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ABSTRACT  32 

BACKGROUND: Long-term ozone (O3) exposure could lead to a series of non-33 

communicable diseases and increase the mortality risks. However, cohort-based studies 34 

were still rather rare, and inconsistent exposure metrics might impair the credibility of 35 

epidemiological evidence synthetisation. To provide more accurate meta-estimation, this 36 

review updated the systematic review with inclusion of recent studies and summarised 37 

the quantitative associations between O3 exposure and cause-specific mortality risks 38 

based on unified exposure metrics.  39 

METHODS: Research articles reporting relative risks between incremental long-term O3 40 

exposure and causes of mortality covering all-cause, cardiovascular diseases, respiratory 41 

diseases, chronic obstructive pulmonary disease, pneumonia, ischaemic heart diseases, 42 

ischaemic stroke, congestive heart failure, cerebrovascular diseases, and lung cancer, 43 

estimated from cohort studies were identified through systematic searches in MEDLINE, 44 

Embase and Web of Science. Cross-metric conversion factors were estimated linearly by 45 

decadal of observations during 1990-2019. The Hunter-Schmidt random effect estimator 46 

was applied to pool the relative risks.  47 

RESULTS: A total of 25 studies involving 226,453,067 participants (14 unique cohorts 48 

covering 99,855,611 participants) were included in the systematic review. After linearly 49 

adjusting the inconsistent O3 exposure metrics into congruity, the pooled relative risks 50 

(RR) associated with every 10 nmol mol-1 (ppbV) incremental O3 exposure, by mean of 51 

warm-season daily maximum 8-hour average metric, was: 1.014 with 95% confidence 52 

interval (CI) ranging 1.009–1.019 for all-cause mortality; 1.025 (95% CI: 1.010–1.040) 53 

for respiratory mortality; 1.056 (95% CI: 1.029–1.084) for COPD mortality; 1.019 (95% 54 

CI: 1.004–1.035) for cardiovascular mortality; and 1.096 (95% CI: 1.065–1.129) for 55 

congestive heart failure mortality. Insignificant mortality risk associations were found for 56 

ischaemic heart disease, cerebrovascular diseases and lung cancer.  57 

DISCUSSION: This review covered up-to-date studies, expanded the O3-exposure 58 

associated mortality causes into wider range of categories, and firstly highlighted the 59 

issue of inconsistency in O3 exposure metrics. Non-intercept linear regression-based 60 

cross-metric RR conversion was another innovation, but limitation lay in the observation 61 

reliance, indicating further calibration with more credible observations available. Large 62 

uncertainties in the multi-study pooled RRs would inspire more future studies to 63 

corroborate or contradict the results from this review.  64 
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CONCLUSION: Adjustment for exposure metrics laid more solid foundation for multi-65 

study meta-analysis, and wider coverage of surface O3 observations are anticipated to 66 

strengthen the cross-metric conversion in the future. Ever-growing numbers of 67 

epidemiological studies supported unneglectable cardiopulmonary hazards and all-cause 68 

mortality risks from long-term O3 exposure. However, evidences on long-term O3 69 

exposure associated health effects were still scarce, and hence more relevant studies are 70 

encouraged to cover more population with regional diversity.  71 

REGISTRATION: The review was registered in PROSPERO (CRD42021270637).  72 

FUNDING: This study is mainly funded by UK Natural Environment Research Council, 73 

UK National Centre for Atmospheric Science, Australian Research Council and 74 

Australian National Health and Medical Research Council.  75 

 76 

Keywords  77 
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 79 

Highlights  80 

1. Updated evidence for O3-mortality associations from 25 cohorts has been provided.  81 

2. Adjusting various O3 exposure metrics can provide more accurate risk estimations.  82 

3. Long-term O3-exposure was associated with increased mortality from all-causes, respiratory 83 

disease, COPD, cardiovascular disease and congestive heart failure.  84 
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1 INTRODUCTION  86 

Atmospheric ozone (O3) is a short-lived climate forcer.1 Besides warming the global 87 

atmosphere, O3 in the stratosphere can abate the radiation hazards from ultraviolet rays 88 

onto organisms, while O3 in the ambient air is of detrimental defects on ecosystem and 89 

human health,2-4 and hence health effects caused from exposure to surface O3 have 90 

become a serious public concern. Short-term (i.e. hours to days) exposure to high-level 91 

O3 can cause a series of acute symptoms like asthma, respiratory tract infection, 92 

myocardial infarction, and cardiac arrest;5-8 and long-term (i.e. over years) exposure can 93 

lead to chronic health outcomes including but not limited to preterm delivery, stroke, 94 

chronic obstructive pulmonary diseases, and cerebrovascular diseases.9-12 Long-term 95 

ambient O3 exposure was estimated to be responsible for over 0.36 million premature 96 

deaths globally in 2019 according to the Global Burden of Disease (GBD) report released 97 

by the Institute for Health Metrics and Evaluation (IHME).13  98 

Systematic reviews summarising the associations between the adverse health 99 

outcomes, and both the short-term and long-term O3 exposures, have been performed in 100 

previous studies.14-16 Studies on short-term O3 exposure-induced morbidities are 101 

comparatively more abundant than the long-term O3 exposure studies where the 102 

epidemiological evidences are less congruous. Some deficiencies are spotted in the two 103 

reviews for long-term O3 exposure-associated mortality risk studies,15, 16 the primary 104 

issue of which is the inconsistent use of various O3 exposure metrics; however, no other 105 

reviews are found to remedy these flaws. As a secondary photolytic gaseous air pollutant, 106 

the warm-season and diurnal concentrations of surface O3 will be much higher than cool-107 

season and nocturnal concentrations,17, 18 and thus the average and peak metrics of O3 108 

concentrations shall be of drastically different realistic implications.19 Under this 109 

circumstance, directly pooling the relative risks scaled in different metrics might lead to 110 

biases.  111 

Atkinson et al. (2016) explored 6 types of mortality causes, but searched the 112 

literatures only till 2015;16 while Huangfu et al. (2019) updated the searches to 2018, but 113 

only 3 types of mortality causes were considered.15 We thus determine to update the 114 

review on the health effects of O3 to include more categories of mortalities together with 115 

covering the most recent publications. Additionally, GBD estimations ascribed long-term 116 

O3-exposure induced all-cause mortality for chronic obstructive pulmonary disease,13 117 

which might lead to underestimations without considering other causes. It is reasonable 118 

to deduce that long-term O3 exposure will exacerbate the mortality of certain diseases 119 

given that the short-term exposure increases the morbidity risks of the same diseases, and 120 
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thus scrutinising epidemiological evidences for multiple causes of mortality will provide 121 

more credible supports to fill in this gap.  122 

The primary innovation of our updated review is our taking full advantage of global 123 

systemic stationary observations to explore the feasibility of adjusting the various 124 

exposure metrics, and pooling the multi-study risks with the unified exposure metric, the 125 

mean of warm-season daily maximum 8-hour average, in response to the up-to-date 126 

suggestions from the Lancet global environmental health collaboration.20 Through this 127 

updated systematic review and meta-analysis on long-term O3 exposure associated cause-128 

specific mortality risks, we aim to present and evaluate epidemiological evidences for 3 129 

major questions not fully addressed by the previous 2 reviews, as (1) which mortality 130 

causes shall be ascribed to long-term O3 exposure; (2) have the risk associations changed 131 

given the latest studies with more mature research design and methodologies; and (3) 132 

how to estimate the quantities of the risk association strengths by the suggested exposure 133 

metric. Both our methods and discoveries are expected to inspire future O3-health studies, 134 

and support relevant policy-making to benefit the global population.  135 

 136 

2. METHODS 137 

2.1 Search strategy 138 

We searched 3 research databases (MEDLINE, Embase, and Web of Science) from 1 139 

September, 2015 till 1 February, 2022 to finish our systematic review and meta-analysis, 140 

updated from 2 previous reviews on long-term O3 exposure-associated mortality.15, 16 141 

Search terms also referred to these 2 previous systematic reviews with modifications to 142 

enhance the inclusion of potential relevant studies, as we combined the keywords 143 

relevant to the cause-specific mortalities (i.e. “mortality”, “death”, “premature death”, 144 

“all-cause”, “non-accidental”, “cardiopulmonary”, “respiratory”, “chronic obstructive 145 

pulmonary disease”, “pneumonia”, cardiovascular, “lung cancer”, “cerebrovascular”, 146 

