1 Title

2	Lor	ng-term ozone exposure associated cause-specific
3	mo	rtality risks with adjusted metrics by cohort studies:
4	A s	ystematic review and meta-analysis
5		
6	Auth	ors
7	H	Iaitong Zhe Sun ^{1,2} , Pei Yu ³ , Changxin Lan ^{4,5} , Michelle Wan ¹ , Sebastian Hickman ¹ ,
8	J	ayaprakash Murulitharan ¹ , Huizhong Shen ⁶ , Le Yuan ¹ , Yuming Guo ^{3*} , Alexander
9	Т	. Archibald ^{1,7} *
10		
11	Affili	ations
12	1	Centre for Atmospheric Science, Yusuf Hamied Department of Chemistry, University of
13		Cambridge, Cambridge CB2 1EW, United Kingdom
14	2	Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, United
15		Kingdom
16	3	School of Public Health and Preventive Medicine, Monash University, Melbourne,
17		Victoria 3004, Australia
18	4	Institute of Reproductive and Child Health, Key Laboratory of Reproductive Health,
19		National Health Commission of the People's Republic of China, Beijing 100191, China
20	5	Department of Epidemiology and Biostatistics, School of Public Health, Peking
21		University, Beijing 100191, China
22	6	School of Environmental Science and Engineering, Southern University of Science and
23		Technology, Shenzhen 518055, China
24	7	National Centre for Atmospheric Science, Cambridge CB2 1EW, United Kingdom
25		
26	*	Correspondence to: Alexander T. Archibald (ata27@cam.ac.uk) and Yuming Guo
27		(yuming.guo@monash.edu)
28		
29		main-text 6749 words + 3 tables + 6 figures
30		
31		

32 ABSTRACT

BACKGROUND: Long-term ozone (O₃) exposure could lead to a series of noncommunicable diseases and increase the mortality risks. However, cohort-based studies
were still rather rare, and inconsistent exposure metrics might impair the credibility of
epidemiological evidence synthetisation. To provide more accurate meta-estimation, this
review updated the systematic review with inclusion of recent studies and summarised
the quantitative associations between O₃ exposure and cause-specific mortality risks
based on unified exposure metrics.

40 **METHODS:** Research articles reporting relative risks between incremental long-term O_3 exposure and causes of mortality covering all-cause, cardiovascular diseases, respiratory 41 42 diseases, chronic obstructive pulmonary disease, pneumonia, ischaemic heart diseases, 43 ischaemic stroke, congestive heart failure, cerebrovascular diseases, and lung cancer, 44 estimated from cohort studies were identified through systematic searches in MEDLINE, 45 Embase and Web of Science. Cross-metric conversion factors were estimated linearly by 46 decadal of observations during 1990-2019. The Hunter-Schmidt random effect estimator 47 was applied to pool the relative risks.

48 **RESULTS:** A total of 25 studies involving 226,453,067 participants (14 unique cohorts 49 covering 99,855,611 participants) were included in the systematic review. After linearly 50 adjusting the inconsistent O₃ exposure metrics into congruity, the pooled relative risks 51(RR) associated with every 10 nmol mol⁻¹ (ppbV) incremental O₃ exposure, by mean of 52 warm-season daily maximum 8-hour average metric, was: 1.014 with 95% confidence 53 interval (CI) ranging 1.009–1.019 for all-cause mortality; 1.025 (95% CI: 1.010–1.040) for respiratory mortality; 1.056 (95% CI: 1.029-1.084) for COPD mortality; 1.019 (95% 54 CI: 1.004–1.035) for cardiovascular mortality; and 1.096 (95% CI: 1.065–1.129) for 55 56 congestive heart failure mortality. Insignificant mortality risk associations were found for 57 ischaemic heart disease, cerebrovascular diseases and lung cancer.

58 **DISCUSSION:** This review covered up-to-date studies, expanded the O₃-exposure 59 associated mortality causes into wider range of categories, and firstly highlighted the 60 issue of inconsistency in O₃ exposure metrics. Non-intercept linear regression-based 61 cross-metric RR conversion was another innovation, but limitation lay in the observation 62 reliance, indicating further calibration with more credible observations available. Large 63 uncertainties in the multi-study pooled RRs would inspire more future studies to 64 corroborate or contradict the results from this review.

- 65 **CONCLUSION:** Adjustment for exposure metrics laid more solid foundation for multi-
- 66 study meta-analysis, and wider coverage of surface O₃ observations are anticipated to
- 67 strengthen the cross-metric conversion in the future. Ever-growing numbers of
- 68 epidemiological studies supported unneglectable cardiopulmonary hazards and all-cause
- 69 mortality risks from long-term O₃ exposure. However, evidences on long-term O₃
- ro exposure associated health effects were still scarce, and hence more relevant studies are
- 71 encouraged to cover more population with regional diversity.
- 72 **REGISTRATION:** The review was registered in PROSPERO (CRD42021270637).
- 73 **FUNDING:** This study is mainly funded by UK Natural Environment Research Council,
- 74 UK National Centre for Atmospheric Science, Australian Research Council and
- 75 Australian National Health and Medical Research Council.
- 76

77 Keywords

- 78 Ozone; long-term exposure; mortality; cohort; metric; respiratory; cardiovascular
- 79

80 Highlights

- 81 1. Updated evidence for O_3 -mortality associations from 25 cohorts has been provided.
- 82 2. Adjusting various O_3 exposure metrics can provide more accurate risk estimations.
- 83 3. Long-term O₃-exposure was associated with increased mortality from all-causes, respiratory
- 84 *disease, COPD, cardiovascular disease and congestive heart failure.*
- 85

86 **1 INTRODUCTION**

87 Atmospheric ozone (O_3) is a short-lived climate forcer.¹ Besides warming the global atmosphere, O₃ in the stratosphere can abate the radiation hazards from ultraviolet ravs 88 89 onto organisms, while O₃ in the ambient air is of detrimental defects on ecosystem and 90 human health.²⁻⁴ and hence health effects caused from exposure to surface O₃ have 91 become a serious public concern. Short-term (i.e. hours to days) exposure to high-level 92 O₃ can cause a series of acute symptoms like asthma, respiratory tract infection, myocardial infarction, and cardiac arrest;⁵⁻⁸ and long-term (i.e. over years) exposure can 93 lead to chronic health outcomes including but not limited to preterm delivery, stroke, 94 chronic obstructive pulmonary diseases, and cerebrovascular diseases.⁹⁻¹² Long-term 95 ambient O₃ exposure was estimated to be responsible for over 0.36 million premature 96 97 deaths globally in 2019 according to the Global Burden of Disease (GBD) report released 98 by the Institute for Health Metrics and Evaluation (IHME).¹³

99 Systematic reviews summarising the associations between the adverse health 100 outcomes, and both the short-term and long-term O₃ exposures, have been performed in previous studies.¹⁴⁻¹⁶ Studies on short-term O₃ exposure-induced morbidities are 101 102 comparatively more abundant than the long-term O₃ exposure studies where the 103 epidemiological evidences are less congruous. Some deficiencies are spotted in the two reviews for long-term O₃ exposure-associated mortality risk studies, ^{15, 16} the primary 104 issue of which is the inconsistent use of various O₃ exposure metrics; however, no other 105 106 reviews are found to remedy these flaws. As a secondary photolytic gaseous air pollutant, 107 the warm-season and diurnal concentrations of surface O₃ will be much higher than coolseason and nocturnal concentrations,^{17, 18} and thus the average and peak metrics of O₃ 108 concentrations shall be of drastically different realistic implications.¹⁹ Under this 109 circumstance, directly pooling the relative risks scaled in different metrics might lead to 110 111 biases.

Atkinson et al. (2016) explored 6 types of mortality causes, but searched the 112 literatures only till 2015;¹⁶ while Huangfu et al. (2019) updated the searches to 2018, but 113 only 3 types of mortality causes were considered.¹⁵ We thus determine to update the 114 115 review on the health effects of O₃ to include more categories of mortalities together with 116 covering the most recent publications. Additionally, GBD estimations ascribed long-term 117 O₃-exposure induced all-cause mortality for chronic obstructive pulmonary disease.¹³ 118 which might lead to underestimations without considering other causes. It is reasonable 119 to deduce that long-term O₃ exposure will exacerbate the mortality of certain diseases given that the short-term exposure increases the morbidity risks of the same diseases, and 120

thus scrutinising epidemiological evidences for multiple causes of mortality will providemore credible supports to fill in this gap.

123 The primary innovation of our updated review is our taking full advantage of global systemic stationary observations to explore the feasibility of adjusting the various 124 125exposure metrics, and pooling the multi-study risks with the unified exposure metric, the 126 mean of warm-season daily maximum 8-hour average, in response to the up-to-date 127 suggestions from the Lancet global environmental health collaboration.²⁰ Through this 128 updated systematic review and meta-analysis on long-term O₃ exposure associated cause-129 specific mortality risks, we aim to present and evaluate epidemiological evidences for 3 130 major questions not fully addressed by the previous 2 reviews, as (1) which mortality causes shall be ascribed to long-term O₃ exposure; (2) have the risk associations changed 131132given the latest studies with more mature research design and methodologies; and (3) 133how to estimate the quantities of the risk association strengths by the suggested exposure 134 metric. Both our methods and discoveries are expected to inspire future O₃-health studies, 135and support relevant policy-making to benefit the global population.

136

137 **2. METHODS**

138 2.1 Search strategy

139 We searched 3 research databases (MEDLINE, Embase, and Web of Science) from 1 September, 2015 till 1 February, 2022 to finish our systematic review and meta-analysis, 140 updated from 2 previous reviews on long-term O₃ exposure-associated mortality.^{15, 16} 141 Search terms also referred to these 2 previous systematic reviews with modifications to 142 enhance the inclusion of potential relevant studies, as we combined the keywords 143 144 relevant to the cause-specific mortalities (i.e. "mortality", "death", "premature death", "all-cause", "non-accidental", "cardiopulmonary", "respiratory", "chronic obstructive 145pulmonary disease", "pneumonia", cardiovascular, "lung cancer", "cerebrovascular", 146 "stroke", "ischaemic heart disease", "congestive heart failure"), the pollutant of research 147 interest (i.e. "ozone"), and qualified epidemiological study types (i.e. "long-term", 148 149 "cohort study", "prospective", "retrospective", "longitudinal study"). The detailed search 150 strategies were listed in Table S1. Health outcomes considered in the systematic review 151 were: mortality from (1) all causes (AC, ICD9: 001-799, ICD10: A00-R99); (2) all respiratory diseases (RESP, ICD9: 460-519, ICD10: J00-J98); (3) chronic obstructive 152

153 pulmonary diseases and allied conditions (COPD, ICD9: 490-496, ICD10: J19-J46); (4)

- all cardiovascular diseases (CVD, ICD9: 390-459, ICD10:I00-I98); (5) all
- 155 cerebrovascular diseases (CEVD, ICD9: 430-438, ICD10: I60-I69); (6) ischaemic heart
- 156 disease (IHD, ICD9: 410-414, ICD10: I20-I25); (7) congestive heart failure (CHF, ICD9:
- 157 428, ICD10: I50); (8) ischaemic stroke (ICD9: 434, ICD10: I61-I64); (9) pneumonia
- 158 (ICD9: 480-487, ICD10: J12-J18); and (10) lung cancer (LC, ICD9: 162, ICD10: C33-
- 159 C34).

160 2.2 Study eligibility criteria

As an updated systematic review, literatures identified in the previous 2 reviews 161 underwent examination together with the newly retrieved ones. Studies were included 162 163 during screening following the criteria as: (1) the epidemiological research should be 164 conducted based on cohorts; (2) the exposure should include O_3 as an individual risk 165 factor; (3) the health outcomes should be all-cause or cause-specific deaths at individual 166 level; (4) studies provided hazard ratio (HR), risk ratio (RR) or odds ratio (OR) and their 167 95% confidence intervals (CIs) clearly and reported by every increase unit (e.g. 10-ppbV) of exposure concentrations, assuming linear risk relationship with adjusting key 168 169 confounders; (6) the study should be published as an original research article in scholarly 170 peer-reviewed journals in English. For articles from the same cohort, only one single 171study covering the widest populations and the longest follow-up period was reserved for 172 meta-analysis, unless the subgroups of participants and study follow-up periods are 173clearly stated to be of mild overlapping; We followed the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines to process the included 174175studies on ambient O₃ exposure induced mortality.

176 **2.3 Study selection and scrutinisation**

- 177 All searched literatures were archived in ClarivateTM Analytics Endnote X9.3.1
- 178 reference manager software. Two literature review investigators (HZS and CL)
- 179 conducted title and abstract pre-screening independently for all web-searched records and
- 180 reviewed the full text for the pre-screened studies. Disagreements were resolved by
- 181 discussions with a third reviewer (PY).

182 **2.4 Data extraction**

Details from each screened-out literatures were extracted and labelled for the purpose of meta-analysis, including (1) the authors with publication year as study labels of reference; (2) basic descriptive information of the study cohort embracing the cohort name, country, follow-up periods, numbers of cases and total participants, population genders and ethnics, exposure metrics, health outcomes, and major confounders; (3) the risk association effects preferably quantified in HR (and also RR/OR as substitute choices) per unit incremental exposure with 95% confidence interval (CI).

190 **2.5 Study quality assessment**

191 All screened-out studies underwent quality evaluation using the Quality Assessment 192 Tool of Observational Cohort and Cross-Sectional Studies developed by National 193 Institute of Health (NIH) (https://www.nhlbi.nih.gov/health-topics/study-quality-194 assessment-tools), aiming to ensure the studies considered for meta-analysis are adequately reliable. The assessments were cross-validated by two authors (HZS and CL) 195 independently, with the third author (PY) supervising any disagreements. Table S2 listed 196 197 14 assessment items assigned with 1 score for each, and the tallied scores were translated 198 into a literature-specific rating of quality. Studies scoring full-mark 14 were categorised 199 to be "Good", while 10-13 as "Fair" and <10 as "Poor".

