated ASD pathways. These results could point to a 
bias of coexpression, reflect ascertainment limitations arising from genes harboring of de novo LoF variants, or 
signal a biological phenomenon where only downstream functional effects in the same direction as 
dysregulation of risk genes contributes to risk.  

Large-scale genetic studies have contributed dramatically to our current knowledge regarding the 
biological basis of ASD and spearheaded the identification of the risk genes used here to quantify convergence. 
These studies depend on observing a statistically significant excess of deleterious variation among cases. 
Factors that reduce the likelihood of finding variants such as short coding sequence or mutational inviability 
diminish the power of these studies, potentially precluding genuine ASD risk genes from discovery via this 
approach. We were interested in whether our convergence metric could identify such putative “hidden” ASD 
risk genes. We show that our convergent genes are substantially shorter but similarly intolerant compared with 
genes previously associated with ASD. Finally, we show that convergent genes not associated with ASD from 
sequencing studies are still enriched for genes implicated in ASD from clinical diagnostic studies, functional 
studies or analyses of common variation nominating our convergent genes described here as potential novel 
ASD risk genes. For example, LMTK2, was the most convergently coexpressed gene with no association to 
ASD. It is highly intolerant to LoF mutation (LOEUF = 0.24) and highly expressed in brain tissue39,45. 
Interestingly, disruption of this gene contributes to infertility phenotypes in male mice46. The gene has also been 
linked to Alzheimer’s disease and has been suggested to play an important role in axonal transport47,48. Despite 
being strongly coexpressed with high confidence ASD genes and having similar characteristics to other ASD 
genes, it has not been implicated in ASD. Given the infertility phenotypes, this gene may have been missed as 
an ASD contributor simply due to having too few LoF de novo variants and thus insufficient power for 
association.   
 The ability to proxy CRISPR perturbation with coexpression enables quick in silico analyses to better 
understand transcriptional consequences of disruptive mutations and functional convergence. However, there 
are several limitations to this strategy. First, most transcriptional data is derived from bulk tissue. This can 
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obscure relevant coexpression patterns given the cellular heterogeneity and different transcriptional 
backgrounds among different cell-types49. With increasingly larger single-cell datasets, there is a path to 
overcome this issue in the near future. Second, our primary ASD convergence analysis assumes a single 
underlying convergent pathway, while multiple pathways likely contribute, especially given the heterogeneity in 
presentation across individuals diagnosed with ASD. The analytical approach described here can be extended to 
search for multiple convergent pathways, and as the genotype-phenotype association becomes more granular, 
we may observe differing degrees of convergence for genes contributing to distinct phenotypic components of 
ASD. Finally, the use of post-mortem samples cannot fully capture convergence during early development. 
Transcriptional consequences that may affect neurobiology prenatally cannot be easily captured using postnatal 
tissue. Future investigations assessing how transcriptional convergence differs across a developmental timespan 
will prove critical to assess the relevance of using stage-specific biospecimens to answer specific biological 
questions. 

In conclusion, coexpression provides an imperfect but simple proxy for context-specific transcriptional 
consequences of CRISPR perturbation and enables assessing convergence across many risk genes to provide 
insight into biology of disease. Most notably, this approach may facilitate the identification of novel risk genes 
not captured by even the best-powered sequencing studies to date. 
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