“stroke”, “ischaemic heart disease”, “congestive heart failure”), the pollutant of research 147 

interest (i.e. “ozone”), and qualified epidemiological study types (i.e. “long-term”, 148 

“cohort study”, “prospective”, “retrospective”, “longitudinal study”). The detailed search 149 

strategies were listed in Table S1. Health outcomes considered in the systematic review 150 

were: mortality from (1) all causes (AC, ICD9: 001-799, ICD10: A00-R99); (2) all 151 

respiratory diseases (RESP, ICD9: 460-519, ICD10: J00-J98); (3) chronic obstructive 152 
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pulmonary diseases and allied conditions (COPD, ICD9: 490-496, ICD10: J19-J46); (4) 153 

all cardiovascular diseases (CVD, ICD9: 390-459, ICD10:I00-I98); (5) all 154 

cerebrovascular diseases (CEVD, ICD9: 430-438, ICD10: I60-I69); (6) ischaemic heart 155 

disease (IHD, ICD9: 410-414, ICD10: I20-I25); (7) congestive heart failure (CHF, ICD9: 156 

428, ICD10: I50); (8) ischaemic stroke (ICD9: 434, ICD10: I61-I64); (9) pneumonia 157 

(ICD9: 480-487, ICD10: J12-J18); and (10) lung cancer (LC, ICD9: 162, ICD10: C33-158 

C34).  159 

2.2 Study eligibility criteria 160 

As an updated systematic review, literatures identified in the previous 2 reviews 161 

underwent examination together with the newly retrieved ones. Studies were included 162 

during screening following the criteria as: (1) the epidemiological research should be 163 

conducted based on cohorts; (2) the exposure should include O3 as an individual risk 164 

factor; (3) the health outcomes should be all-cause or cause-specific deaths at individual 165 

level; (4) studies provided hazard ratio (HR), risk ratio (RR) or odds ratio (OR) and their 166 

95% confidence intervals (CIs) clearly and reported by every increase unit (e.g. 10-ppbV) 167 

of exposure concentrations, assuming linear risk relationship with adjusting key 168 

confounders; (6) the study should be published as an original research article in scholarly 169 

peer-reviewed journals in English. For articles from the same cohort, only one single 170 

study covering the widest populations and the longest follow-up period was reserved for 171 

meta-analysis, unless the subgroups of participants and study follow-up periods are 172 

clearly stated to be of mild overlapping; We followed the Preferred Reporting Items for 173 

Systematic Review and Meta-Analyses (PRISMA) guidelines to process the included 174 

studies on ambient O3 exposure induced mortality.  175 

2.3 Study selection and scrutinisation  176 

All searched literatures were archived in Clarivate™ Analytics Endnote X9.3.1 177 

reference manager software. Two literature review investigators (HZS and CL) 178 

conducted title and abstract pre-screening independently for all web-searched records and 179 

reviewed the full text for the pre-screened studies. Disagreements were resolved by 180 

discussions with a third reviewer (PY).  181 
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2.4 Data extraction  182 

Details from each screened-out literatures were extracted and labelled for the purpose 183 

of meta-analysis, including (1) the authors with publication year as study labels of 184 

reference; (2) basic descriptive information of the study cohort embracing the cohort 185 

name, country, follow-up periods, numbers of cases and total participants, population 186 

genders and ethnics, exposure metrics, health outcomes, and major confounders; (3) the 187 

risk association effects preferably quantified in HR (and also RR/OR as substitute 188 

choices) per unit incremental exposure with 95% confidence interval (CI).  189 

2.5 Study quality assessment  190 

All screened-out studies underwent quality evaluation using the Quality Assessment 191 

Tool of Observational Cohort and Cross-Sectional Studies developed by National 192 

Institute of Health (NIH) (https://www.nhlbi.nih.gov/health-topics/study-quality-193 

assessment-tools), aiming to ensure the studies considered for meta-analysis are 194 

adequately reliable. The assessments were cross-validated by two authors (HZS and CL) 195 

independently, with the third author (PY) supervising any disagreements. Table S2 listed 196 

14 assessment items assigned with 1 score for each, and the tallied scores were translated 197 

into a literature-specific rating of quality. Studies scoring full-mark 14 were categorised 198 

to be “Good”, while 10-13 as “Fair” and <10 as “Poor”.  199 

Besides applying the quality assessment tool to determine which reviewed studies 200 

should be included for meta-analysis, checking the epidemiological evidence quality 201 

from the included literatures for each cause of mortality was finished through the Grading 202 

of Recommendations Assessment, Development, and Evaluation (GRADE) system21, 22 to 203 

yield rating bands ranging across “high”, “moderate”, “low”, and “very low”. This 204 

grading system by default rated “high-quality” for cohort studies as the starting point of 205 

evaluation, and the rate would be downgraded by five limitations as the existence of (1) 206 

risk of bias examined by the Quality Assessment Tool (Table S2), (2) imprecision (i.e. 207 

studies did not report the central risk estimations with confidence intervals), (3) 208 

inconsistency (i.e. the directions of the estimated risks were controversial across studies), 209 

(4) indirectness (i.e. studies did not include the desired population, exposure, or health 210 

outcomes), and (5) publication bias (i.e. researchers tended to publish studies with 211 

positive results); and upgraded by three strengths as reporting (1) exposure-response 212 

trend, (2) residual confounding (i.e. adjusting the confounders highlighted the risks), and 213 

(3) strong associations. Publication biases were graphically presented by funnel plots,23 214 
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and statistically tested by trim-and-fill method.24 The review was registered in 215 

PROSPERO (CRD42021270637).  216 

2.6 Exposure adjustment  217 

2.6.1 Unit unification  218 

There were two major units used to quantify the surface O3 concentrations, nmol 219 

mol-1 or parts per billion by volume mixing ratio (ppbV) more frequently used by 220 

atmospheric modelling researchers,17, 18, 25 and milligram per cubic metre by mass 221 

concentration (µg/m3) widely used by public health studies.12 These two units are 222 

interchangeable to each other based on the ideal gas law , if the air 223 

temperatures (T) and pressures (P) are given, as presented in eqs 1–4.  224 

              (eq. 1)  225 

       (eq. 2)  226 

         (eq. 3)  227 

  (eq. 4)  228 

Assuming T = 298.65 K (25.5°C) and P = 101.325 kPa, the ppbV-µg/m3 conversion 229 

factor could be approximated as 1 ppbV ~ 1.96 µg/m3. Though the surface air 230 

temperatures and pressures would vary across seasons, such simplification was still 231 

widely used in previous studies,15, 26, 27 being of more credibility for long-term surface O3 232 

studies averaging the surface air temperatures and pressures at longer periods. For 233 

example, even at very low temperature of 270 K, the conversion factor was 2.17, which 234 

corroborated the stability of linear conversion.  235 

2.6.2 Metric unification  236 

 Surface O3, as a secondary photochemistry pollutant involving photolysis of NO2 to 237 

trigger chains of radical reactions, has concentrations that will vary significantly between 238 

PV = n RT

1 ppbV O3 = 1 × 10−9 m ol
1 m ol

O3
air

1 m ol a ir ⇔ RT
P

× 1 m ol (m3) = 8.314 Pa ⋅ m3 ⋅ K−1 × T
P

(m3)

1 × 10−9 m ol O3 × 47.997g ⋅ m ol−1 = 47.997 × 10−9g O3

1 ppbV O3 = 47.997 × 10−9g × 106μg ⋅ g−1

8.314 Pa ⋅ m3 ⋅ K−1 × T /P m3
O3
air

= 5.773 × 10−3 × P (Pa)
T (K )

O3
air

μg ⋅ m−3
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day and night-time, and between warm and cool seasons, as discussed by numbers of 239 

studies.17, 28-31 Under this circumstance, various daily metrics to quantify the surface O3 240 

concentrations emerged due to series of considerations, which however brought in more 241 

difficulties to assimilate epidemiological evidences. The previous reviews simply pooled 242 

the reported risk association strengths without adjusting the diverse metrics,15, 16 which 243 

we thought was a fatal defect requiring improvements.  244 

 We therefore designed to update the meta-analysis by unifying the exposure metrics 245 

for pooled O3 exposure-associated risks. As suggested by the U.S. EPA final report of Air 246 