200 Besides applying the quality assessment tool to determine which reviewed studies 201 should be included for meta-analysis, checking the epidemiological evidence quality 202 from the included literatures for each cause of mortality was finished through the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system^{21,22} to 203 vield rating bands ranging across "high", "moderate", "low", and "very low". This 204 205 grading system by default rated "high-quality" for cohort studies as the starting point of 206 evaluation, and the rate would be downgraded by five limitations as the existence of (1)risk of bias examined by the Quality Assessment Tool (Table S2), (2) imprecision (i.e. 207 208 studies did not report the central risk estimations with confidence intervals), (3) 209 inconsistency (i.e. the directions of the estimated risks were controversial across studies). 210 (4) indirectness (i.e. studies did not include the desired population, exposure, or health 211 outcomes), and (5) publication bias (i.e. researchers tended to publish studies with 212 positive results); and upgraded by three strengths as reporting (1) exposure-response trend, (2) residual confounding (i.e. adjusting the confounders highlighted the risks), and 213 214 (3) strong associations. Publication biases were graphically presented by funnel plots,²³

and statistically tested by trim-and-fill method.²⁴ The review was registered in

216 PROSPERO (CRD42021270637).

217 **2.6 Exposure adjustment**

218 **2.6.1 Unit unification**

There were two major units used to quantify the surface O₃ concentrations, nmol mol⁻¹ or parts per billion by volume mixing ratio (ppbV) more frequently used by atmospheric modelling researchers,^{17, 18, 25} and milligram per cubic metre by mass concentration (μ g/m³) widely used by public health studies.¹² These two units are interchangeable to each other based on the ideal gas law *PV* = *nRT*, if the air

temperatures (T) and pressures (P) are given, as presented in eqs 1–4.

225 1 ppbV
$$O_3 = \frac{1 \times 10^{-9} \ mol}{1 \ mol} \frac{O_3}{air}$$
 (eq. 1)

226 1 mol air
$$\Leftrightarrow \frac{RT}{P} \times 1 \mod (m^3) = \frac{8.314 \ Pa \cdot m^3 \cdot K^{-1} \times T}{P} (m^3)$$
 (eq. 2)

227
$$1 \times 10^{-9} \ mol \ O_3 \times 47.997g \cdot mol^{-1} = 47.997 \times 10^{-9}g \ O_3$$
 (eq. 3)

228 1 *ppbV*
$$O_3 = \frac{47.997 \times 10^{-9}g \times 10^6 \mu g \cdot g^{-1}}{8.314 \ Pa \cdot m^3 \cdot K^{-1} \times T/P \ m^3} \frac{O_3}{air} = 5.773 \times 10^{-3} \times \frac{P(Pa)}{T(K)} \frac{O_3}{air} \mu g \cdot m^{-3}$$
 (eq. 4)

Assuming T = 298.65 K (25.5°C) and P = 101.325 kPa, the ppbV- μ g/m³ conversion factor could be approximated as 1 ppbV ~ 1.96 μ g/m³. Though the surface air temperatures and pressures would vary across seasons, such simplification was still widely used in previous studies,^{15, 26, 27} being of more credibility for long-term surface O₃ studies averaging the surface air temperatures and pressures at longer periods. For example, even at very low temperature of 270 K, the conversion factor was 2.17, which corroborated the stability of linear conversion.

236 **2.6.2 Metric unification**

Surface O₃, as a secondary photochemistry pollutant involving photolysis of NO₂ to trigger chains of radical reactions, has concentrations that will vary significantly between

day and night-time, and between warm and cool seasons, as discussed by numbers of
 studies.^{17, 28-31} Under this circumstance, various daily metrics to quantify the surface O₃
 concentrations emerged due to series of considerations, which however brought in more
 difficulties to assimilate epidemiological evidences. The previous reviews simply pooled

- the reported risk association strengths without adjusting the diverse metrics,^{15, 16} which
- 244 we thought was a fatal defect requiring improvements.

245 We therefore designed to update the meta-analysis by unifying the exposure metrics 246 for pooled O₃ exposure-associated risks. As suggested by the U.S. EPA final report of Air 247 Quality Criteria for Ozone and Other Photochemical Oxidants,³² linear relationships were assumed to estimate the cross-metric conversion factors using long-term reliable 248 observations as the Tropospheric Ozone Assessment Report (TOAR) archive¹⁹ and China 249 250 National Environmental Monitoring Centre (CNEMC, http://www.cnemc.cn/en/) in our 251review, and correlation matrix was used to validate that the presumptions of linearity 252were not violated. Both TOAR and CNEMC sites measured the surface O₃ by means of 253the UV absorption technique with strict quality control so as to ensure the comparability 254 of the records across different countries and regions.^{33, 34} We considered 6 complex 255metrics for mutual conversion as (1) annual mean of 24-hour daily average (ADA24), (2) 2566-month warm season mean of 24-hour daily average (6mDA24), (3) annual mean of 257 daily maximum 8-hour average (ADMA8), (4) 6-month warm season mean of daily maximum 8-hour average (6mDMA8), (5) annual mean of daily maximum 1-hour 258 259 average (ADMA1), and (6) 6-month warm season mean of daily maximum 1-hour 260 average (6mDMA1). Long-term averaging-based metric conversion could smooth the 261 temporal variations resulting from the seasonal and geographical solar radiation 262 variabilities. The linear conversion factors (k) were mathematically defined by eq 5, to 263 adjust the original metric into the target one with irreducible regression errors ε .

264 $C_{Adjusted} = k_{Original \rightarrow Adjusted} \times C_{Original} + \epsilon$

(eq. 5)

265 2.7 Meta-analysis

We collectively named relative risks (RR) for HR/RR/OR throughout our metaanalysis. All literature-reported RRs were converted into adjusted incremental risk ratios with a 10-ppbV O₃-exposure increase by target metric (i.e. 6mDMA8 in this study), following eq 6 as shown below:

270
$$RR_{Adjusted} = e^{\left(\frac{lnRR_{Original}}{k_{Original} \rightarrow Adjusted}\right)}$$
(eq. 6)

where *ln* is the natural logarithm, $RR_{Original}$ is the originally reported risk estimates scaled into 10-ppbV incremental exposure, and $k_{Original \rightarrow Adjusted}$ is the conversion factor for metric unification. Multi-study pooled risks with 95% confidence interval (CI) were calculated from the adjusted RRs by Hunter-Schmidt random effect meta-regression estimator to correct the potential errors and biases caused from the diversity of study population and methodologies.³⁵

We applied the Higgins I^2 to quantify the heterogeneity across studies. The Higgins statistics I^2 is defined as

279
$$I^2 = \frac{Q - df}{Q} \times 100\%$$
 (eq. 6)

where Q is the Cochran's non-parametric heterogeneity statistic assessing whether there are any cross-study differences in risks based on χ^2 distribution and *df* is the corresponding degrees of freedom.³⁶ Low I^2 values indicate no important heterogeneity observed and high I^2 values, especially >75%, indicate considerable heterogeneity.

Subgroup analyses were conducted by grouping the selected studies upon the gender, regions, O₃ exposure metrics, and methodological reliability of individual exposure assignment; together with the adjustment of ethnicity, body mass index (BMI), smoking history, lifestyle features, and exposure to PM_{2.5} and NO₂. Subgroups should contain at least 3 studies. Leave-one-out sensitivity analyses were also accomplished to test the robustness of synthesised overall risks by meta-analysis. All meta-analyses were performed in R 4.1.1 with packages *meta*, *metafor*, and *metainf*.

291 The most widely recognised approach to construct the integrated exposure-response (IER)³⁷ relationships required sufficient epidemiological studies to comprehensively 292 293 sample the population exposure levels. However, studies on long-term O₃ exposure 294 health effects were relatively limited, under which circumstance we made methodological 295 modifications to make better use of the variabilities in exposure levels by statistically 296 imputing the exposure distributions for each study from the provided statistics (e.g. mean, 297 standard deviation, and percentiles) for curve fitting as elaborated in Supplementary Text 298 S1. Supplementary Text S2 described the detailed procedures of exposure distribution imputations with a demonstration provided in S3, through which high uncertainties were 299 300 still observed in the fitted IER curves due to insufficient epidemiological evidences.

301

302 **3. RESULTS**

303 **3.1 Study characters**

304 From the 3 databases during September 2015 till February 2022, a total of 339 studies (77 from MEDLINE, 102 from Embase, and 160 from Web of Science) were 305 306 searched; and together with 34 additional literatures added manually from the 2 previous 307 systematic reviews, ^{15, 16} 373 studies underwent duplication censoring, deleting 101 308 duplicated studies. After detailed scrutinisation for 272 studies, a total of 25 studies 309 concerning long-term O₃ exposure and multi-cause mortalities were finally enrolled for 310 quality evaluation, meta-analysis and further discussions (Figure 1).³⁸⁻⁶² Table 1 311 summarised the basic information of the 25 included studies sorted by the publication 312 year and surname of the first author.

313 **3.2 Metrics and exposure assignments**

Our updated systematic review stressed more on the exposure metrics and 314 methodologies to obtain O₃ exposure, as summarised in Table 2. Abbey et al. (1999),³⁸ 315 Jerrett et al. (2013)⁴⁶ and Lipsett et al. (2011)⁴³ did not state the metric they used clearly, 316 317 but based on comparisons between the reported surface O₃ concentrations and TOAR 318 observational archives, we reasonably assumed ADA24 for the first study, and ADMA8 319 for the rest two. Details of the metric matching were given in Supplementary Text (S4). Lipfert et al. (2006)³⁹ used the highest 95th percentile by hourly resolved O₃ 320 concentrations as the peak exposure metric, which was only used in this one singular 321 322 study, and hence approximated to DMA1. Krewski et al. (2009)⁴¹ and Smith et al. (2009)⁴² were both studies on ACS CPS II, and thus the same exposure assignment 323 methodologies and metrics were assumed as Jerrett et al. (2009).⁴⁰ Likewise, Cakmak et 324 al. $(2018)^{53}$ and Weichenthal et al. $(2017)^{52}$ were assumed to inherit Crouse et al. $(2015)^{48}$ 325 326 as all these 3 studies were on CANCHEC. Warm season was defined as 6 months from 327 April to September in terms of the northern hemisphere by default, but we made no exceptions to 3 studies as Zanobetti et al. (2011)⁴⁴ using May to September, and Crouse 328 329 et al. (2015)⁴⁸ and Paul et al. (2020)⁵⁷ using May to October, due to limited number of 330 studies searched.

Across all included studies, multiple methods were applied to obtain gap-free surface O₃ concentrations for individual-level exposure assignment. The most basic way was the

nearest neighbour matching between participant residential locations and *in situ*

- 334 observation sites, which were more frequently used in earlier studies.^{39,40} A
- 335 comparatively more complicated way was statistical spatial interpolation, by inverse
- distance weighting⁴⁶ or ordinary kriging⁴¹. Full spatial coverage products, such as
- 337 satellite-based remote-sensing⁵¹ and chemistry transport models⁵⁶, were used in some
- 338 studies by supervised-learning-based data fusion techniques including but not limited to
- universal kriging embedded land use regression,⁴⁷ Bayesian hierarchical model⁵⁰ and
- 340 ensemble learning⁵¹ to enhance the spatial extrapolation accuracy, which were evaluated
- to be of higher credibility than the basic ones described previously. All basic
- 342 interpolation methods using merely the observations were rated as "Low"; applying
- 343 chemical transport model simulations without calibration from the observations as
- 344 "Moderate"; linearly coupling the observations with simulations as "Good"; and multi-
- 345 source data assimilation by means of more sophisticated approaches as "High". To sum
- up, 8 studies were rated "High", 5 were "Good", 2 were "Moderate", and 10 were "Low".
- 347 Methodological progresses with time were evident as manifested in **Table 2**, prefiguring
- 348 an explosion of population-based environmental health studies in the age of big data.

Based on the TOAR and CNEMC *in situ* observations, the cross-metric non-intercept linear conversion factors were estimated with regression accuracies given in **Figure 2**.

351 Synthesised from the recent relevant studies, the 6mDMA8 metric was more

352 recommended to highlight the peak exposure; and therefore, we chose to convert the

353 originally reported RRs uniformly into the 6mDMA8 scale as standard. The O₃ exposure

levels by the original and unified metric were listed in Supplementary Text S1.

355 Demonstrations for the conversion interpretation and procedures were presented in

356 Supplementary Text S5, respectively.

357 3.3 Meta-analysis results

We conducted meta-analyses for long-term O₃ exposure-associated into 10 categories of mortalities as (1) all causes (AC), (2) all respiratory diseases (RESP), (3) chronic obstructive pulmonary diseases and allied conditions (COPD), (4) all cardiovascular diseases (CVD), (5) all cerebrovascular diseases (CEVD), (6) ischaemic heart disease (IHD), (7) congestive heart failure (CHF), and (8) lung cancer (LC), with the exposure metrics adjusted into 6mDMA8.

364 **3.3.1 All-cause mortality**

365 A total of 23 studies were included into O₃ exposure-associated all-cause mortality meta-analysis, pooling the overall risk into RR = 1.014 (95% CI: 1.009–1.019, I²: 97.8%) 366 367 with every 10-ppbV incremental exposure by 6mDMA8 as presented in Figure 3. Sub-368 group meta-analysis by originally reported metrics concluded the significances of risks vary across metrics, as high-concentration highlighted metrics like 6mDMA8 were of the 369 370 highest positive risk (RR = 1.022, 95% CI: 1.014–1.031) while the smoothed metric 371 ADA24 reported negative association (RR = 0.980, 95% CI: 0.960–1.001), as shown in 372 Figure S1. Grouped by study regions, significant discrepancies of the risk pattern was 373 found (Figure S2), as the studies in North America revealed positive associations as RR =374 1.019 (95% CI: 1.014–1.024), while researches on European populations showed reversed risks as RR = 0.910 (95% CI: 0.827–1.001), though not significant. The cross-375 376 region divergences did not necessarily indicate differences in population vulnerability, as 377 (1) less and younger study population, (2) shorter follow-up durations, and (3) use of 378 smoothed exposure metrics for studies in Europe could all potentially obscure the 379 potential risk associations. Subgroup analysis manifested that high inter-study 380 heterogeneities originated from metric inconsistency, methodological reliability of individual exposure assignment, and population variabilities, as encapsulated in Table S3. 381 382 The funnel plot was visually symmetrical (Figure S3), and studies reporting risks below the pooled value were even slightly more, indicating no detected severe potential 383 publication biases. 384

No significant inter-gender differences were observed based on the limited studies reporting gender-specific risk association strengths. Further subgroup analyses were unfeasible due to the lack of reporting in the literature. Alternatively, grouped RRs were estimated based on whether the original researches had adjusted the confounding effects from ethnicity, body mass index (BMI), smoking history, lifestyle features, exposure levels of PM_{2.5} and NO₂, and no inter-group divergences were observed (Table S3).

391 **3.3.2 Respiratory mortality**

Meta-analysis for O₃ exposure-associated all respiratory mortality includes 16 studies, pooling which gave the overall RR = 1.025 (95% CI: 1.010-1.040, I²: 83.9%) for every 10-ppbV incremental O₃ exposure by 6mDMA8 (**Figure 4**). Based on sub-group meta-analysis for different metrics (**Figure S4**), peak metrics showed more significant increasing risks than ADA24, where most of the heterogeneities were from (I² = 87.0%). Cross-metric divergences were generally higher than intra-metric discrepancies. Studies

- 398 on North America populations showed better homogeneity in positive risks (RR = 1.029,
- $399 \quad 95\%$ CI: 1.011–1.047, I² = 71.1%, Figure S5) than the European cohorts, pooling from
- 400 which the overall risks were congruously insignificant (RR = 0.941, 95% CI: 0.856–
- 401 1.036, $I^2 = 91.2\%$). For O₃-COPD mortality association, the pooled RR was 1.056 (95%)
- 402 CI: 1.029–1.084, $I^2 = 94.5\%$) for 10-ppbV incremental O₃ exposure by 6mDMA8 from 7
- 403 studies. No apparent positive publication biases were detected for both respiratory and
- 404 COPD mortalities from the funnel plot (Figure S3).

405 **3.3.3 Cardiovascular mortality**

406 A total of 15 studies were included to pool the overall O₃ exposure-induced CVD mortality risks as RR = $1.019 (95\% \text{ CI}: 1.004 - 1.035, \text{ I}^2 = 97.7\%)$ for each 10-ppbV 407 408 additional O₃ exposure by 6mDMA8 (Figure 5). Given the fact that the lower bound of 409 uncertainty interval was so close to the null hypothesis (i.e. RR = 1), the positive risk 410 association found in this review could be controversial, and thus would require more 411 studies to support or refute the finding. Heterogeneities ($I^2 > 79.2\%$) were observed 412 through all 3 metric-grouped studies as presented in Figure S6. Positive risk associations 413 were found on 10 North American cohorts (RR = 1.036, 95% CI: 1.019–1.053) while oppositely for 5 European cohorts (RR = 0.934, 95% CI: 0.865–1.008), as shown in 414 415 Figure S7. There was no need to be concerned with the publication bias, and no more 416 inter-group divergences were spotted except for grouping by exposure assignment methodological credibility (Table S3). The pooled risk for the congestive heart failure-417 418 induced mortality from 4 studies was RR = 1.074 (95% CI: 1.054–1.093, $I^2 = 85.8\%$) 419 with every 10-ppbV incremental O₃ exposure by 6mDMA8.

420 **3.3.4 Other mortality causes**

The other cause-specific mortality risks attributable to long-term O₃ exposure were not statistically significant (**Figure 6**), as IHD mortality risk pooled from 10 studies was RR = 1.012 (95% CI: 0.987–1.039, I² = 98.7%), CEVD mortality risk pooled from 6 studies was RR = 0.993 (95% CI: 0.979–1.008, I² = 80.6%), and LC mortality risk pooled from 13 studies was RR = 0.966 (95% CI: 0.926–1.007, I² = 84.2%). For all 8 studied mortality causes, we also provided pooled risks by 3 more widely used metrics (i.e. 6mDA24, ADMA8, and ADA24) besides 6mDMA8, as listed in **Table 3** for reference.

428 **3.4 Study assessment**

429 All 25 studies included into our final meta-analysis were rated to be above "Fair" (14 as "Fair" and 11 as "Good") by the Quality Assessment Tool for Observational Cohort 430 Studies, as listed in Table S4. All studies well met 10 out of 14 assessment items, while 9 431 432 studies did not sufficiently clarify the participant exclusion criteria; 2 re-analysis study reports did not clearly state the O₃ exposures;^{41, 42} 2 studies were of relatively insufficient 433 follow-up durations (e.g. less than 5 years) to observe the outcomes resulting from long-434 435 term exposure;^{45, 63} and 10 studies were of methodological deficiencies in individual exposure assignment,^{38-46, 55} most of which were conducted before 2013 when data 436 437 assimilation techniques were not maturely developed to fuse observations with other full spatial coverage products such as satellite-based remote sensing and atmospheric 438 439 mechanistic simulations. The satisfactory assessment results overall indicated 440 inconspicuous risks of bias, laying the reliable foundation for meta-analyses.

Tables S5 displayed GRADE epidemiological evidence assessment results for each 441 442 mortality cause from all involved corresponding studies. In brief, the overall judgements for all-cause, respiratory, cardiovascular, ischaemic heart disease, congestive heart 443 444 failure, and lung cancer mortality risks were "High", while the rating for the rest 2 cause-445 specific mortality risks (COPD and cerebrovascular diseases) were both "Moderate". 446 Inconsistence of the risk directions (i.e. positive or negative associations) was the most 447 common reason for downgrading, except for the CHF-induced mortality. There were 6 448 studies having reported the O₃-mortality exposure-response trends to support the additional risks, as an assessment upgrading item for the pooled RRs of all-cause, 449 respiratory and cardiovascular mortality. Cakmak et al. (2018) spotted higher RRs after 450 451 adjusting the confounder compared to the crude values.⁵³ which gave prominence to the positive risk associations and thus correspondingly upgraded the rating for all-cause, 452 ischaemic heart disease, and lung cancer mortalities. No substantial positive publication 453 biases were found based on the collected evidences. 454

455 **3.5 Sensitivity analysis**

Leave-one-out sensitivity analyses showed stable risk estimates as summarised in Table S6, except for the lung cancer mortality risks after eliminating Kazemiparkouhi et al. (2019), the only study reporting positive risk association,⁵⁵ while the rest 11 studies concluded insignificant risks or even protective effects. Since the metric harmonisation in our study was an innovative attempt, we provided both metric-adjusted and unadjusted

461 crude results for reference as presented in Table 3. The crude results were pooled from the originally reported relative risk values only unified into per 10-ppbV incremental 462 463 exposure, without being transformed into any metrics for congruity. Along with the metaanalyses on all qualified studies, the relative risks were also pooled by keeping only one 464 465 latest study with the largest population for each separate cohort, as summarised in Table 466 **S7**. Under this circumstance, the pooled unit incremental mortality risks with every 10ppbV incremental O₃ exposure by 6mMDA8 metric were RR = 1.008 (95% CI: 1.006-467 $1.009, I^2 = 82.6\%$) for all causes, RR = $1.034 (95\% \text{ CI}: 1.017 - 1.050, I^2 = 81.7\%)$ for all 468 469 respiratory diseases, RR = $1.060 (95\% \text{ CI}: 1.040-1.080, \text{ I}^2 = 90.2\%)$ for COPD, RR = $1.032 (95\% \text{ CI: } 1.010-1.055, \text{ I}^2 = 98.2\%)$ for all cardiovascular diseases, RR = 1.008 470 $(95\% \text{ CI: } 0.973-1.045, \text{ I}^2 = 99.2\%)$ for ischaemic heart disease, and RR = 0.966 (95% CI: 471 472 0.931-1.002, $I^2 = 83.8\%$) for lung cancer. Studies for mortality risks of cerebrovascular 473 diseases and congestive heart failure were respectively conducted on different cohorts.

- and hence such supplementary analysis was unnecessary.
- 475

476 **4. DISCUSSION**

477 **4.1 Improvements as an updated review**

This work improves on 2 previous high-quality reviews^{15, 16} by covering up-to-date 478 peer-reviewed studies, and expanding the O₃-exposure associated causes of mortality into 479 wider range of categories. It is the first systematic review of the association between 480 481 long-term O₃ exposure and cause-specific mortality highlighting the issue of inconsistent use of exposure metrics to our best knowledge. Since tropospheric O₃ is a photochemical 482 pollutant which largely depends on solar radiation, the surface O₃ concentrations can vary 483 drastically between day and night, as well as warmer and cooler seasons. We pointed out 484 485 that a 10-ppbV increase in annual daily 24-hour average concentration (ADA24) is more constrained in magnitude than a 10-ppbV increase in warm-season daily 8-hour 486 487 maximum average concentration (6mDMA8) owing to the wider variability in the range 488 of the latter metric. Taking the observations by TOAR and CNEMC in situ monitoring 489 networks during 1990-2019 as an example, the surface O_3 concentrations were 27.6 ± 6.1 490 (IOR: 24.1–31.0) ppbV by ADA24, while correspondingly 53.1 ± 10.6 (IOR: 47.7–61.4) 491 ppbV by 6mDMA8, which indicated a 10-ppbV change fell below the IQR by the 492 6mDMA8, but could exceed the IQR using the ADA24 metric. This was why we believe

adjusting the exposure metrics was necessary for O₃ exposure-attributable health risk
 meta-analysis.

495 We also put forward a feasible approach to mutually convert the O₃ exposure

496 concentrations and corresponding risk strengths in various metrics by non-intercept linear

497 projections following the operational suggestions from EPA,³² but update the linear

498 conversion factors based on global *in situ* surface O₃ observations during 1990-2019. The

- 499 methodological innovation took advantage of multi-dimensional information from the
- 500 original studies, which could inspire further observation collections and researches for
- 501 corroborations and improvements.

502 4.2 Metric relevant issues

503 Although linear coefficients were applied onto the cross-metric conversions, 504 irreducible noises still existed given the high root mean squared errors (RMSE) as shown 505 in **Figure 2**, which exposed the limitation of risk strength adjustment into the same 506 exposure metric by simple linear conversion, as the actual cross-metric relationships 507 could be way more complicated. However, there was no other way but using the linear 508 conversion coefficients as surrogates to unify the RRs by different metric reported in 509 original studies, and thus to avoid uncertainties brought by the conversion of metrics, 510 using a promissory consistent exposure metric or estimating the unit excess RRs in 511 multiple metrics would be highly advocated in future long-term O₃-exposure 512 epidemiology studies.

513 Such linear conversion of risk associations could be validated by Kazemiparkouhi et al. (2020),⁵⁵ where multiple metrics were applied to estimate the mortality risks. For 514 515 COPD mortality, the RR was 1.072 (95% CI: 1.067–1.077) by 6mDMA1 for every 10-516 ppbV additional exposure; and after converting into 6mDMA8 metric using the linear coefficient 0.831 (Figure 2), the estimated RR was 1.087 (95% CI: 1.081–1.093), close 517 to the literature reported 1.084 (95% CI: 1.079–1.089),⁵⁵ which justified our linear 518 519 conversion method. Converting Cross-metric linear conversions would not change the 520 risk association direction, but using different exposure metrics when estimating the O₃-521 exposure attributable mortality risks could potentially cause discrepancies. For an 522 instance, Kazemiparkouhi et al. (2020) concluded excess hazards of long-term O₃ 523 exposure on all-cause mortality using 6mDMA1 and 6mDMA8 as quantitative metrics, 524 but 6mDA24 led to a specious prevention effect (RR = 0.990, 95% CI: 0.988–0.991), 525 which should be attributed to the existence of a theoretical exposure safety level for O_3 526 below which no negative health effects should occur. Under this circumstance, lower-527 level metrics (e.g. ADA24) by averaging the peak O_3 exposures might obscure the

effective doses above the threshold, and also reduce the signal-to-noise ratios, so that
were of lower credibility in recognising hazardous population exposures than higher-level
metrics (e.g. 6mDMA8).

531Data mining techniques were able to realise high-accuracy predictions of surface O₃ 532 concentrations, but errors were never avoidable. Carev et al. (2013) used a basic IDW 533 spatial interpolation approach to obtain the surface O_3 concentrations where the R^2 were 534 0.24–0.76,⁴⁵ while years later Di et al. (2017) applied an ensemble learning approach, achieving $R^2 = 0.80$, RMSE = 2.91 ppbV.⁵¹ Carey et al. (2013) reported the IQR of O₃ 535 536 exposure concentrations as 3.0 ppbV, which was comparable to the RMSE of Di et al. (2017).⁵¹ Besides, lower R² could be accompanied with higher prediction errors, which 537 538 might have concealed the highest and lowest quartiles, and led to failures in 539 distinguishing the population-level exposures. This concern had been reflected in our 540 subgroup meta-analysis by exposure metrics, that lower-level metrics were more inclined 541 to report insignificant risks, which also cast sceptics on the reliability of studies covering 542 narrow exposure variabilities. We therefore are in favour of the Lancet suggestions to use 543 peak metrics to quantify the long-term O₃ exposure such as 6mDMA8, and also speak 544 highly of the state-of-the-art data techniques to reduce errors in O₃ concentration 545 prediction, so as to make a distinction between the high- and low-exposure populations.