Quality Criteria for Ozone and Other Photochemical Oxidants,32 linear relationships 247 

were assumed to estimate the cross-metric conversion factors using long-term reliable 248 

observations as the Tropospheric Ozone Assessment Report (TOAR) archive19 and China 249 

National Environmental Monitoring Centre (CNEMC, http://www.cnemc.cn/en/) in our 250 

review, and correlation matrix was used to validate that the presumptions of linearity 251 

were not violated. Both TOAR and CNEMC sites measured the surface O3 by means of 252 

the UV absorption technique with strict quality control so as to ensure the comparability 253 

of the records across different countries and regions.33, 34 We considered 6 complex 254 

metrics for mutual conversion as (1) annual mean of 24-hour daily average (ADA24), (2) 255 

6-month warm season mean of 24-hour daily average (6mDA24), (3) annual mean of 256 

daily maximum 8-hour average (ADMA8), (4) 6-month warm season mean of daily 257 

maximum 8-hour average (6mDMA8), (5) annual mean of daily maximum 1-hour 258 

average (ADMA1), and (6) 6-month warm season mean of daily maximum 1-hour 259 

average (6mDMA1). Long-term averaging-based metric conversion could smooth the 260 

temporal variations resulting from the seasonal and geographical solar radiation 261 

variabilities. The linear conversion factors (k) were mathematically defined by eq 5, to 262 

adjust the original metric into the target one with irreducible regression errors ε.  263 

            (eq. 5)  264 

2.7 Meta-analysis  265 

We collectively named relative risks (RR) for HR/RR/OR throughout our meta-266 

analysis. All literature-reported RRs were converted into adjusted incremental risk ratios 267 

with a 10-ppbV O3-exposure increase by target metric (i.e. 6mDMA8 in this study), 268 

following eq 6 as shown below:  269 

               (eq. 6)  270 

CAdjusted = kOriginal→Adjusted × COriginal + ϵ

R RAdjusted = e
(

lnRROriginal
kOriginal→Adjusted

)

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 24, 2022. ; https://doi.org/10.1101/2021.12.02.21267196doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.02.21267196
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

where ln is the natural logarithm,  is the originally reported risk estimates 271 

scaled into 10-ppbV incremental exposure, and  is the conversion factor 272 

for metric unification. Multi-study pooled risks with 95% confidence interval (CI) were 273 

calculated from the adjusted RRs by Hunter-Schmidt random effect meta-regression 274 

estimator to correct the potential errors and biases caused from the diversity of study 275 

population and methodologies.35  276 

We applied the Higgins  to quantify the heterogeneity across studies. The Higgins 277 

statistics  is defined as  278 

                (eq. 6)  279 

where Q is the Cochran’s non-parametric heterogeneity statistic assessing whether there 280 

are any cross-study differences in risks based on  distribution and df is the 281 

corresponding degrees of freedom.36 Low  values indicate no important heterogeneity 282 

observed and high  values, especially >75%, indicate considerable heterogeneity.  283 

Subgroup analyses were conducted by grouping the selected studies upon the gender, 284 

regions, O3 exposure metrics, and methodological reliability of individual exposure 285 

assignment; together with the adjustment of ethnicity, body mass index (BMI), smoking 286 

history, lifestyle features, and exposure to PM2.5 and NO2. Subgroups should contain at 287 

least 3 studies. Leave-one-out sensitivity analyses were also accomplished to test the 288 

robustness of synthesised overall risks by meta-analysis. All meta-analyses were 289 

performed in R 4.1.1 with packages meta, metafor, and metainf.  290 

The most widely recognised approach to construct the integrated exposure-response 291 

(IER)37 relationships required sufficient epidemiological studies to comprehensively 292 

sample the population exposure levels. However, studies on long-term O3 exposure 293 

health effects were relatively limited, under which circumstance we made methodological 294 

modifications to make better use of the variabilities in exposure levels by statistically 295 

imputing the exposure distributions for each study from the provided statistics (e.g. mean, 296 

standard deviation, and percentiles) for curve fitting as elaborated in Supplementary Text 297 

S1. Supplementary Text S2 described the detailed procedures of exposure distribution 298 

imputations with a demonstration provided in S3, through which high uncertainties were 299 

still observed in the fitted IER curves due to insufficient epidemiological evidences.  300 

 301 

R ROriginal
kOriginal→Adjusted

I 2

I 2

I2 = Q − d f
Q

× 100 %

χ2

I 2

I 2
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3. RESULTS  302 

3.1 Study characters  303 

From the 3 databases during September 2015 till February 2022, a total of 339 304 

studies (77 from MEDLINE, 102 from Embase, and 160 from Web of Science) were 305 

searched; and together with 34 additional literatures added manually from the 2 previous 306 

systematic reviews,15, 16 373 studies underwent duplication censoring, deleting 101 307 

duplicated studies. After detailed scrutinisation for 272 studies, a total of 25 studies 308 

concerning long-term O3 exposure and multi-cause mortalities were finally enrolled for 309 

quality evaluation, meta-analysis and further discussions (Figure 1).38-62 Table 1 310 

summarised the basic information of the 25 included studies sorted by the publication 311 

year and surname of the first author.  312 

3.2 Metrics and exposure assignments  313 

Our updated systematic review stressed more on the exposure metrics and 314 

methodologies to obtain O3 exposure, as summarised in Table 2. Abbey et al. (1999),38 315 

Jerrett et al. (2013)46 and Lipsett et al. (2011)43 did not state the metric they used clearly, 316 

but based on comparisons between the reported surface O3 concentrations and TOAR 317 

observational archives, we reasonably assumed ADA24 for the first study, and ADMA8 318 

for the rest two. Details of the metric matching were given in Supplementary Text (S4). 319 

Lipfert et al. (2006)39 used the highest 95th percentile by hourly resolved O3 320 

concentrations as the peak exposure metric, which was only used in this one singular 321 

study, and hence approximated to DMA1. Krewski et al. (2009)41 and Smith et al. 322 

(2009)42 were both studies on ACS CPS II, and thus the same exposure assignment 323 

methodologies and metrics were assumed as Jerrett et al. (2009).40 Likewise, Cakmak et 324 

al. (2018)53 and Weichenthal et al. (2017)52 were assumed to inherit Crouse et al. (2015)48 325 

as all these 3 studies were on CANCHEC. Warm season was defined as 6 months from 326 

April to September in terms of the northern hemisphere by default, but we made no 327 

exceptions to 3 studies as Zanobetti et al. (2011)44 using May to September, and Crouse 328 

et al. (2015)48 and Paul et al. (2020)57 using May to October, due to limited number of 329 

studies searched.  330 

 Across all included studies, multiple methods were applied to obtain gap-free surface 331 

O3 concentrations for individual-level exposure assignment. The most basic way was the 332 
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nearest neighbour matching between participant residential locations and in situ 333 

observation sites, which were more frequently used in earlier studies.39, 40 A 334 

comparatively more complicated way was statistical spatial interpolation, by inverse 335 

distance weighting46 or ordinary kriging41. Full spatial coverage products, such as 336 

satellite-based remote-sensing51 and chemistry transport models56, were used in some 337 

studies by supervised-learning-based data fusion techniques including but not limited to 338 

universal kriging embedded land use regression,47 Bayesian hierarchical model50 and 339 

ensemble learning51 to enhance the spatial extrapolation accuracy, which were evaluated 340 

to be of higher credibility than the basic ones described previously. All basic 341 

interpolation methods using merely the observations were rated as “Low”; applying 342 

chemical transport model simulations without calibration from the observations as 343 

“Moderate”; linearly coupling the observations with simulations as “Good”; and multi-344 

source data assimilation by means of more sophisticated approaches as “High”. To sum 345 

up, 8 studies were rated “High”, 5 were “Good”, 2 were “Moderate”, and 10 were “Low”. 346 

Methodological progresses with time were evident as manifested in Table 2, prefiguring 347 

an explosion of population-based environmental health studies in the age of big data.  348 

 Based on the TOAR and CNEMC in situ observations, the cross-metric non-intercept 349 

linear conversion factors were estimated with regression accuracies given in Figure 2. 350 

Synthesised from the recent relevant studies, the 6mDMA8 metric was more 351 

recommended to highlight the peak exposure; and therefore, we chose to convert the 352 

originally reported RRs uniformly into the 6mDMA8 scale as standard. The O3 exposure 353 

levels by the original and unified metric were listed in Supplementary Text S1. 354 