546 4.3 Pathogenesis supports

547 Atkinson et al. (2016) concluded insignificant pooled risks for long-term O₃ exposure associated all-cause and respiratory mortality,¹⁶ which contradicted our results. 548 It should mainly be ascribed to the heterogeneity between the more recent studies and 549 550 earlier ones. The majority of studies collected in Atkinson et al. (2016) applied primitive 551statistical methods (i.e. nearest neighbourhood matching, IDW and ordinary kriging 552 interpolation) for individual exposure assignment, which might have weakened the 553 individual-level exposure distinguishment. In addition, some studies using ADA24 as the exposure metric could have also obscured the significance of associations.^{43, 45, 46} In 554 contrast, studies after 2016 more frequently applied advanced numerical simulation 555 556 models and data assimilation techniques to increase the precision of population exposure assessment; and most of them used 6mDMA8 metric to foreground the high exposures.^{50,} 557 ^{52, 53, 55-57} These recent studies stuck out the significant O₃-mortality associations. 558

559 From another aspect, pathological mechanisms had been at least partially ascertained 560 by laboratorial experiments. The inhaled O₃ could constrict the muscles in the airways 561 leading to shortness of breath, and damage the lining with inflammation.⁶⁴ Long-term O₃

- 562 exposure could increase the oxidative stress in the cardiovascular system,⁶⁵ and cause
- 563 progressive thickening of the carotid arteries to restrict cerebral blood supply.⁶⁶
- 564 Additionally, strong associations had already been found between short-term O₃ exposure
- and a variety of cardiopulmonary symptoms as reported by a number of observational
- 566 epidemiological studies,⁶ which also supported the long-term exposure effects, as it was
- 567 unreasonable to presume no incremental risks by long-term exposure given the verified
- 568 significant short-term effects. We thus were inclined to approve of the opinion that long-
- term O₃ exposure would increase mortality risks in agreement with GBD report.²⁰
- 570 To alleviate the population health loss resulting from O₃ exposure, the U.S. EPA
- 571 appealed for optimisations in real-time accessibility of air quality index, with which
- 572 residents could be able to avoid unnecessary high pollution exposure
- 573 (https://www.epa.gov/ground-level-ozone-pollution/health-effects-ozone-pollution).
- 574 Appropriate diets and supplements including carotenoids, vitamin D and vitamin E were
- 575 recognised to be preventive against air pollution induced respiratory damages, which was
- 576 a practical protective measure for the vulnerable.⁶⁷

577 **4.4 Concentration-response relationship**

578 Few studies had examined the concentration-response curves between long-term O_3 exposure and mortality, and thus the threshold exposure level (also known as theoretical 579 580 minimum risk exposure level, TMREL) below which no adverse health effects would be 581 assumed to occur was still controversial. For all-cause mortality, Di et al. (2017) reported a safe exposure level as 30 ppbV by 6mDA24 metric (approximately as 49.9 ppbV by 582 6mDMA8),⁵¹ while Shi et al. (2022) suggested a lower level as 40 ppbV by 6mDMA8, 583 584 both estimated from the Medicare beneficiary cohort.⁵⁸ For respiratory mortality. Jerrett et al. (2009) tested the concentration-response relationships and estimated the threshold 585 level as 60 ppbV by 6mDMA1 (49.9 ppbV by 6mDMA8),⁴⁰ while Lim et al. (2019) 586 failed to identify a significant threshold level.⁵⁶ For cardiovascular mortality, Lim et al. 587 (2019) showed no apparent health hazards below 45 ppbV by 6mDMA8,⁵⁶ and Paul et al. 588 (2020) prescribed a threshold level around 35 ppbV by 6mDMA8 metric for diabetic 589 590 patients.⁵⁷ These evidence-based threshold exposure levels were all no higher than the 591 current standards, as 70 ppbV for daily maximum 8-hour exposure under NAAQS (The National Ambient Air Quality Standards regulated by the U.S. EPA)⁶⁸ and 50 ppbV by 592 593 warm-season DMA8 under WHO global air quality guidelines.⁶⁹ However, whether the 594 standard guidelines should be revised to be more strictly would require more further 595 studies.

596 To synthesise epidemiological evidences, Burnett et al. (2014) developed an 597 integrated exposure-response (IER) function-based curve-fitting method to pool the risk associations from multiple studies.³⁷ We attempted to construct the IER for long-term O₃ 598 599 exposure associated mortalities in this review, with statistically reproduced exposure 600 levels to enhance the curve fitting, as illustrated in Supplementary Texts S1-S3. The 601 exposure imputing had revealed high reliability, but the high uncertainties of the IER 602 curves could still not be addressed, which should be attributed to the limited effective 603 epidemiological evidences. Empirically, this approach would require sufficient studies to 604 cover a wide range of exposure levels, which had been frequently adopted for particulate matter exposure researches,⁷⁰⁻⁷² but seldomly used for O₃-health studies.²⁰ The main 605 probable reason might be that the population long-term O₃ exposure levels would not be 606 607 as comparably distinguishable to the particulate matters. In addition, a reasonable 608 prescribed TMREL would be necessary to establish the IER curves,³⁷ and hence the 609 indeterminacy of the threshold level could exacerbate the uncertainties in the estimated 610 concentration-response relationships. Therefore, more relevant studies on long-term O₃ 611 exposure associated risks are urgently appealed for, based on which discussions, 612 optimisations, or corrections on our enhanced exposure-response curve-fitting 613 methodologies, are encouraged.

614 **4.5 Hierarchical classification of diseases**

615 The causes of mortalities analysed in our study followed hierarchical subordinate 616 relationships, as the all-cause mortality consisted of cardiovascular diseases, respiratory 617 diseases, cancer and other causes; chronic obstructive pulmonary disease belonged to respiratory category; and ischaemic heart disease, stroke, congestive heart failure and 618 619 other cerebrovascular diseases all subordinated to cardiovascular symptoms. On this 620 occasion, estimating all O₃-exposure induced mortalities could follow a bottom-up 621 scheme by adding up subgroups of diseases. However, for the historical O₃-associated 622 mortalities, GBD attributed all O3-associated mortalities onto COPD-induced premature deaths,²⁰ which we thought were of spaces for further explorations. Long-term O₃ 623 624 exposure had shown significant association with excess cardiovascular mortalities, and 625 thus we should update the mortality estimations in further studies by including CVD 626 altogether into consideration.

627 **4.6 Application in mortality estimations**

628 The widest applications of the estimated risk association strengths were to project 629 how many people would be affected by long-term ambient O₃ exposure. For example, 630 Malley et al. (2017) estimated 1.23 (95% UI: 0.85–1.62) million respiratory deaths 631 attributable to O_3 exposure in 2010,⁷³ using the risk strength by Turner et al. (2016) as $HR = 1.12 (95\% \text{ UI}: 1.08-1.16)^{50}$ This estimation was much higher than the 2019 GBD 632 633 report: 0.31 (95% UI: 0.15–0.49) million, as had been highlighted in another recent 634 study,²⁵ which should be attributed to the use of high HR value among all included 635 studies. We had also found some other studies using one singular HR value for 636 population risk estimations,^{17, 74-77} but we would still encourage further relevant studies to 637 consider multi-study pooled RRs, which could effectively reduce the potential biases 638 from a single study. The adaptability of the pooled RRs could be verified from the 639 coverage of exposure levels, as the 25 studies identified in our review had embraced a 640 wide range of exposure concentrations (Supplementary Text S1) to encompass the global surface O₃ variability.²⁵ On the other hand, the leave-one-out sensitivity analyses (Table 641 642 S6) had revealed the robustness of the meta-analysis results when including sufficient 643 numbers of studies, which was a circumstantial reflection for the representativeness of 644 the synthesised risk association strengths. The annual GBD reports were also based on 645 the generalisability presumption of the synthesised epidemiological evidences, but 646 cohort-based researches in the unstudied regions are always appealed for to provide more 647 convincing discoveries.

648 4.7 Limitations

649 Although the total number of studied participants for risk pooling was adequately 650 high to ensure the statistical power, the cohort-based O_3 -health studies were factually rare 651 according to our literature search, and thus long-term follow-up studies are urgently 652 encouraged. Additionally, current literatures seldomly reported grouped RRs, which made meta-analyses by sub-categories (like gender, age, socio-economic status, smoking 653 654 and alcohol history, etc.) unfeasible. Scarcity of credible evidences also restricted the 655 effects of conventional approaches to construct exposure-response curves, and our methodological innovation would require further relevant studies for substantiation. The 656 657 cross-metric linear conversion factors were estimated relying on observations from 658 available sites, which however might not be sufficiently representative of the global 659 residential areas, as observational sites in India, Africa, and Latin America were still 660 sparse. With ever-increasing popularisation of the *in situ* monitoring networks, the cross-

661 metric conversion factors might need calibration with more comprehensive observations,662 so that the pooled RRs should also be updated accordingly.

663 **4.8 Further study suggestions**

664 We suggest that further environmental epidemiology studies, especially long-term O_3 exposure related researches, clearly report i) the methodologies to obtain ambient O₃ 665 666 concentrations, the spatiotemporal resolution, and prediction accuracy of the database; ii) 667 the exposure metrics used for risk estimation; and iii) the statistical distribution of the O₃ 668 exposure concentrations. The data-oriented methodologies to accomplish full spatial 669 coverage ambient air O₃ concentrations for individual-level exposure assignment should 670 be transparent as the construction credibility of air pollution concentration database 671 should also be rigorously assessed, which were the foundation of epidemiological follow-672 up studies. We would advocate the report of exposure metrics in future O₃-health studies 673 so as to avoid confusions when comparing the risks with literature and conducting meta-674 regression; and according to the recent consensus, warm-season average (6mDMA8) shall be preferred as epidemiological study metrics.¹⁹ We recommend future studies 675 estimate risks with multiple O₃ metrics for reference; and describing the statistical 676 677 distribution of the O₃ exposure levels is another suggested element to assess the 678 reliability of risk estimation models, which can also be useful in exposure-response 679 tendency exploration. We also propose future cohort studies estimate subgroup-specific 680 RRs which can be conducive to identify the vulnerable populations.

681 Our review highlights a deficiency existing in current environmental health research 682 literatures, that studies on long-term O₃ exposure health effects are still rather rare 683 compared to particulate matter-based studies.⁷⁸ Also, the meta-analysis results might be geographically-biased, since large-scale O₃ exposure health risk studies till 2022 did not 684 cover Asia, Africa or Latin America regions. However, there are some thriving cohorts 685 such as the Multi-Country Multi-City (MCC) Collaborative Research Network covering 686 over 22 countries or regions,⁷⁹ and the China Kadoorie Biobank (CKB) enrolling over 0.5 687 688 million people.⁸⁰ working on environmental exposure projects. We are optimistic that 689 more research will come out to fill in the literature gap of multi-region population-based 690 studies.

691

692 **5. CONCLUSION**

Our state-of-the-science systematic review has summarised cohort studies exploring
the associations between long-term ambient O ₃ exposure and multi-cause mortality risks.
Current studies support O ₃ -exposure attributable additional mortalities caused from all
causes, respiratory diseases, chronic obstructive pulmonary disease, cardiovascular
diseases, and congestive heart failure, but no significant mortality risks are found for
ischaemic heart diseases, all-type cerebrovascular diseases, and lung cancer. Exposure
metrics are crucial for health risk estimations of long-term O ₃ exposure and meta-analysis
to pool the multi-study risks, for which we develop a linear conversion approach to
harmonise the different metrics. Further researches on long-term O ₃ observations and
exposure-induced mortalities are encouraged to corroborate or contradict our linear
conversion factors and meta-analysis results by providing more solid evidences, so as to
strengthen the O ₃ -health literatures.

705

Competing Interest Statement 706

- 707 All authors declare: no support from any organisation for the submitted work; no
- 708 financial relationships with any organisations that might have an interest in the submitted 709
- work in the previous three years; and no other relationships or activities that could appear
- 710 to have influenced the submitted work.

Author Contributions 711

712 ATA and YG conceived the idea for the review; HZS, CL and PY performed the

literature search; HZS and PY conducted statistical analyses; HZS, ATA, YG, PY, SH, 713

714 JM, HS and LY contributed to discussions; HZS wrote the article; and MW examined the

715 languages. HZS is the guarantor who accepted the full responsibility for the finished

716 article, owned full access to all relevant data, and controlled the decision to publish. The 717 two joint corresponding authors, ATA and YG, attests that all listed authors meet

718 authorship criteria and that no others meeting the criteria have been omitted. The

719 guarantor, HZS, affirms that the manuscript is an honest, accurate, and transparent

720 account of the study being reported, and no important aspects of the study have been

721 omitted. No ethical approval is needed for a systematic review and meta-analysis.

Acknowledgement 722

723 This study is funded by UK Natural Environment Research Council (NERC), UK

724 National Centre for Atmospheric Science (NCAS), Australian Research Council

725 (DP210102076) and Australian National Health and Medical Research Council

726 (APP2000581). HZS, MW, and SH receive funding from Engineering and Physical

727 Sciences Research Council (EPSRC) via the UK Research and Innovation (UKRI) Centre

728 for Doctoral Training in Application of Artificial Intelligence to the study of

729 Environmental Risks (AI4ER, EP/S022961/1). ATA acknowledges funding from NERC

730 (NE/P016383/1) and through the Met Office UKRI Clean Air Programme. YG is

731 supported by a Career Development Fellowship of the Australian National Health and

732 Medical Research Council (APP1163693). All contents in this study are solely the

733 responsibility of the grantees and do not represent the official views of the supporting

734 agencies.

735 Special appreciations to Dr Xiao Lu (School of Atmospheric Sciences, Sun Yat-sen

736 University) for his insightful discussion on the quality control of TOAR products, Dr

737 Liuhua Shi (Rollins School of Public Health, Emory University) for her supplementary

- information on Medicare beneficiary cohort information, and 4 anonymous reviewers
- together with the editor for their meticulous efforts in improving the manuscript.

740 Data Availability

- The surface O₃ observations are archived in the Tropospheric Ozone Assessment
- 742 Report (TOAR, <u>https://b2share.fz-juelich.de/communities/TOAR</u>) repository and China
- 743 National Environmental Monitoring Centre (CNEMC, <u>http://www.cnemc.cn/en/</u>)
- repository, which are accessible to the public. The cohort-based long-term O₃ exposure-
- associated cause-specific mortality risks are all available in the main text or
- supplementary materials of the selected studies.

747 Supplementary Information

Further detailed information can be found in the Supplementary Materials (PDF)
consisting of 25 pages with 5 sections of texts as "imputation procedures for exposure
distribution" (S1), "enhanced integrated exposure-response curve-fitting" (S2),
"demonstrative procedures of enhanced exposure-response trend curve-fitting" (S3),
"undefined metric imputation" (S4), and "interpretation and procedure of cross-metric
linear conversion" (S5), together with 6 tables and 7 figures to strengthen the results and

discussions presented in the main text. A **PRISMA Checklist** (PDF) was provided to
 verify the integrity of this study.

756

TABLES

Table 1 Summary of cohort characteristics included for meta-analysis.

Study	Cohort	Country	Follow-up Duration	Population Type	Sample Size	Sex	Age	Key Confounding Adjustment	Mortality Causes
Abbey et al. 1999 ³⁸	AHS	USA	1977-1992	Occupational	6,182	FM	27-95	age, sex, BMI, smoking, individual demographic features [∥] , lifestyle features [⊥] , medical history	AC, RESP, LC
Lipfert et al. 2006 ³⁹	WU-EPRI	USA	1976-1996	General	67,108	М	51 (12)§	age, ethnicity, BMI, smoking, traffic density, NO ₂ , CO	AC
Jerrett et al. 2009 ⁴⁰	ACS CPS II	USA	1977-2000	General	448,850	FM		age sex ethnicity BMI	AC, RESP, CVD_IHD
Krewski et al. 200941	ACS CPS II	USA	1982-2000	General	488,370	FM	\geq 30	smoking, individual	AC, IHD, LC
Smith et al. 2009 ⁴²	ACS CPS II	USA	1982-2000	General	352,242	FM		lifestyle features, $PM_{2.5}$	AC, RESP, CVD
Lipsett et al. 2011 ⁴³	CTS	USA	1998-2005	Occupational	124,614	F	\geq 20	age, ethnicity, BMI, smoking, lifestyle features, medical treatment	AC, RESP, CVD, IHD, CEVD, LC
Zanobetti et al. 2011 ⁴⁴	Medicare	USA	1985-2006	General	8,894,473	FM	≥ 65	age, sex, ethnicity, medical history	COPD, CHF
Carey et al. 2013 ⁴⁵	CPRD	UK	2003-2007	General	824,654	FM	40-89	age, sex, BMI, smoking, individual demographic features	AC, RESP, LC
Jerrett et al. 2013 ⁴⁶	ACS CPS II	USA	1982-2000	General	73,711	FM	57 (11)	age, sex, smoking, individual demographic features, lifestyle features	AC, RESP, CVD, IHD, LC
Bentayeb et al. 2015 ⁴⁷	GAZEL	France	1989-2013	Occupational	20,327	FM	44 (4)	age, sex, BMI, smoking, individual demographic features, lifestyle features	AC, RESP, CVD
Crouse et al. 2015 ⁴⁸	CANCHEC	Canada	1991-2006	General	2,521,525	FM	≥ 25	age, sex, individual and area-level demographic features, PM _{2.5} , NO ₂	AC, RESP, COPD, CVD, IHD, CEVD, LC
Tonne et al. 2016 ⁴⁹	MINAP	UK	2003-2010	MI Survivors*	18,138	FM	68 (14)	age, sex, ethnicity, smoking, medical history, area-level demographic features	AC
Turner et al. 2016 ⁵⁰	ACS CPS II	USA	1982-2004	General	669,046	FM	≥ 3 0	age, sex, BMI, smoking, individual and area-level demographic features, PM2.5, NO2	AC, RESP, COPD, CVD, CHF, IHD, CEVD
Di et al. 2017 ⁵¹	Medicare	USA	2000-2012	General	60,925,443	FM	≥ 65	age, sex, ethnicity, BMI, smoking, individual and area-level demographic features, meteorological features, PM _{2.5}	AC
Weichenthal et al. 2017 ⁵²	CANCHEC	Canada	2001-2011	General	2,448,500	FM	25-89	age, sex, ethnicity, individual and area-level demographic features	AC, RESP, CVD
Cakmak et al. 2018 ⁵³	CANCHEC	Canada	1991-2011	General	2,291,250	FM	≥ 25	age, sex, individual demographic features, PM _{2.5}	AC, COPD, IHD, LC
Hvidtfeldt et al. 2019 ⁵⁴	DDCH	Denmark	1993-1997	General	49,596	FM	50-64	age, sex, BMI, smoking, individual and area-level demographic features, noise	AC, RESP, CVD
Kazemiparkouhi et al. 2019 ⁵⁵	Medicare	USA	2000-2008	General	22,159,190	FM	≥65	age, sex, ethnicity, area- level demographic features, PM _{2.5}	AC, RESP, COPD, CVD, IHD, CHF, CEVD, LC

Study	Cohort	Country	Follow-up Duration	Population Type	Sample Size	Sex	Age	Key Confounding Adjustment	Mortality Causes
Lim et al. 2019 ⁵⁶	NIH-AARP	USA	1995-2011	General	548,780	FM	50-71	age, sex, ethnicity, BMI, smoking, individual demographic features, PM _{2.5} , NO ₂ , daily maximum temperature	AC, RESP, COPD, CVD, IHD, CHF, CEVD, LC
Paul et al. 2020 ⁵⁷	ONPHEC	Canada	1996-2015	Diabetes	452,590	FM	35-85	age, sex, area-level demographic features	CVD
Shi et al. 2021 ⁵⁸	Medicare	USA	2001-2017	General	44,684,756	FM	≥65	age, sex, ethnicity, BMI, smoking, individual and area-level demographic features, lifestyle features, PM2.5, NO2, medical history	AC
Strak et al. 2021 ⁵⁹	ELAPSE	6 countries [†]	1985-2015	General	325,367	FM	49 (13)	age, sex, ethnicity, BMI, smoking, individual and area-level demographic features, PM2.5, NO2, BC	AC, RESP, COPD, CVD, IHD, CEVD
Yazdi et al. 2021 ⁶⁰	Medicare	USA	2000-2016	General	44,430,747	FM	≥65	age, sex, ethnicity, BMI, smoking, individual and area-level demographic features, lifestyle features, PM _{2.5} , NO ₂ , medical history	AC
Bauwelinck et al. 2022 ⁶¹	BC2001	Belgium	2001-2011	General	5,474,470	FM	≥ 30	age, sex, individual and area-level demographic features, PM _{2.5} , NO ₂	AC, RESP, CVD, LC
Stafoggia et al. 2022 ⁶²	ELAPSE	7 countries [‡]	2000-2017	General	28,153,138	FM	≥ 30	age, sex, ethnicity, BMI, smoking, individual and area-level demographic features PMas, NOs BC	AC, RESP, CVD, LC

Cohort abbreviations: AHSMOG, Adventist Health Study of Smog; WU-EPRI, Washington University–Electric Power Research Institute; ACS CPS, American Cancer Society Cancer Prevention Study; CTS, California Teacher Study; CPRD, Clinical Practice Research Datalink; GAZEL, GAZ de France and ÉLectricité; CANCHEC, Canadian Census Health and Environment Cohort; MINAP, National Audit of Myocardial Infarction Project; DDCH, Danish Diet, Cancer and Health; NIH-AARP, National Institute of Health, American Association of Retired Persons; ONPHEC, Ontario Population Health and Environment Cohort; BC2001, Belgian 2001 Census.

[#] Demographic features included marital status, education attainment, employment status and occupational class, aboriginal ancestry, visible minority ethnicities, immigrant status and residence location (urban or rural), income level and socioeconomic status (SES), and regional population density. Different studies adjusted various combinations of demographic features.

[⊥] Lifestyle features included consumptions of alcohol, dietary fat, vegetables, fruits (dietary fibre), and vitamins, together with physical activity frequency. Different studies

adjusted various combinations of lifestyle features.

§ Population ages were reported by mean with standard deviation (in bracket).

* MI, Myocardial Infarction.

[†] Sweden, Denmark, France, Netherland, Germany and Austria.

[‡] Belgium, Denmark, England, Netherland, Norway, Switzerland and Italy.

Table 2 Data sources and statistical methods of O₃ exposure assignment.

Methodological ratings were based on spatial interpolation and multi-data assimilation approaches. Spatial resolutions, exposure metrics, and levels of incremental risk ratio were also listed.

Study	Data Sources	Methods	Resolution	Rating	Metrics	Level of incremental risk ratio
Abbey et al. 1999 ³⁸	monitoring station observations	IDW interpolation	NR∥	Low	ADMA8	12.03 ppbV
Lipfert et al. 2006 ³⁹	monitoring station observations	nearest matching (assumed) [†]	NR	Low	ADMA1	40 ppbV
Jerrett et al. 200940	monitoring station observations	nearest matching (assumed)	NR	Low	6mDMA1	10 ppbV
Krewski et al. 2009 ⁴¹	monitoring station observations	ordinary kriging interpolation	NR	Low	6mDMA1	10 ppbV
Smith et al. 2009 ⁴²	monitoring station observations	nearest matching (assumed)	NR	Low	6mDMA1	$1 \ \mu g/m^3$
Lipsett et al. 2011 ⁴³	monitoring station observations	IDW interpolation	250 m	Low	ADA24	22.96 ppbV
Zanobetti et al. 201144	monitoring station observations	nearest matching (assumed)	NR	Low	6mDMA8	5 ppbV
Carey et al. 2013 ⁴⁵	monitoring station observations	interpolation (IDW assumed)	1 km	Low	ADA24	$3.0 \ \mu g/m^3$
Jerrett et al. 2013 ⁴⁶	monitoring station observations	IDW interpolation	NA	Low	ADA24	24.1782 ppbV
Bentayeb et al. 201547	monitoring station observations, model simulation, other auxiliary predictors	universal kriging embedded land use regression	2 km	Good	6mDMA8	$12.3 \ \mu g/m^3$
Crouse et al. 201548	monitoring station observations, model simulation	linear data assimilation	21 km	Good	6mDMA8	9.5 ppbV
Tonne et al. 2016 ⁴⁹	KCLurban air dispersion model simulation	NA	20 m	Moderate	ADA24	$5.3 \ \mu g/m^3$
Turner et al. 2016 ⁵⁰	monitoring station observations, CMAQ model simulation	hierarchical Bayesian space-time data assimilation	12 km	High	ADMA8 6mDMA8	10 ppbV
Di et al. 2017 ⁵¹	monitoring station observations, model simulation, satellite remote sensing observations, other auxiliary predictors	ensemble machine learning	1 km	High	6mDMA8	10 ppbV
Weichenthal et al. 2017 ⁵²	monitoring station observations, model simulation	linear data assimilation	21 km	Good	6mDMA8	10.503 ppbV
Cakmak et al. 2018 ⁵³	monitoring station observations, model simulation	linear data assimilation	21 km	Good	6mDMA8	10 ppbV
Hvidtfeldt et al. 2019 ⁵⁴	AirGIS dispersion model simulation	NA	1 km	Moderate	ADA24	$10 \ \mu g/m^3$
Kazemiparkouhi et al. 2019 ⁵⁵	monitoring station observations	nearest matching (assumed)	6 km	Low	6mDMA1 6mDMA8 6mDA24	10 ppbV
Lim et al. 2019 ⁵⁶	monitoring station observations, CMAQ model simulation	Bayesian space-time downscaling	12 km	High	6mDMA8	10 ppbV
Paul et al. 2020 ⁵⁷	monitoring station observations, model simulation	linear data assimilation	21 km	Good	6mDMA8	6.4 ppbV
Shi et al. 2021 ⁵⁸	monitoring station observations, model simulation, satellite remote sensing observations, other auxiliary predictors	ensemble machine learning	1 km	High	6mDMA8	10 ppbV
Strak et al. 2021 ⁵⁹	monitoring station observations, model simulation, satellite remote sensing observations, other auxiliary predictors	universal kriging embedded land use regression	100 m	High	6mDMA8	$10 \ \mu g/m^3$

Yazdi et al. 2021 ⁶⁰	monitoring station observations, model simulation, satellite remote sensing observations, other auxiliary predictors	ensemble machine learning	1 km	High	6mDMA8	1 ppbV
Bauwelinck et al. 2022 ⁶¹	monitoring station observations, model simulation, satellite remote sensing observations, other auxiliary predictors	land use regression	100 m	High	6mDMA8	10 µg/m ³
Stafoggia et al. 2022 ⁶²	monitoring station observations, model simulation, satellite remote sensing observations, other auxiliary predictors	universal kriging embedded land use regression	100 m	High	6mDMA8	$10 \ \mu g/m^3$

NR, not reported. [†] The statistical methods were not clearly stated in literatures, and thus the most basic method was assumed. The nearest neighbourhood matching shall be the simplest way to assign spatially sparse observations onto cohort participants, and the inverse distance weighting (IDW) is the simplest spatial ¹ NA, not applicable. The chemical transport model simulations were directly used for individual exposure assignment without further statistical

processing.