Demonstrations for the conversion interpretation and procedures were presented in 355 

Supplementary Text S5, respectively.  356 

3.3 Meta-analysis results  357 

 We conducted meta-analyses for long-term O3 exposure-associated into 10 categories 358 

of mortalities as (1) all causes (AC), (2) all respiratory diseases (RESP), (3) chronic 359 

obstructive pulmonary diseases and allied conditions (COPD), (4) all cardiovascular 360 

diseases (CVD), (5) all cerebrovascular diseases (CEVD), (6) ischaemic heart disease 361 

(IHD), (7) congestive heart failure (CHF), and (8) lung cancer (LC), with the exposure 362 

metrics adjusted into 6mDMA8.  363 
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3.3.1 All-cause mortality 364 

A total of 23 studies were included into O3 exposure-associated all-cause mortality 365 

meta-analysis, pooling the overall risk into RR = 1.014 (95% CI: 1.009–1.019, I2: 97.8%) 366 

with every 10-ppbV incremental exposure by 6mDMA8 as presented in Figure 3. Sub-367 

group meta-analysis by originally reported metrics concluded the significances of risks 368 

vary across metrics, as high-concentration highlighted metrics like 6mDMA8 were of the 369 

highest positive risk (RR = 1.022, 95% CI: 1.014–1.031) while the smoothed metric 370 

ADA24 reported negative association (RR = 0.980, 95% CI: 0.960–1.001), as shown in 371 

Figure S1. Grouped by study regions, significant discrepancies of the risk pattern was 372 

found (Figure S2), as the studies in North America revealed positive associations as RR = 373 

1.019 (95% CI: 1.014–1.024), while researches on European populations showed 374 

reversed risks as RR = 0.910 (95% CI: 0.827–1.001), though not significant. The cross-375 

region divergences did not necessarily indicate differences in population vulnerability, as 376 

(1) less and younger study population, (2) shorter follow-up durations, and (3) use of 377 

smoothed exposure metrics for studies in Europe could all potentially obscure the 378 

potential risk associations. Subgroup analysis manifested that high inter-study 379 

heterogeneities originated from metric inconsistency, methodological reliability of 380 

individual exposure assignment, and population variabilities, as encapsulated in Table S3. 381 

The funnel plot was visually symmetrical (Figure S3), and studies reporting risks below 382 

the pooled value were even slightly more, indicating no detected severe potential 383 

publication biases.  384 

No significant inter-gender differences were observed based on the limited studies 385 

reporting gender-specific risk association strengths. Further subgroup analyses were 386 

unfeasible due to the lack of reporting in the literature. Alternatively, grouped RRs were 387 

estimated based on whether the original researches had adjusted the confounding effects 388 

from ethnicity, body mass index (BMI), smoking history, lifestyle features, exposure 389 

levels of PM2.5 and NO2, and no inter-group divergences were observed (Table S3).  390 

3.3.2 Respiratory mortality  391 

Meta-analysis for O3 exposure-associated all respiratory mortality includes 16 392 

studies, pooling which gave the overall RR = 1.025 (95% CI: 1.010–1.040, I2: 83.9%) for 393 

every 10-ppbV incremental O3 exposure by 6mDMA8 (Figure 4). Based on sub-group 394 

meta-analysis for different metrics (Figure S4), peak metrics showed more significant 395 

increasing risks than ADA24, where most of the heterogeneities were from (I2 = 87.0%). 396 

Cross-metric divergences were generally higher than intra-metric discrepancies. Studies 397 
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on North America populations showed better homogeneity in positive risks (RR = 1.029, 398 

95% CI: 1.011–1.047, I2 = 71.1%, Figure S5) than the European cohorts, pooling from 399 

which the overall risks were congruously insignificant (RR = 0.941, 95% CI: 0.856–400 

1.036, I2 = 91.2%). For O3-COPD mortality association, the pooled RR was 1.056 (95% 401 

CI: 1.029–1.084, I2 = 94.5%) for 10-ppbV incremental O3 exposure by 6mDMA8 from 7 402 

studies. No apparent positive publication biases were detected for both respiratory and 403 

COPD mortalities from the funnel plot (Figure S3).  404 

3.3.3 Cardiovascular mortality 405 

A total of 15 studies were included to pool the overall O3 exposure-induced CVD 406 

mortality risks as RR = 1.019 (95% CI: 1.004–1.035, I2 = 97.7%) for each 10-ppbV 407 

additional O3 exposure by 6mDMA8 (Figure 5). Given the fact that the lower bound of 408 

uncertainty interval was so close to the null hypothesis (i.e. RR = 1), the positive risk 409 

association found in this review could be controversial, and thus would require more 410 

studies to support or refute the finding. Heterogeneities (I2 > 79.2%) were observed 411 

through all 3 metric-grouped studies as presented in Figure S6. Positive risk associations 412 

were found on 10 North American cohorts (RR = 1.036, 95% CI: 1.019–1.053) while 413 

oppositely for 5 European cohorts (RR = 0.934, 95% CI: 0.865–1.008), as shown in 414 

Figure S7. There was no need to be concerned with the publication bias, and no more 415 

inter-group divergences were spotted except for grouping by exposure assignment 416 

methodological credibility (Table S3). The pooled risk for the congestive heart failure-417 

induced mortality from 4 studies was RR = 1.074 (95% CI: 1.054–1.093, I2 = 85.8%) 418 

with every 10-ppbV incremental O3 exposure by 6mDMA8.  419 

3.3.4 Other mortality causes  420 

The other cause-specific mortality risks attributable to long-term O3 exposure were 421 

not statistically significant (Figure 6), as IHD mortality risk pooled from 10 studies was 422 

RR = 1.012 (95% CI: 0.987–1.039, I2 = 98.7%), CEVD mortality risk pooled from 6 423 

studies was RR = 0.993 (95% CI: 0.979–1.008, I2 = 80.6%), and LC mortality risk pooled 424 

from 13 studies was RR = 0.966 (95% CI: 0.926–1.007, I2 = 84.2%). For all 8 studied 425 

mortality causes, we also provided pooled risks by 3 more widely used metrics (i.e. 426 

6mDA24, ADMA8, and ADA24) besides 6mDMA8, as listed in Table 3 for reference.  427 
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3.4 Study assessment  428 

All 25 studies included into our final meta-analysis were rated to be above “Fair” (14 429 

as “Fair” and 11 as “Good”) by the Quality Assessment Tool for Observational Cohort 430 

Studies, as listed in Table S4. All studies well met 10 out of 14 assessment items, while 9 431 

studies did not sufficiently clarify the participant exclusion criteria; 2 re-analysis study 432 

reports did not clearly state the O3 exposures;41, 42 2 studies were of relatively insufficient 433 

follow-up durations (e.g. less than 5 years) to observe the outcomes resulting from long-434 

term exposure;45, 63 and 10 studies were of methodological deficiencies in individual 435 

exposure assignment,38-46, 55 most of which were conducted before 2013 when data 436 

assimilation techniques were not maturely developed to fuse observations with other full 437 

spatial coverage products such as satellite-based remote sensing and atmospheric 438 

mechanistic simulations. The satisfactory assessment results overall indicated 439 

inconspicuous risks of bias, laying the reliable foundation for meta-analyses.  440 

Tables S5 displayed GRADE epidemiological evidence assessment results for each 441 

mortality cause from all involved corresponding studies. In brief, the overall judgements 442 

for all-cause, respiratory, cardiovascular, ischaemic heart disease, congestive heart 443 

failure, and lung cancer mortality risks were “High”, while the rating for the rest 2 cause-444 

specific mortality risks (COPD and cerebrovascular diseases) were both “Moderate”. 445 

Inconsistence of the risk directions (i.e. positive or negative associations) was the most 446 

common reason for downgrading, except for the CHF-induced mortality. There were 6 447 

studies having reported the O3-mortality exposure-response trends to support the 448 

additional risks, as an assessment upgrading item for the pooled RRs of all-cause, 449 

respiratory and cardiovascular mortality. Cakmak et al. (2018) spotted higher RRs after 450 

adjusting the confounder compared to the crude values,53 which gave prominence to the 451 

positive risk associations and thus correspondingly upgraded the rating for all-cause, 452 

ischaemic heart disease, and lung cancer mortalities. No substantial positive publication 453 

biases were found based on the collected evidences.  454 

3.5 Sensitivity analysis  455 

Leave-one-out sensitivity analyses showed stable risk estimates as summarised in 456 