Mortality causes	6mDMA8	6mDA24	ADMA8	ADA24	Crude
All causes $(n = 23)$	1.014 (1.009, 1.019)	1.023 (1.014, 1.032)	1.016 (1.010, 1.022)	1.027 (1.017, 1.037)	1.017 (1.011, 1.023)
Respiratory diseases $(n = 16)$	1.025 (1.010, 1.040)	1.042 (1.016, 1.069)	1.029 (1.011, 1.047)	1.049 (1.019, 1.081)	1.031 (1.017, 1.046)
Chronic obstructive pulmonary disease $(n = 7)$	1.056 (1.029, 1.084)	1.098 (1.050, 1.149)	1.066 (1.034, 1.098)	1.116 (1.058, 1.176)	1.055 (1.032, 1.078)
Cardiovascular diseases $(n = 15)$	1.019 (1.004, 1.035)	1.033 (1.006, 1.061)	1.022 (1.004, 1.041)	1.038 (1.007, 1.071)	1.024 (1.009, 1.038)
Ischaemic heart disease $(n = 10)$	1.012 (0.987, 1.039)	1.021 (0.977, 1.067)	1.014 (0.984, 1.045)	1.024 (0.973, 1.078)	1.017 (0.994, 1.041)
Congestive heart failure $(n = 4)$	1.074 (1.054, 1.093)	1.130 (1.094, 1.168)	1.086 (1.063, 1.110)	1.155 (1.110, 1.198)	1.083 (1.059, 1.107)
Cerebrovascular diseases $(n = 6)$	0.993 (0.979, 1.008)	0.988 (0.964, 1.013)	0.992 (0.976, 1.009)	0.986 (0.958, 1.015)	0.992 (0.979, 1.006)
Lung cancer $(n = 12)$	0.966 (0.926, 1.007)	0.943 (0.878, 1.012)	0.960 (0.915, 1.008)	0.933 (0.859, 1.014)	0.960 (0.909, 1.013)

Table 3 Pooled RRs for long-term 10-ppbV incremental O₃-exposure attributable multi-cause mortalities by 4 most widely used metrics and crude risks without metric harmonisation.

FIGURES

Figure 1 Schematic flowchart of study assessment and selection processes for literature review and meta-analysis.

Figure 2 Cross-metric linear relationships and conversion accuracies. The crossmetric linear relationships were scaled by Pearson's correlation coefficients. The crossmetric conversion factors with 95% confidence intervals (95% CI) were estimated by non-intercept linear regression models, accompanied with fitting accuracies quantified by coefficient of determination (R²) and root mean square error (RMSE) in ppbV. The conversion factors were defined as multiples from the original metric by column into the target harmonised metric by row, e.g. ADMA8 = 1.671 ADA24, R² = 0.9736, RMSE = 7.78 ppbV. Note that by non-intercept linear regression, the values of R² should no longer be equal to the squared Pearson's linear correlation coefficients. As the cross-metric conversion coefficients were estimated statistically, indirect conversions were not recommended, since regression noises restricted the validity of equation $k_{A\to B} = k_{A\to C} \cdot k_{C\to B}$.

Study	Cohort	Cases (n/N)	Risk Ratio	RR (95% CI)	Weight
Abbey et al. 1999	AHS-M	610/2278		1.064 (0.964, 1.174)	0.30%
Abbey et al. 1999	AHS-F	965/4060		0.964 (0.890, 1.043)	0.40%
Lipfert et al. 2006	WU-EPRI	44111/67108		1.033 (1.012, 1.053)	3.70%
Jerrett et al. 2009	ACS CPS II	118777/448850		0.987 (0.977, 0.995)	7.10%
Krewski et al. 2009	ACS CPS II	128954/488370		1.024 (1.012, 1.036)	6.00%
Smith et al. 2009	ACS CPS II	-	÷	1.005 (0.981, 1.034)	2.30%
Lipsett et al. 2011	CTS	7381/101784		0.993 (0.986, 1.002)	6.80%
Carey et al. 2013	CPRD	83103/824654	_ 	0.871 (0.782, 0.934)	0.50%
Jerrett et al. 2013	ACS CPS II	19733/73711	ų.	1.000 (0.991, 1.008)	7.20%
Bentayeb et al. 2015	GAZEL	1967/20327		0.816 (0.646, 1.032)	0.00%
Crouse et al. 2015	CANCHEC	301115/2521525		1.019 (1.011, 1.027)	7.10%
Tonne et al. 2016	MINAP	5129/18138		0.962 (0.834, 1.098)	0.10%
Turner et al. 2016	ACS CPS II	237201/669046	in the second	1.020 (1.010, 1.030)	3.80%
Di et al. 2017	Medicare	22567924/60925443	i i i	1.011 (1.010, 1.012)	8.80%
Weichenthal et al. 2017	CANCHEC	233340/2448500	+	1.058 (1.048, 1.067)	7.20%
Cakmak et al. 2018	CANCHEC	522305/2291250		1.080 (1.020, 1.140)	0.80%
Hvidtfeldt et al. 2019	DDCH	10913/49596		0.949 (0.908, 1.000)	0.80%
Kazemiparkouhi et al. 2019	Medicare	5637693/22159190		1.002 (1.001, 1.003)	8.80%
Lim et al. 2019	NIH-AARP	126806/548780	ė.	1.000 (0.990, 1.010)	6.60%
Shi et al. 2021	Medicare	16507164/44684756	+	1.108 (1.099, 1.117)	7.20%
Strak et al. 2021	ELAPSE	47131/325367		0.806 (0.775, 0.838)	1.40%
Yazdi et al. 2021	Medicare	14589797/44430747		1.008 (1.008, 1.008)	8.80%
Bauwelinck et al. 2022	BC2001	707138/5474470		1.036 (1.014, 1.058)	3.50%
Stafoggia et al. 2022	ELAPSE	3593741/28153138		0.910 (0.866, 0.959)	0.80%
Random-effect model				1.014 (1.009, 1.019)	100.00%
Heterogeneity: $I^2 = 97.8\%$, $\tau^2 <$	0.0001, <i>p</i> < 0.01		0.75 1 1.5		

Figure 3 Pooled estimates of all-cause mortality risk associated with every 10-ppbV incremental O₃ exposure by 6mDMA8 metric. Size of the shaded squares in the forest plot represents the weight of each study estimated by random-effect model.

Figure 4 Pooled estimates of respiratory diseases and COPD mortality risks associated with every 10-ppbV incremental O₃ exposure by 6mDMA8 metric.

Study	ly Cohort Cases (n/N)		Risk Ratio	RR (95% CI)	Weight
Cardiovascular Diseases					
Jerrett et al. 2009	ACS CPS II	48884/448850		0.980 (0.965, 0.993)	8.2%
Smith et al. 2009	ACS CPS II	-		1.053 (1.014, 1.114)	4.6%
Lipsett et al. 2011	CTS	2919/101784		1.004 (0.991, 1.015)	8.3%
Jerrett et al. 2013	ACS CPS II	8046/73711		1.010 (0.997, 1.022)	8.3%
Bentayeb et al. 2015	GAZEL	165/20327		0.831 (0.397, 1.729)	0.1%
Crouse et al. 2015	CANCHEC	98970/2521525		1.040 (1.025, 1.055)	8.2%
Turner et al. 2016	ACS CPS II	85132/669046		1.026 (1.009, 1.043)	8.0%
Weichenthal et al. 2017	CANCHEC	77000/2448500	+	1.161 (1.144, 1.178)	8.1%
Hvidtfeldt et al. 2019	DDCH	2319/49596		0.878 (0.817, 0.959)	5.5%
Kazemiparkouhi et al. 2019	Medicare	2333681/22159190	i i i	0.997 (0.995, 0.999)	8.6%
Lim et al. 2019	NIH-AARP	39529/548780		1.020 (0.990, 1.030)	8.4%
Paul et al. 2020	ONPHEC	64773/452590	+	1.105 (1.078, 1.133)	7.3%
Strak et al. 2021	ELAPSE	15542/325367	-	0.791 (0.734, 0.853)	3.3%
Bauwelinck et al. 2022	BC2001	234549/5474470		1.050 (1.022, 1.076)	7.4%
Stafoggia et al. 2022	ELAPSE	1186101/28153138	•	0.954 (0.912, 0.996)	5.7%
Random-effect model			¢	1.019 (1.004, 1.035)	100.0%
Heterogeneity: $I^2 = 97.6\%$, $\tau^2 = 100$	0.0009, <i>p</i> < 0.01		0.5 1 2		
Congestive Heart Failure					
Zanobetti et al. 2011	Medicare	865000/1561819		1.124 (1.061, 1.166)	16.9%
Turner et al. 2016	ACS CPS II	18314/669046		1.090 (1.060, 1.130)	17.4%
Kazemiparkouhi et al. 2019	Medicare	158649/22159190		1.072 (1.063, 1.080)	50.1%
Lim et al. 2019	NIH-AARP	6811/548780		1.010 (0.970, 1.050)	15.6%
Bandom-effect model				1 074 (1 054 1 093)	100.0%
Heterogeneity: $I^2 = 85.8\%$ $\tau^2 = 1$	0 0003 p < 0 01			1.074 (1.054, 1.055)	100.0 /0
1 leter ogeneity. 7 = 05.0 %, 1 =	0.0000, p < 0.01		0.9 1 1.1		

Figure 5 Pooled estimates of cardiovascular diseases and congestive heart failure mortality risk associated with every 10-ppbV incremental O₃ exposure by 6mDMA8 metric.

Figure 6 Pooled estimates of ischaemic heart disease, cerebrovascular diseases, lung cancer, ischaemic stroke, and pneumonia mortality risks associated with every 10-ppbV incremental O₃ exposure by 6mDMA8 metric.

REFERENCES

- Fu, B.; Gasser, T.; Li, B.; Tao, S.; Ciais, P.; Piao, S.; Balkanski, Y.; Li, W.; Yin, T.; Han, L., Short-lived climate forcers have long-term climate impacts via the carbon-climate feedback. *Nat Clim Change* 2020, *10*, (9), 851-855.
- 2. Wilson, S. R.; Madronich, S.; Longstreth, J. D.; Solomon, K. R., Interactive effects of changing stratospheric ozone and climate on tropospheric composition and air quality, and the consequences for human and ecosystem health. *Photochem Photobiol Sci* **2019**, *18*, (3), 775-803.
- 3. Stolarski, R. S., The Antarctic ozone hole. Sci Am 1988, 258, (1), 30-37.
- 4. Ghude, S. D.; Jena, C.; Chate, D. M.; Beig, G.; Pfister, G. G.; Kumar, R.; Ramanathan, V., Reductions in India's crop yield due to ozone. *Geophys Res Lett* **2014**, *41*, (15), 5685-5691.
- 5. Zhang, F.; Zhang, H.; Wu, C.; Zhang, M.; Feng, H.; Li, D.; Zhu, W., Acute effects of ambient air pollution on clinic visits of college students for upper respiratory tract infection in Wuhan, China. *Environ Sci Pollut Res Int* **2021**, 1-11.
- Zheng, X.-Y.; Orellano, P.; Lin, H.-L.; Jiang, M.; Guan, W.-J., Short-term exposure to ozone, nitrogen dioxide, and sulphur dioxide and emergency department visits and hospital admissions due to asthma: A systematic review and meta-analysis. *Environ Int* 2021, 150, 106435.
- Liu, Y.; Pan, J.; Fan, C.; Xu, R.; Wang, Y.; Xu, C.; Xie, S.; Zhang, H.; Cui, X.; Peng, Z.; Shi, C.; Zhang, Y.; Sun, H.; Zhou, Y.; Zhang, L., Short-Term Exposure to Ambient Air Pollution and Mortality From Myocardial Infarction. *J Am Coll Cardiol* 2021, 77, (3), 271-281.
- 8. Zhao, R.; Chen, S.; Wang, W.; Huang, J.; Wang, K.; Liu, L.; Wei, S., The impact of short-term exposure to air pollutants on the onset of out-of-hospital cardiac arrest: A systematic review and meta-analysis. *Int J Cardiol* **2017**, *226*, 110-117.
- 9. Han, C.; Lu, Y.; Cheng, H.; Wang, C.; Chan, P., The impact of long-term exposure to ambient air pollution and second-hand smoke on the onset of Parkinson disease: a review and meta-analysis. *Public Health* **2020**, *179*, 100-110.
- 10. Li, J.; Huang, J.; Cao, R.; Yin, P.; Wang, L.; Liu, Y.; Pan, X.; Li, G.; Zhou, M., The association between ozone and years of life lost from stroke, 2013-2017: A retrospective regression analysis in 48 major Chinese cities. *J Hazard Mater* **2021**, *405*, 124220.
- 11. Liu, G.; Sun, B.; Yu, L.; Chen, J.; Han, B.; Li, Y.; Chen, J., The Gender-Based Differences in Vulnerability to Ambient Air Pollution and Cerebrovascular Disease Mortality: Evidences Based on 26781 Deaths. *Glob Heart* **2020**, *15*, (1), 46.
- Sun, Z.; Yang, L.; Bai, X.; Du, W.; Shen, G.; Fei, J.; Wang, Y.; Chen, A.; Chen, Y.; Zhao, M., Maternal ambient air pollution exposure with spatial-temporal variations and preterm birth risk assessment during 2013-2017 in Zhejiang Province, China. *Environ Int* 2019, *133*, (Pt B), 105242.
- 13. Global Burden of Disease Collaborative Network, Global Burden of Disease Study 2019 (GBD 2019) Results. In Institute for Health Metrics and Evaluation (IHME): Seattle, United States, 2020.
- 14. Niu, Z.; Liu, F.; Yu, H.; Wu, S.; Xiang, H., Association between exposure to ambient air pollution and hospital admission, incidence, and mortality of stroke: an updated systematic review and meta-analysis of more than 23 million participants. *Environ Health Prev Med* **2021**, *26*, (1), 1-14.
- 15. Huangfu, P.; Atkinson, R., Long-term exposure to NO₂ and O₃ and all-cause and respiratory mortality: A systematic review and meta-analysis. *Environ Int* **2020**, *144*, 105998.
- Atkinson, R. W.; Butland, B. K.; Dimitroulopoulou, C.; Heal, M. R.; Stedman, J. R.; Carslaw, N.; Jarvis, D.; Heaviside, C.; Vardoulakis, S.; Walton, H.; Anderson, H. R., Long-term exposure to ambient ozone and mortality: a quantitative systematic review and meta-analysis of evidence from cohort studies. *BMJ Open* 2016, *6*, (2), e009493.