Table S6, except for the lung cancer mortality risks after eliminating Kazemiparkouhi et 457 

al. (2019), the only study reporting positive risk association,55 while the rest 11 studies 458 

concluded insignificant risks or even protective effects. Since the metric harmonisation in 459 

our study was an innovative attempt, we provided both metric-adjusted and unadjusted 460 
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crude results for reference as presented in Table 3. The crude results were pooled from 461 

the originally reported relative risk values only unified into per 10-ppbV incremental 462 

exposure, without being transformed into any metrics for congruity. Along with the meta-463 

analyses on all qualified studies, the relative risks were also pooled by keeping only one 464 

latest study with the largest population for each separate cohort, as summarised in Table 465 

S7. Under this circumstance, the pooled unit incremental mortality risks with every 10-466 

ppbV incremental O3 exposure by 6mMDA8 metric were RR = 1.008 (95% CI: 1.006–467 

1.009, I2 = 82.6%) for all causes, RR = 1.034 (95% CI: 1.017–1.050, I2 = 81.7%) for all 468 

respiratory diseases, RR = 1.060 (95% CI: 1.040–1.080, I2 = 90.2%) for COPD, RR = 469 

1.032 (95% CI: 1.010–1.055, I2 = 98.2%) for all cardiovascular diseases, RR = 1.008 470 

(95% CI: 0.973–1.045, I2 = 99.2%) for ischaemic heart disease, and RR = 0.966 (95% CI: 471 

0.931–1.002, I2 = 83.8%) for lung cancer. Studies for mortality risks of cerebrovascular 472 

diseases and congestive heart failure were respectively conducted on different cohorts, 473 

and hence such supplementary analysis was unnecessary.  474 

 475 

4. DISCUSSION  476 

4.1 Improvements as an updated review  477 

This work improves on 2 previous high-quality reviews15, 16 by covering up-to-date 478 

peer-reviewed studies, and expanding the O3-exposure associated causes of mortality into 479 

wider range of categories. It is the first systematic review of the association between 480 

long-term O3 exposure and cause-specific mortality highlighting the issue of inconsistent 481 

use of exposure metrics to our best knowledge. Since tropospheric O3 is a photochemical 482 

pollutant which largely depends on solar radiation, the surface O3 concentrations can vary 483 

drastically between day and night, as well as warmer and cooler seasons. We pointed out 484 

that a 10-ppbV increase in annual daily 24-hour average concentration (ADA24) is more 485 

constrained in magnitude than a 10-ppbV increase in warm-season daily 8-hour 486 

maximum average concentration (6mDMA8) owing to the wider variability in the range 487 

of the latter metric. Taking the observations by TOAR and CNEMC in situ monitoring 488 

networks during 1990-2019 as an example, the surface O3 concentrations were 27.6 ± 6.1 489 

(IQR: 24.1–31.0) ppbV by ADA24, while correspondingly 53.1 ± 10.6 (IQR: 47.7–61.4) 490 

ppbV by 6mDMA8, which indicated a 10-ppbV change fell below the IQR by the 491 

6mDMA8, but could exceed the IQR using the ADA24 metric. This was why we believe 492 
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adjusting the exposure metrics was necessary for O3 exposure-attributable health risk 493 

meta-analysis.  494 

We also put forward a feasible approach to mutually convert the O3 exposure 495 

concentrations and corresponding risk strengths in various metrics by non-intercept linear 496 

projections following the operational suggestions from EPA,32 but update the linear 497 

conversion factors based on global in situ surface O3 observations during 1990-2019. The 498 

methodological innovation took advantage of multi-dimensional information from the 499 

original studies, which could inspire further observation collections and researches for 500 

corroborations and improvements.  501 

4.2 Metric relevant issues  502 

Although linear coefficients were applied onto the cross-metric conversions, 503 

irreducible noises still existed given the high root mean squared errors (RMSE) as shown 504 

in Figure 2, which exposed the limitation of risk strength adjustment into the same 505 

exposure metric by simple linear conversion, as the actual cross-metric relationships 506 

could be way more complicated. However, there was no other way but using the linear 507 

conversion coefficients as surrogates to unify the RRs by different metric reported in 508 

original studies, and thus to avoid uncertainties brought by the conversion of metrics, 509 

using a promissory consistent exposure metric or estimating the unit excess RRs in 510 

multiple metrics would be highly advocated in future long-term O3-exposure 511 

epidemiology studies.  512 

Such linear conversion of risk associations could be validated by Kazemiparkouhi et 513 

al. (2020),55 where multiple metrics were applied to estimate the mortality risks. For 514 

COPD mortality, the RR was 1.072 (95% CI: 1.067–1.077) by 6mDMA1 for every 10-515 

ppbV additional exposure; and after converting into 6mDMA8 metric using the linear 516 

coefficient 0.831 (Figure 2), the estimated RR was 1.087 (95% CI: 1.081–1.093), close 517 

to the literature reported 1.084 (95% CI: 1.079–1.089),55 which justified our linear 518 

conversion method. Converting Cross-metric linear conversions would not change the 519 

risk association direction, but using different exposure metrics when estimating the O3-520 

exposure attributable mortality risks could potentially cause discrepancies. For an 521 

instance, Kazemiparkouhi et al. (2020) concluded excess hazards of long-term O3 522 

exposure on all-cause mortality using 6mDMA1 and 6mDMA8 as quantitative metrics, 523 

but 6mDA24 led to a specious prevention effect (RR = 0.990, 95% CI: 0.988–0.991), 524 

which should be attributed to the existence of a theoretical exposure safety level for O3 525 

below which no negative health effects should occur. Under this circumstance, lower-526 

level metrics (e.g. ADA24) by averaging the peak O3 exposures might obscure the 527 
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effective doses above the threshold, and also reduce the signal-to-noise ratios, so that 528 

were of lower credibility in recognising hazardous population exposures than higher-level 529 

metrics (e.g. 6mDMA8).  530 

Data mining techniques were able to realise high-accuracy predictions of surface O3 531 

concentrations, but errors were never avoidable. Carey et al. (2013) used a basic IDW 532 

spatial interpolation approach to obtain the surface O3 concentrations where the R2 were 533 

0.24–0.76,45 while years later Di et al. (2017) applied an ensemble learning approach, 534 

achieving R2 = 0.80, RMSE = 2.91 ppbV.51 Carey et al. (2013) reported the IQR of O3 535 

exposure concentrations as 3.0 ppbV, which was comparable to the RMSE of Di et al. 536 

(2017).51 Besides, lower R2 could be accompanied with higher prediction errors, which 537 

might have concealed the highest and lowest quartiles, and led to failures in 538 

distinguishing the population-level exposures. This concern had been reflected in our 539 

subgroup meta-analysis by exposure metrics, that lower-level metrics were more inclined 540 

to report insignificant risks, which also cast sceptics on the reliability of studies covering 541 

narrow exposure variabilities. We therefore are in favour of the Lancet suggestions to use 542 

peak metrics to quantify the long-term O3 exposure such as 6mDMA8, and also speak 543 

highly of the state-of-the-art data techniques to reduce errors in O3 concentration 544 

prediction, so as to make a distinction between the high- and low-exposure populations.  545 

4.3 Pathogenesis supports  546 

Atkinson et al. (2016) concluded insignificant pooled risks for long-term O3 547 

exposure associated all-cause and respiratory mortality,16 which contradicted our results. 548 

It should mainly be ascribed to the heterogeneity between the more recent studies and 549 

earlier ones. The majority of studies collected in Atkinson et al. (2016) applied primitive 550 

statistical methods (i.e. nearest neighbourhood matching, IDW and ordinary kriging 551 

interpolation) for individual exposure assignment, which might have weakened the 552 

individual-level exposure distinguishment. In addition, some studies using ADA24 as the 553 

exposure metric could have also obscured the significance of associations.43, 45, 46 In 554 

contrast, studies after 2016 more frequently applied advanced numerical simulation 555 

models and data assimilation techniques to increase the precision of population exposure 556 

assessment; and most of them used 6mDMA8 metric to foreground the high exposures.50, 557 
52, 53, 55-57 These recent studies stuck out the significant O3-mortality associations.  558 