- Shen, H.; Sun, Z.; Chen, Y.; Russell, A. G.; Hu, Y.; Odman, M. T.; Qian, Y.; Archibald, A. T.; Tao, S., Novel Method for Ozone Isopleth Construction and Diagnosis for the Ozone Control Strategy of Chinese Cities. *Environ Sci Technol* 2021, 55, (23), 15625-15636.
- 18. Sun, Z.; Archibald, A. T., Multi-stage Ensemble-learning-based Model Fusion for Surface Ozone Simulations: A Focus on CMIP6 Models. *Environmental Science and Ecotechnology* **2021**, *8*,100124.
- Schultz, M. G.; Schroder, S.; Lyapina, O.; Cooper, O. R.; Galbally, I.; Petropavlovskikh, I.; von Schneidemesser, E.; Tanimoto, H.; Elshorbany, Y.; Naja, M.; Seguel, R. J.; Dauert, U.; Eckhardt, P.; Feigenspan, S.; Fiebig, M.; Hjellbrekke, A. G.; Hong, Y. D.; Kjeld, P. C.; Koide, H.; Lear, G.; Tarasick, D.; Ueno, M.; Wallasch, M.; Baumgardner, D.; Chuang, M. T.; Gillett, R.; Lee, M.; Molloy, S.; Moolla, R.; Wang, T.; Sharps, K.; Adame, J. A.; Ancellet, G.; Apadula, F.; Artaxo, P.; Barlasina, M. E.; Bogucka, M.; Bonasoni, P.; Chang, L.; Colomb, A.; Cuevas-Agullo, E.; Cupeiro, M.; Degorska, A.; Ding, A. J.; FrHlich, M.; Frolova, M.; Gadhavi, H.; Gheusi, F.; Gilge, S.; Gonzalez, M. Y.; Gros, V.; Hamad, S. H.; Helmig, D.; Henriques, D.; Hermansen, O.; Holla, R.; Hueber, J.; Im, U.; Jaffe, D. A.; Komala, N.; Kubistin, D.; Lam, K. S.; Laurila, T.; Lee, H.; Levy, I.; Mazzoleni, C.; Mazzoleni, L. R.; McClure-Begley, A.; Mohamad, M.; Murovec, M.; Navarro-Comas, M.; Nicodim, F.; Parrish, D.; Read, K. A.; Reid, N.; Ries, N. R. L.; Saxena, P.; Schwab, J. J.; Scorgie, Y.; Senik, I.; Simmonds, P.; Sinha, V.; Skorokhod, A. I.; Spain, G.; Spangl, W.; Spoor, R.; Springston, S. R.; Steer, K.; Steinbacher, M.; Suharguniyawan, E.; Torre, P.; Trickl, T.; Lin, W. L.; Weller, R.; Xu, X. B.; Xue, L. K.; Ma, Z. Q., Tropospheric Ozone Assessment Report: Database and metrics data of global surface ozone observations. *Elem Sci Anth* 2017, *5*, 58-83.
- 20. Institute for Health Metrics and Evaluation (IHME), GBD 2019 Cause and Risk Summary: Ambient Ozone Pollution. In IHME, University of Washington: Seattle, USA, 2020.
- Guyatt, G. H.; Oxman, A. D.; Vist, G. E.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schunemann, H. J.; Group, G. W., GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. *BMJ* 2008, *336*, (7650), 924-6.
- Guyatt, G.; Oxman, A. D.; Akl, E. A.; Kunz, R.; Vist, G.; Brozek, J.; Norris, S.; Falck-Ytter, Y.; Glasziou, P.; DeBeer, H.; Jaeschke, R.; Rind, D.; Meerpohl, J.; Dahm, P.; Schunemann, H. J., GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. *J Clin Epidemiol* 2011, 64, (4), 383-94.
- 23. Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C., Bias in meta-analysis detected by a simple, graphical test. *BMJ* **1997**, *315*, (7109), 629-34.
- 24. Duval, S.; Tweedie, R., A nonparametric "trim and fill" method of accounting for publication bias in meta-analysis. *J Am Stat Assoc* **2000**, *95*, (449), 89-98.
- Sun, H. Z.; Shin, Y. M.; Xia, M.; Ke, S.; Yuan, L.; Guo, Y.; Archibald, A. T., Spatial Resolved Surface Ozone with Urban and Rural Differentiation during 1990-2019: A Space-time Bayesian Neural Network Downscaler. *Environ Sci Technol* 2021.
- 26. Krupa, S.; McGrath, M. T.; Andersen, C. P.; Booker, F. L.; Burkey, K. O.; Chappelka, A. H.; Chevone, B. I.; Pell, E. J.; Zilinskas, B. A., Ambient Ozone and Plant Health. *Plant Dis* **2001**, *85*, (1), 4-12.
- 27. Finlayson-Pitts, B.; Pitts Jr, J., Atmospheric chemistry of tropospheric ozone formation: scientific and regulatory implications. *Air & Waste* **1993**, *43*, (8), 1091-1100.
- Fleming, Z. L.; Doherty, R. M.; Von Schneidemesser, E.; Malley, C. S.; Cooper, O. R.; Pinto, J. P.; Colette, A.; Xu, X.; Simpson, D.; Schultz, M. G.; Lefohn, A. S.; Hamad, S.; Moolla, R.; Solberg, S.; Feng, Z., Tropospheric Ozone Assessment Report: Present-day ozone distribution and trends relevant to human health. *Elem Sci Anth* **2018**, *6*, 12.
- Griffiths, P. T.; Murray, L. T.; Zeng, G.; Archibald, A. T.; Emmons, L. K.; Galbally, I.; Hassler, B.; Horowitz, L. W.; Keeble, J.; Liu, J.; Moeini, O.; Naik, V.; amp; apos; Connor, F. M.; Shin, Y. M.; Tarasick, D.; Tilmes, S.; Turnock, S. T.; Wild, O.; Young, P. J.; Zanis, P., Tropospheric ozone in CMIP6 Simulations. *Atmos Chem Phys* **2021**, *21*, (5), 4187-4218.
- Archibald, A. T.; O'Connor, F. M.; Abraham, N. L.; Archer-Nicholls, S.; Chipperfield, M. P.; Dalvi, M.; Folberth, G. A.; Dennison, F.; Dhomse, S. S.; Griffiths, P. T.; Hardacre, C.; Hewitt, A. J.; Hill, R.; Johnson, C. E.; Keeble, J.; Köhler, M. O.; Morgenstern, O.; Mulchay, J. P.; Ordóñez, C.; Pope, R. J.;

Rumbold, S.; Russo, M. R.; Savage, N.; Sellar, A.; Stringer, M.; Turnock, S.; Wild, O.; Zeng, G., Description and evaluation of the UKCA stratosphere-troposphere chemistry scheme (StratTrop vn 1.0) implemented in UKESM1. *Geosci Model Dev* **2019**, *13*, (3), 1223-1266.

- Tong, L.; Zhang, H.; Yu, J.; He, M.; Xu, N.; Zhang, J.; Qian, F.; Feng, J.; Xiao, H., Characteristics of surface ozone and nitrogen oxides at urban, suburban and rural sites in Ningbo, China. *Atmos Res* 2017, 187, 57-68.
- 32. U.S. EPA *Air Quality Criteria For Ozone and Related Photochemical Oxidants (Final Report, 2006)*; U.S. Environmental Protection Agency: Washington, DC, 2006.
- Tarasick, D.; Galbally, I. E.; Cooper, O. R.; Schultz, M. G.; Ancellet, G.; Leblanc, T.; Wallington, T. J.; Ziemke, J.; Liu, X.; Steinbacher, M.; Staehelin, J.; Vigouroux, C.; Hannigan, J. W.; Garcia, O.; Foret, G.; Zanis, P.; Weatherhead, E.; Petropavlovskikh, I.; Worden, H.; Osman, M.; Liu, J.; Chang, K. L.; Gaudel, A.; Lin, M. Y.; Granados-Munoz, M.; Thompson, A. M.; Oltmans, S. J.; Cuesta, J.; Dufour, G.; Thouret, V.; Hassler, B.; Trickl, T.; Neu, J. L., Tropospheric Ozone Assessment Report: Tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties. *Elem Sci Anth* 2019, 7, 39.
- Lu, X.; Hong, J. Y.; Zhang, L.; Cooper, O. R.; Schultz, M. G.; Xu, X. B.; Wang, T.; Gao, M.; Zhao, Y. H.; Zhang, Y. H., Severe Surface Ozone Pollution in China: A Global Perspective. *Environ Sci Technol Lett* 2018, *5*, (8), 487-494.
- 35. Hunter, J. E.; Schmidt, F. L., Meta-analysis. In *Advances in educational and psychological testing: Theory and applications*, Springer: 1991; pp 157-183.
- Higgins, J. P.; Thompson, S. G.; Deeks, J. J.; Altman, D. G., Measuring inconsistency in metaanalyses. *BMJ* 2003, 327, (7414), 557-60.
- Burnett, R. T.; Pope, C. A., 3rd; Ezzati, M.; Olives, C.; Lim, S. S.; Mehta, S.; Shin, H. H.; Singh, G.; Hubbell, B.; Brauer, M.; Anderson, H. R.; Smith, K. R.; Balmes, J. R.; Bruce, N. G.; Kan, H.; Laden, F.; Pruss-Ustun, A.; Turner, M. C.; Gapstur, S. M.; Diver, W. R.; Cohen, A., An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. *Environ Health Perspect* **2014**, *122*, (4), 397-403.
- Abbey, D. E.; Nishino, N.; McDonnell, W. F.; Burchette, R. J.; Knutsen, S. F.; Lawrence Beeson, W.; Yang, J. X., Long-term inhalable particles and other air pollutants related to mortality in nonsmokers. *Am J Respir Crit Care Med* **1999**, *159*, (2), 373-82.
- 39. Lipfert, F. W.; Wyzga, R. E.; Baty, J. D.; Miller, J. P., Traffic density as a surrogate measure of environmental exposures in studies of air pollution health effects: Long-term mortality in a cohort of US veterans. *Atmos Environ* **2006**, *40*, (1), 154-169.
- 40. Jerrett, M.; Burnett, R. T.; Pope, C. A., 3rd; Ito, K.; Thurston, G.; Krewski, D.; Shi, Y.; Calle, E.; Thun, M., Long-term ozone exposure and mortality. *N Engl J Med* **2009**, *360*, (11), 1085-95.
- 41. Krewski, D.; Jerrett, M.; Burnett, R. T.; Ma, R.; Hughes, E.; Shi, Y.; Turner, M. C.; Pope III, C. A.; Thurston, G.; Calle, E. E., *Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality*. Health Effects Institute Boston, MA: 2009.
- Smith, K. R.; Jerrett, M.; Anderson, H. R.; Burnett, R. T.; Stone, V.; Derwent, R.; Atkinson, R. W.; Cohen, A.; Shonkoff, S. B.; Krewski, D.; Pope, C. A., 3rd; Thun, M. J.; Thurston, G., Public health benefits of strategies to reduce greenhouse-gas emissions: health implications of short-lived greenhouse pollutants. *Lancet* 2009, *374*, (9707), 2091-2103.
- 43. Lipsett, M. J.; Ostro, B. D.; Reynolds, P.; Goldberg, D.; Hertz, A.; Jerrett, M.; Smith, D. F.; Garcia, C.; Chang, E. T.; Bernstein, L., Long-term exposure to air pollution and cardiorespiratory disease in the California teachers study cohort. *Am J Respir Crit Care Med* **2011**, *184*, (7), 828-35.
- 44. Zanobetti, A.; Schwartz, J., Ozone and survival in four cohorts with potentially predisposing diseases. *Am J Respir Crit Care Med* **2011**, *184*, (7), 836-41.
- 45. Carey, I. M.; Atkinson, R. W.; Kent, A. J.; van Staa, T.; Cook, D. G.; Anderson, H. R., Mortality associations with long-term exposure to outdoor air pollution in a national English cohort. *Am J Respir Crit Care Med* **2013**, *187*, (11), 1226-33.

- 46. Jerrett, M.; Burnett, R. T.; Beckerman, B. S.; Turner, M. C.; Krewski, D.; Thurston, G.; Martin, R. V.; van Donkelaar, A.; Hughes, E.; Shi, Y.; Gapstur, S. M.; Thun, M. J.; Pope, C. A., 3rd, Spatial analysis of air pollution and mortality in California. *Am J Respir Crit Care Med* **2013**, *188*, (5), 593-9.
- Bentayeb, M.; Wagner, V.; Stempfelet, M.; Zins, M.; Goldberg, M.; Pascal, M.; Larrieu, S.; Beaudeau, P.; Cassadou, S.; Eilstein, D., Association between long-term exposure to air pollution and mortality in France: a 25-year follow-up study. *Environ Int* 2015, *85*, 5-14.
- Crouse, D. L.; Peters, P. A.; Hystad, P.; Brook, J. R.; van Donkelaar, A.; Martin, R. V.; Villeneuve, P. J.; Jerrett, M.; Goldberg, M. S.; Pope III, C. A., Ambient PM_{2.5}, O₃, and NO₂ exposures and associations with mortality over 16 years of follow-up in the Canadian Census Health and Environment Cohort (CanCHEC). *Environ Health Perspect* 2015, *123*, (11), 1180-1186.
- Tonne, C.; Halonen, J. I.; Beevers, S. D.; Dajnak, D.; Gulliver, J.; Kelly, F. J.; Wilkinson, P.; Anderson, H. R., Long-term traffic air and noise pollution in relation to mortality and hospital readmission among myocardial infarction survivors. *Int J Hyg Environ Health* **2016**, *219*, (1), 72-78.
- Turner, M. C.; Jerrett, M.; Pope, C. A., 3rd; Krewski, D.; Gapstur, S. M.; Diver, W. R.; Beckerman, B. S.; Marshall, J. D.; Su, J.; Crouse, D. L.; Burnett, R. T., Long-Term Ozone Exposure and Mortality in a Large Prospective Study. *Am J Respir Crit Care Med* **2016**, *193*, (10), 1134-42.
- 51. Di, Q.; Wang, Y.; Zanobetti, A.; Wang, Y.; Koutrakis, P.; Choirat, C.; Dominici, F.; Schwartz, J. D., Air Pollution and Mortality in the Medicare Population. *N Engl J Med* **2017**, *376*, (26), 2513-2522.
- 52. Weichenthal, S.; Pinault, L. L.; Burnett, R. T., Impact of oxidant gases on the relationship between outdoor fine particulate air pollution and nonaccidental, cardiovascular, and respiratory mortality. *Sci Rep* **2017**, *7*, (1), 1-10.
- Cakmak, S.; Hebbern, C.; Pinault, L.; Lavigne, E.; Vanos, J.; Crouse, D. L.; Tjepkema, M., Associations between long-term PM_{2.5} and ozone exposure and mortality in the Canadian Census Health and Environment Cohort (CANCHEC), by spatial synoptic classification zone. *Environ Int* 2018, 111, 200-211.
- 54. Hvidtfeldt, U. A.; Sorensen, M.; Geels, C.; Ketzel, M.; Khan, J.; Tjonneland, A.; Overvad, K.; Brandt, J.; Raaschou-Nielsen, O., Long-term residential exposure to PM_{2.5}, PM₁₀, black carbon, NO₂, and ozone and mortality in a Danish cohort. *Environ Int* **2019**, *123*, 265-272.
- 55. Kazemiparkouhi, F.; Eum, K. D.; Wang, B.; Manjourides, J.; Suh, H. H., Long-term ozone exposures and cause-specific mortality in a US Medicare cohort. *J Expo Sci Environ Epidemiol* **2020**, *30*, (4), 650-658.
- Lim, C. C.; Hayes, R. B.; Ahn, J.; Shao, Y.; Silverman, D. T.; Jones, R. R.; Garcia, C.; Bell, M. L.; Thurston, G. D., Long-Term Exposure to Ozone and Cause-Specific Mortality Risk in the United States. *Am J Respir Crit Care Med* 2019, 200, (8), 1022-1031.
- 57. Paul, L. A.; Burnett, R. T.; Kwong, J. C.; Hystad, P.; van Donkelaar, A.; Bai, L.; Goldberg, M. S.; Lavigne, E.; Copes, R.; Martin, R. V., The impact of air pollution on the incidence of diabetes and survival among prevalent diabetes cases. *Environ Int* **2020**, *134*, 105333.
- Shi, L.; Rosenberg, A.; Wang, Y.; Liu, P.; Danesh Yazdi, M.; Requia, W.; Steenland, K.; Chang, H.; Sarnat, J. A.; Wang, W.; Zhang, K.; Zhao, J.; Schwartz, J., Low-Concentration Air Pollution and Mortality in American Older Adults: A National Cohort Analysis (2001-2017). *Environ Sci Technol* 2021.
- Strak, M.; Weinmayr, G.; Rodopoulou, S.; Chen, J.; de Hoogh, K.; Andersen, Z. J.; Atkinson, R.; Bauwelinck, M.; Bekkevold, T.; Bellander, T.; Boutron-Ruault, M. C.; Brandt, J.; Cesaroni, G.; Concin, H.; Fecht, D.; Forastiere, F.; Gulliver, J.; Hertel, O.; Hoffmann, B.; Hvidtfeldt, U. A.; Janssen, N. A. H.; Jockel, K. H.; Jorgensen, J. T.; Ketzel, M.; Klompmaker, J. O.; Lager, A.; Leander, K.; Liu, S.; Ljungman, P.; Magnusson, P. K. E.; Mehta, A. J.; Nagel, G.; Oftedal, B.; Pershagen, G.; Peters, A.; Raaschou-Nielsen, O.; Renzi, M.; Rizzuto, D.; van der Schouw, Y. T.; Schramm, S.; Severi, G.; Sigsgaard, T.; Sorensen, M.; Stafoggia, M.; Tjonneland, A.; Verschuren, W. M. M.; Vienneau, D.; Wolf, K.; Katsouyanni, K.; Brunekreef, B.; Hoek, G.; Samoli, E., Long term exposure to low level air pollution and mortality in eight European cohorts within the ELAPSE project: pooled analysis. *BMJ* 2021, 374.

- Yazdi, M. D.; Wang, Y.; Di, Q.; Requia, W. J.; Wei, Y. G.; Shi, L. H.; Sabath, M. B.; Dominici, F.; Coull, B.; Evans, J. S.; Koutrakis, P.; Schwartz, J. D., Long-term effect of exposure to lower concentrations of air pollution on mortality among US Medicare participants and vulnerable subgroups: a doubly-robust approach. *Lancet Planet Health* **2021**, *5*, (10), E689-E697.
- Bauwelinck, M.; Chen, J.; de Hoogh, K.; Katsouyanni, K.; Rodopoulou, S.; Samoli, E.; Andersen, Z. J.; Atkinson, R.; Casas, L.; Deboosere, P.; Demoury, C.; Janssen, N.; Klompmaker, J. O.; Lefebvre, W.; Mehta, A. J.; Nawrot, T. S.; Oftedal, B.; Renzi, M.; Stafoggia, M.; Strak, M.; Vandenheede, H.; Vanpoucke, C.; Van Nieuwenhuyse, A.; Vienneau, D.; Brunekreef, B.; Hoek, G., Variability in the association between long-term exposure to ambient air pollution and mortality by exposure assessment method and covariate adjustment: A census-based country-wide cohort study. *Sci Total Environ* 2022, *804*, 150091.
- 62. Stafoggia, M.; Oftedal, B.; Chen, J.; Rodopoulou, S.; Renzi, M.; Atkinson, R. W.; Bauwelinck, M.; Klompmaker, J. O.; Mehta, A.; Vienneau, D., Long-term exposure to low ambient air pollution concentrations and mortality among 28 million people: results from seven large European cohorts within the ELAPSE project. *Lancet Planet Health* **2022**, *6*, (1), e9-e18.
- 63. Hvidtfeldt, U. A.; Geels, C.; Sørensen, M.; Ketzel, M.; Khan, J.; Tjønneland, A.; Christensen, J. H.; Brandt, J.; Raaschou-Nielsen, O., Long-term residential exposure to PM_{2.5} constituents and mortality in a Danish cohort. *Environ Int* **2019**, *133*, (Pt B), 105268.
- Holtzman, M. J.; Cunningham, J. H.; Sheller, J. R.; Irsigler, G. B.; Nadel, J. A.; Boushey, H. A., Effect of ozone on bronchial reactivity in atopic and nonatopic subjects. *Am Rev Respir Dis* 1979, 120, (5), 1059-67.
- 65. Kodavanti, U. P.; Schladweiler, M. C.; Ledbetter, A. D.; Watkinson, W. P.; Campen, M. J.; Winsett, D. W.; Richards, J. R.; Crissman, K. M.; Hatch, G. E.; Costa, D. L., The spontaneously hypertensive rat as a model of human cardiovascular disease: Evidence of exacerbated cardiopulmonary injury and oxidative stress from inhaled emission particulate matter. *Toxicol Appl Pharmacol* 2000, *164*, (3), 250-263.
- 66. Wang, M.; Sampson, P. D.; Sheppard, L. E.; Stein, J. H.; Vedal, S.; Kaufman, J. D., Long-Term Exposure to Ambient Ozone and Progression of Subclinical Arterial Disease: The Multi-Ethnic Study of Atherosclerosis and Air Pollution. *Environ Health Perspect* **2019**, *127*, (5), 57001.
- 67. Whyand, T.; Hurst, J. R.; Beckles, M.; Caplin, M. E., Pollution and respiratory disease: can diet or supplements help? A review. *Respir Res* **2018**, *19*, (1), 79.
- 68. EPA Integrated Science Assessment (ISA) for Particulate Matter; Washington, D.C., 2019.
- 69. World Health Organization, *WHO global air quality guidelines: particulate matter (PM_{2.5} and PM₁₀), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide: Executive summary. 2021.*
- 70. Pope III, C. A.; Cohen, A. J.; Burnett, R. T., Cardiovascular disease and fine particulate matter: lessons and limitations of an integrated exposure-response approach. *Circ Res* **2018**, *122*, (12), 1645-1647.
- Fantke, P.; McKone, T. E.; Tainio, M.; Jolliet, O.; Apte, J. S.; Stylianou, K. S.; Illner, N.; Marshall, J. D.; Choma, E. F.; Evans, J. S., Global effect factors for exposure to fine particulate matter. *Environ Sci Technol* 2019, *53*, (12), 6855-6868.
- 72. Yin, P.; Brauer, M.; Cohen, A.; Burnett, R. T.; Liu, J.; Liu, Y.; Liang, R.; Wang, W.; Qi, J.; Wang, L.; Zhou, M., Long-term Fine Particulate Matter Exposure and Nonaccidental and Cause-specific Mortality in a Large National Cohort of Chinese Men. *Environ Health Perspect* 2017, *125*, (11), 117002.
- Malley, C. S.; Henze, D. K.; Kuylenstierna, J. C. I.; Vallack, H. W.; Davila, Y.; Anenberg, S. C.; Turner, M. C.; Ashmore, M. R., Updated Global Estimates of Respiratory Mortality in Adults >= 30 Years of Age Attributable to Long-Term Ozone Exposure. *Environ Health Perspect* 2017, *125*, (8), 087021.
- 74. Anenberg, S. C.; Horowitz, L. W.; Tong, D. Q.; West, J. J., An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling. *Environ Health Perspect* **2010**, *118*, (9), 1189-1195.
- 75. Fann, N.; Lamson, A. D.; Anenberg, S. C.; Wesson, K.; Risley, D.; Hubbell, B. J., Estimating the

national public health burden associated with exposure to ambient PM_{2.5} and ozone. *Risk Anal* **2012**, *32*, (1), 81-95.

- 76. Silva, R. A.; West, J. J.; Zhang, Y.; Anenberg, S. C.; Lamarque, J.-F.; Shindell, D. T.; Collins, W. J.; Dalsoren, S.; Faluvegi, G.; Folberth, G., Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. *Environ Res Lett* **2013**, *8*, (3), 034005.
- 77. West, J. J.; Smith, S. J.; Silva, R. A.; Naik, V.; Zhang, Y.; Adelman, Z.; Fry, M. M.; Anenberg, S.; Horowitz, L. W.; Lamarque, J.-F., Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health. *Nat Clim Change* **2013**, *3*, (10), 885-889.
- 78. Yu, P.; Guo, S.; Xu, R.; Ye, T.; Li, S.; Sim, M.; Abramson, M. J.; Guo, Y., Cohort studies of long-term exposure to outdoor particulate matter and risks of cancer: A systematic review and meta-analysis. *The Innovation* **2021**, 100143.
- Meng, X.; Liu, C.; Chen, R.; Sera, F.; Vicedo-Cabrera, A. M.; Milojevic, A.; Guo, Y.; Tong, S.; Coelho, M.; Saldiva, P. H. N.; Lavigne, E.; Correa, P. M.; Ortega, N. V.; Osorio, S.; Garcia; Kysely, J.; Urban, A.; Orru, H.; Maasikmets, M.; Jaakkola, J. J. K.; Ryti, N.; Huber, V.; Schneider, A.; Katsouyanni, K.; Analitis, A.; Hashizume, M.; Honda, Y.; Ng, C. F. S.; Nunes, B.; Teixeira, J. P.; Holobaca, I. H.; Fratianni, S.; Kim, H.; Tobias, A.; Iniguez, C.; Forsberg, B.; Astrom, C.; Ragettli, M. S.; Guo, Y. L.; Pan, S. C.; Li, S.; Bell, M. L.; Zanobetti, A.; Schwartz, J.; Wu, T.; Gasparrini, A.; Kan, H., Short term associations of ambient nitrogen dioxide with daily total, cardiovascular, and respiratory mortality: multilocation analysis in 398 cities. *BMJ* 2021, *372*, n534.
- Yu, K.; Lv, J.; Qiu, G.; Yu, C.; Guo, Y.; Bian, Z.; Yang, L.; Chen, Y.; Wang, C.; Pan, A.; Liang, L.; Hu, F. B.; Chen, Z.; Li, L.; Wu, T.; China Kadoorie Biobank, S., Cooking fuels and risk of all-cause and cardiopulmonary mortality in urban China: a prospective cohort study. *Lancet Glob Health* 2020, *8*, (3), e430-e439.