From another aspect, pathological mechanisms had been at least partially ascertained 559 

by laboratorial experiments. The inhaled O3 could constrict the muscles in the airways 560 

leading to shortness of breath, and damage the lining with inflammation.64 Long-term O3 561 
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exposure could increase the oxidative stress in the cardiovascular system,65 and cause 562 

progressive thickening of the carotid arteries to restrict cerebral blood supply.66 563 

Additionally, strong associations had already been found between short-term O3 exposure 564 

and a variety of cardiopulmonary symptoms as reported by a number of observational 565 

epidemiological studies,6 which also supported the long-term exposure effects, as it was 566 

unreasonable to presume no incremental risks by long-term exposure given the verified 567 

significant short-term effects. We thus were inclined to approve of the opinion that long-568 

term O3 exposure would increase mortality risks in agreement with GBD report.20  569 

To alleviate the population health loss resulting from O3 exposure, the U.S. EPA 570 

appealed for optimisations in real-time accessibility of air quality index, with which 571 

residents could be able to avoid unnecessary high pollution exposure 572 

(https://www.epa.gov/ground-level-ozone-pollution/health-effects-ozone-pollution). 573 

Appropriate diets and supplements including carotenoids, vitamin D and vitamin E were 574 

recognised to be preventive against air pollution induced respiratory damages, which was 575 

a practical protective measure for the vulnerable.67  576 

4.4 Concentration-response relationship  577 

Few studies had examined the concentration-response curves between long-term O3 578 

exposure and mortality, and thus the threshold exposure level (also known as theoretical 579 

minimum risk exposure level, TMREL) below which no adverse health effects would be 580 

assumed to occur was still controversial. For all-cause mortality, Di et al. (2017) reported 581 

a safe exposure level as 30 ppbV by 6mDA24 metric (approximately as 49.9 ppbV by 582 

6mDMA8),51 while Shi et al. (2022) suggested a lower level as 40 ppbV by 6mDMA8, 583 

both estimated from the Medicare beneficiary cohort.58 For respiratory mortality, Jerrett 584 

et al. (2009) tested the concentration-response relationships and estimated the threshold 585 

level as 60 ppbV by 6mDMA1 (49.9 ppbV by 6mDMA8),40 while Lim et al. (2019) 586 

failed to identify a significant threshold level.56 For cardiovascular mortality, Lim et al. 587 

(2019) showed no apparent health hazards below 45 ppbV by 6mDMA8,56 and Paul et al. 588 

(2020) prescribed a threshold level around 35 ppbV by 6mDMA8 metric for diabetic 589 

patients.57 These evidence-based threshold exposure levels were all no higher than the 590 

current standards, as 70 ppbV for daily maximum 8-hour exposure under NAAQS (The 591 

National Ambient Air Quality Standards regulated by the U.S. EPA)68 and 50 ppbV by 592 

warm-season DMA8 under WHO global air quality guidelines.69 However, whether the 593 

standard guidelines should be revised to be more strictly would require more further 594 

studies.  595 
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To synthesise epidemiological evidences, Burnett et al. (2014) developed an 596 

integrated exposure-response (IER) function-based curve-fitting method to pool the risk 597 

associations from multiple studies.37 We attempted to construct the IER for long-term O3 598 

exposure associated mortalities in this review, with statistically reproduced exposure 599 

levels to enhance the curve fitting, as illustrated in Supplementary Texts S1-S3. The 600 

exposure imputing had revealed high reliability, but the high uncertainties of the IER 601 

curves could still not be addressed, which should be attributed to the limited effective 602 

epidemiological evidences. Empirically, this approach would require sufficient studies to 603 

cover a wide range of exposure levels, which had been frequently adopted for particulate 604 

matter exposure researches,70-72 but seldomly used for O3-health studies.20 The main 605 

probable reason might be that the population long-term O3 exposure levels would not be 606 

as comparably distinguishable to the particulate matters. In addition, a reasonable 607 

prescribed TMREL would be necessary to establish the IER curves,37 and hence the 608 

indeterminacy of the threshold level could exacerbate the uncertainties in the estimated 609 

concentration-response relationships. Therefore, more relevant studies on long-term O3 610 

exposure associated risks are urgently appealed for, based on which discussions, 611 

optimisations, or corrections on our enhanced exposure-response curve-fitting 612 

methodologies, are encouraged.  613 

4.5 Hierarchical classification of diseases  614 

The causes of mortalities analysed in our study followed hierarchical subordinate 615 

relationships, as the all-cause mortality consisted of cardiovascular diseases, respiratory 616 

diseases, cancer and other causes; chronic obstructive pulmonary disease belonged to 617 

respiratory category; and ischaemic heart disease, stroke, congestive heart failure and 618 

other cerebrovascular diseases all subordinated to cardiovascular symptoms. On this 619 

occasion, estimating all O3-exposure induced mortalities could follow a bottom-up 620 

scheme by adding up subgroups of diseases. However, for the historical O3-associated 621 

mortalities, GBD attributed all O3-associated mortalities onto COPD-induced premature 622 

deaths,20 which we thought were of spaces for further explorations. Long-term O3 623 

exposure had shown significant association with excess cardiovascular mortalities, and 624 

thus we should update the mortality estimations in further studies by including CVD 625 

altogether into consideration.  626 
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4.6 Application in mortality estimations  627 

The widest applications of the estimated risk association strengths were to project 628 

how many people would be affected by long-term ambient O3 exposure. For example, 629 

Malley et al. (2017) estimated 1.23 (95% UI: 0.85–1.62) million respiratory deaths 630 

attributable to O3 exposure in 2010,73 using the risk strength by Turner et al. (2016) as 631 

HR = 1.12 (95% UI: 1.08–1.16).50 This estimation was much higher than the 2019 GBD 632 

report: 0.31 (95% UI: 0.15–0.49) million, as had been highlighted in another recent 633 

study,25 which should be attributed to the use of high HR value among all included 634 

studies. We had also found some other studies using one singular HR value for 635 

population risk estimations,17, 74-77 but we would still encourage further relevant studies to 636 

consider multi-study pooled RRs, which could effectively reduce the potential biases 637 

from a single study. The adaptability of the pooled RRs could be verified from the 638 

coverage of exposure levels, as the 25 studies identified in our review had embraced a 639 

wide range of exposure concentrations (Supplementary Text S1) to encompass the global 640 

surface O3 variability.25 On the other hand, the leave-one-out sensitivity analyses (Table 641 

S6) had revealed the robustness of the meta-analysis results when including sufficient 642 

numbers of studies, which was a circumstantial reflection for the representativeness of 643 

the synthesised risk association strengths. The annual GBD reports were also based on 644 

the generalisability presumption of the synthesised epidemiological evidences, but 645 

cohort-based researches in the unstudied regions are always appealed for to provide more 646 

convincing discoveries.  647 

4.7 Limitations  648 

 Although the total number of studied participants for risk pooling was adequately 649 

high to ensure the statistical power, the cohort-based O3-health studies were factually rare 650 

according to our literature search, and thus long-term follow-up studies are urgently 651 

encouraged. Additionally, current literatures seldomly reported grouped RRs, which 652 

made meta-analyses by sub-categories (like gender, age, socio-economic status, smoking 653 

and alcohol history, etc.) unfeasible. Scarcity of credible evidences also restricted the 654 

effects of conventional approaches to construct exposure-response curves, and our 655 

methodological innovation would require further relevant studies for substantiation. The 656 

cross-metric linear conversion factors were estimated relying on observations from 657 

available sites, which however might not be sufficiently representative of the global 658 

residential areas, as observational sites in India, Africa, and Latin America were still 659 

sparse. With ever-increasing popularisation of the in situ monitoring networks, the cross-660 
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metric conversion factors might need calibration with more comprehensive observations, 661 

so that the pooled RRs should also be updated accordingly.  662 

4.8 Further study suggestions  663 

We suggest that further environmental epidemiology studies, especially long-term O3 664 

exposure related researches, clearly report i) the methodologies to obtain ambient O3 665 

concentrations, the spatiotemporal resolution, and prediction accuracy of the database; ii) 666 

the exposure metrics used for risk estimation; and iii) the statistical distribution of the O3 667 

exposure concentrations. The data-oriented methodologies to accomplish full spatial 668 

coverage ambient air O3 concentrations for individual-level exposure assignment should 669 

be transparent as the construction credibility of air pollution concentration database 670 

should also be rigorously assessed, which were the foundation of epidemiological follow-671 

up studies. We would advocate the report of exposure metrics in future O3-health studies 672 

so as to avoid confusions when comparing the risks with literature and conducting meta-673 

regression; and according to the recent consensus, warm-season average (6mDMA8) 674 

shall be preferred as epidemiological study metrics.19 We recommend future studies 675 

estimate risks with multiple O3 metrics for reference; and describing the statistical 676 

distribution of the O3 exposure levels is another suggested element to assess the 677 

reliability of risk estimation models, which can also be useful in exposure-response 678 

tendency exploration. We also propose future cohort studies estimate subgroup-specific 679 

RRs which can be conducive to identify the vulnerable populations.  680 

Our review highlights a deficiency existing in current environmental health research 681 

literatures, that studies on long-term O3 exposure health effects are still rather rare 682 

compared to particulate matter-based studies.78 Also, the meta-analysis results might be 683 

geographically-biased, since large-scale O3 exposure health risk studies till 2022 did not 684 

cover Asia, Africa or Latin America regions. However, there are some thriving cohorts 685 

such as the Multi-Country Multi-City (MCC) Collaborative Research Network covering 686 

over 22 countries or regions,79 and the China Kadoorie Biobank (CKB) enrolling over 0.5 687 

million people,80 working on environmental exposure projects. We are optimistic that 688 

more research will come out to fill in the literature gap of multi-region population-based 689 

studies.  690 

 691 
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5. CONCLUSION  692 

Our state-of-the-science systematic review has summarised cohort studies exploring 693 

the associations between long-term ambient O3 exposure and multi-cause mortality risks. 694 

Current studies support O3-exposure attributable additional mortalities caused from all 695 

causes, respiratory diseases, chronic obstructive pulmonary disease, cardiovascular 696 

diseases, and congestive heart failure, but no significant mortality risks are found for 697 

ischaemic heart diseases, all-type cerebrovascular diseases, and lung cancer. Exposure 698 

metrics are crucial for health risk estimations of long-term O3 exposure and meta-analysis 699 

to pool the multi-study risks, for which we develop a linear conversion approach to 700 

harmonise the different metrics. Further researches on long-term O3 observations and 701 

exposure-induced mortalities are encouraged to corroborate or contradict our linear 702 

conversion factors and meta-analysis results by providing more solid evidences, so as to 703 

strengthen the O3-health literatures.  704 

  705 
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TABLES  

Table 1 Summary of cohort characteristics included for meta-analysis.  

Study Cohort Country Follow-up  
Duration 

Population  
Type 

Sample  
Size Sex Age Key Confounding 

Adjustment 
Mortality 

Causes 

Abbey et al. 199938 AHS USA 1977-1992 Occupational 6,182 FM 27-95 

age, sex, BMI, smoking, 
individual demographic 

features∥, lifestyle features⊥, 
medical history 

AC, RESP, LC 

Lipfert et al. 200639 WU-EPRI USA 1976-1996 General 67,108 M 51 (12)§ 
age, ethnicity, BMI, 

smoking, traffic density, 
NO2, CO 

AC 

Jerrett et al. 200940 ACS CPS II USA 1977-2000 General 448,850 FM 

≥ 30 

age, sex, ethnicity, BMI, 
smoking, individual 

demographic features, 
lifestyle features, PM2.5 

AC, RESP, 
CVD, IHD  

Krewski et al. 200941 ACS CPS II USA 1982-2000 General 488,370 FM AC, IHD, LC 

Smith et al. 200942 ACS CPS II USA 1982-2000 General 352,242 FM AC, RESP, 
CVD 

Lipsett et al. 201143 CTS USA 1998-2005 Occupational 124,614 F ≥ 20 
age, ethnicity, BMI, 

smoking, lifestyle features, 
medical treatment 

AC, RESP, 
CVD, IHD, 
CEVD, LC 

Zanobetti et al. 201144 Medicare USA 1985-2006 General 8,894,473 FM ≥ 65 age, sex, ethnicity, medical 
history COPD, CHF 

Carey et al. 201345 CPRD UK 2003-2007 General 824,654 FM 40-89 
age, sex, BMI, smoking, 
individual demographic 

features 
AC, RESP, LC 

Jerrett et al. 201346 ACS CPS II USA 1982-2000 General 73,711 FM 57 (11) 
age, sex, smoking, 

individual demographic 
features, lifestyle features 

AC, RESP, 
CVD, IHD, LC 

Bentayeb et al. 201547 GAZEL France 1989-2013 Occupational 20,327 FM 44 (4) 
age, sex, BMI, smoking, 
individual demographic 

features, lifestyle features 

AC, RESP, 
CVD 

Crouse et al. 201548 CANCHEC Canada 1991-2006 General 2,521,525 FM ≥ 25 
age, sex, individual and 
area-level demographic 

features, PM2.5, NO2 

AC, RESP, 
COPD, CVD, 

IHD, CEVD, LC 

Tonne et al. 201649 MINAP UK 2003-2010 MI Survivors* 18,138 FM 68 (14) 
age, sex, ethnicity, smoking, 
medical history, area-level 

demographic features 
AC 

Turner et al. 201650 ACS CPS II USA 1982-2004 General 669,046 FM ≥ 30 

age, sex, BMI, smoking, 
individual and area-level 

demographic features, 
PM2.5, NO2 

AC, RESP, 
COPD, CVD, 

CHF, IHD, 
CEVD  

Di et al. 201751 Medicare USA 2000-2012 General 60,925,443 FM ≥ 65 

age, sex, ethnicity, BMI, 
smoking, individual and 
area-level demographic 
features, meteorological 

features, PM2.5 

AC 

Weichenthal et al. 201752 CANCHEC Canada 2001-2011 General 2,448,500 FM 25-89 
age, sex, ethnicity, 

individual and area-level 
demographic features 

AC, RESP, 
CVD 

Cakmak et al. 201853 CANCHEC Canada 1991-2011 General 2,291,250 FM ≥ 25 age, sex, individual 
demographic features, PM2.5 

AC, COPD, 
IHD, LC 

Hvidtfeldt et al. 201954 DDCH Denmark 1993-1997 General 49,596 FM 50-64 
age, sex, BMI, smoking, 
individual and area-level 

demographic features, noise 

AC, RESP, 
CVD 

Kazemiparkouhi et al. 201955 Medicare USA 2000-2008 General 22,159,190 FM ≥ 65 
age, sex, ethnicity, area-

level demographic features, 
PM2.5 

AC, RESP, 
COPD, CVD, 

IHD, CHF, 
CEVD, LC  
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Study Cohort Country Follow-up  
Duration 

Population  
Type 

Sample  
Size Sex Age Key Confounding 

Adjustment 
Mortality 

Causes 

Lim et al. 201956 NIH-AARP USA 1995-2011 General 548,780 FM 50-71 

age, sex, ethnicity, BMI, 
smoking, individual 

demographic features, 
PM2.5, NO2, daily maximum 

temperature 

AC, RESP, 
COPD, CVD, 

IHD, CHF, 
CEVD, LC  

Paul et al. 202057 ONPHEC Canada 1996-2015 Diabetes 452,590 FM 35-85 age, sex, area-level 
demographic features CVD 

Shi et al. 202158 Medicare USA 2001-2017 General 44,684,756 FM ≥ 65 

age, sex, ethnicity, BMI, 
smoking, individual and 
area-level demographic 

features, lifestyle features, 
PM2.5, NO2, medical history  

AC 

Strak et al. 202159 ELAPSE 6 countries† 1985-2015 General 325,367 FM 49 (13) 

age, sex, ethnicity, BMI, 
smoking, individual and 
area-level demographic 

features, PM2.5, NO2, BC 

AC, RESP, 
COPD, CVD, 
IHD, CEVD 

Yazdi et al. 202160 Medicare USA 2000-2016 General 44,430,747 FM ≥ 65 

age, sex, ethnicity, BMI, 
smoking, individual and 
area-level demographic 

features, lifestyle features, 
PM2.5, NO2, medical history  

AC 

Bauwelinck et al. 202261 BC2001 Belgium 2001-2011 General 5,474,470 FM ≥ 30 
age, sex, individual and 
area-level demographic 

features, PM2.5, NO2 

AC, RESP, 
CVD, LC 

Stafoggia et al. 202262 ELAPSE 7 countries‡ 2000-2017 General 28,153,138 FM ≥ 30 

age, sex, ethnicity, BMI, 
smoking, individual and 
area-level demographic 

features, PM2.5, NO2, BC 

AC, RESP, 
CVD, LC 

Cohort abbreviations: AHSMOG, Adventist Health Study of Smog; WU-EPRI, Washington University–Electric Power Research Institute; ACS CPS, American Cancer Society 
Cancer Prevention Study; CTS, California Teacher Study; CPRD, Clinical Practice Research Datalink; GAZEL, GAZ de France and ÉLectricité; CANCHEC, Canadian Census 
Health and Environment Cohort; MINAP, National Audit of Myocardial Infarction Project; DDCH, Danish Diet, Cancer and Health; NIH-AARP, National Institute of Health, 
American Association of Retired Persons; ONPHEC, Ontario Population Health and Environment Cohort; BC2001, Belgian 2001 Census.  
∥ Demographic features included marital status, education attainment, employment status and occupational class, aboriginal ancestry, visible minority ethnicities, immigrant status 
and residence location (urban or rural), income level and socioeconomic status (SES), and regional population density. Different studies adjusted various combinations of 
demographic features.  
⊥ Lifestyle features included consumptions of alcohol, dietary fat, vegetables, fruits (dietary fibre), and vitamins, together with physical activity frequency. Different studies 
adjusted various combinations of lifestyle features.  
§ Population ages were reported by mean with standard deviation (in bracket).  
* MI, Myocardial Infarction.  
† Sweden, Denmark, France, Netherland, Germany and Austria.  
‡ Belgium, Denmark, England, Netherland, Norway, Switzerland and Italy.  
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 24, 2022. ; https://doi.org/10.1101/2021.12.02.21267196doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.02.21267196
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

Table 2 Data sources and statistical methods of O3 exposure assignment. 
Methodological ratings were based on spatial interpolation and multi-data assimilation 
approaches. Spatial resolutions, exposure metrics, and levels of incremental risk ratio 
were also listed.  

Study Data Sources Methods Resolution Rating Metrics 
Level of 

incremental 
risk ratio 

Abbey et al. 199938 monitoring station observations IDW interpolation NR∥ Low ADMA8 12.03 ppbV 

Lipfert et al. 200639 monitoring station observations nearest matching 
(assumed)† NR Low ADMA1 40 ppbV 

Jerrett et al. 200940 monitoring station observations nearest matching 
(assumed) NR Low 6mDMA1 10 ppbV 

Krewski et al. 200941 monitoring station observations ordinary kriging 
interpolation NR Low 6mDMA1 10 ppbV 

Smith et al. 200942 monitoring station observations nearest matching 
(assumed) NR Low 6mDMA1 1 µg/m³ 

Lipsett et al. 201143 monitoring station observations IDW interpolation 250 m Low ADA24 22.96 ppbV 

Zanobetti et al. 201144 monitoring station observations nearest matching 
(assumed) NR Low 6mDMA8 5 ppbV 

Carey et al. 201345 monitoring station observations interpolation  
(IDW assumed) 1 km Low ADA24 3.0 µg/m3 

Jerrett et al. 201346 monitoring station observations IDW interpolation NA Low ADA24 24.1782 ppbV 

Bentayeb et al. 201547 monitoring station observations, model 
simulation, other auxiliary predictors 

universal kriging 
embedded land use 

regression 
2 km Good 6mDMA8 12.3 µg/m3 

Crouse et al. 201548 monitoring station observations, model 
simulation linear data assimilation 21 km Good 6mDMA8 9.5 ppbV 

Tonne et al. 201649 KCLurban air dispersion model simulation NA 20 m Moderate ADA24 5.3 µg/m3 

Turner et al. 201650 monitoring station observations, CMAQ model 
simulation 

hierarchical Bayesian 
space-time data 

assimilation 
12 km High ADMA8 

6mDMA8 10 ppbV 

Di et al. 201751 
monitoring station observations, model 

simulation, satellite remote sensing 
observations, other auxiliary predictors 

ensemble machine 
learning 1 km High 6mDMA8 10 ppbV 

Weichenthal et al. 201752 monitoring station observations, model 
simulation linear data assimilation 21 km Good 6mDMA8 10.503 ppbV 

Cakmak et al. 201853 monitoring station observations, model 
simulation linear data assimilation 21 km Good 6mDMA8 10 ppbV 

Hvidtfeldt et al. 201954 AirGIS dispersion model simulation NA 1 km Moderate ADA24 10 µg/m3 

Kazemiparkouhi et al. 201955 monitoring station observations nearest matching 
(assumed) 6 km Low 

6mDMA1 
6mDMA8 
6mDA24 

10 ppbV 

Lim et al. 201956 monitoring station observations, CMAQ model 
simulation 

Bayesian space-time 
downscaling 12 km High 6mDMA8 10 ppbV 

Paul et al. 202057 monitoring station observations, model 
simulation linear data assimilation 21 km Good 6mDMA8 6.4 ppbV 

Shi et al. 202158 
monitoring station observations, model 

simulation, satellite remote sensing 
observations, other auxiliary predictors 

ensemble machine 
learning 1 km High 6mDMA8 10 ppbV 

Strak et al. 202159 
monitoring station observations, model 

simulation, satellite remote sensing 
observations, other auxiliary predictors 

universal kriging 
embedded land use 

regression 
100 m High 6mDMA8 10 µg/m3 
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Yazdi et al. 202160 
monitoring station observations, model 

simulation, satellite remote sensing 
observations, other auxiliary predictors 

ensemble machine 
learning 1 km High 6mDMA8 1 ppbV 

Bauwelinck et al. 202261 
monitoring station observations, model 

simulation, satellite remote sensing 
observations, other auxiliary predictors 

land use regression 100 m High 6mDMA8 10 µg/m3 

Stafoggia et al. 202262 
monitoring station observations, model 

simulation, satellite remote sensing 
observations, other auxiliary predictors 

universal kriging 
embedded land use 

regression 
100 m High 6mDMA8 10 µg/m3 

∥ NR, not reported.  
† The statistical methods were not clearly stated in literatures, and thus the most basic method was assumed. The nearest neighbourhood matching shall be 
the simplest way to assign spatially sparse observations onto cohort participants, and the inverse distance weighting (IDW) is the simplest spatial 
interpolation approach.  
‡ NA, not applicable. The chemical transport model simulations were directly used for individual exposure assignment without further statistical 
processing.  
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Table 3 Pooled RRs for long-term 10-ppbV incremental O3-exposure attributable multi-cause mortalities by 4 most widely 
used metrics and crude risks without metric harmonisation.  

Mortality causes 6mDMA8 6mDA24 ADMA8 ADA24 Crude 

All causes (n = 23) 1.014 (1.009, 1.019) 1.023 (1.014, 1.032) 1.016 (1.010, 1.022) 1.027 (1.017, 1.037) 1.017 (1.011, 1.023) 

Respiratory diseases (n = 16) 1.025 (1.010, 1.040) 1.042 (1.016, 1.069) 1.029 (1.011, 1.047) 1.049 (1.019, 1.081) 1.031 (1.017, 1.046) 

Chronic obstructive pulmonary disease (n = 7) 1.056 (1.029, 1.084) 1.098 (1.050, 1.149) 1.066 (1.034, 1.098) 1.116 (1.058, 1.176) 1.055 (1.032, 1.078) 

Cardiovascular diseases (n = 15) 1.019 (1.004, 1.035) 1.033 (1.006, 1.061) 1.022 (1.004, 1.041) 1.038 (1.007, 1.071) 1.024 (1.009, 1.038) 

Ischaemic heart disease (n = 10) 1.012 (0.987, 1.039) 1.021 (0.977, 1.067) 1.014 (0.984, 1.045) 1.024 (0.973, 1.078) 1.017 (0.994, 1.041) 

Congestive heart failure (n = 4) 1.074 (1.054, 1.093) 1.130 (1.094, 1.168) 1.086 (1.063, 1.110) 1.155 (1.110, 1.198) 1.083 (1.059, 1.107) 

Cerebrovascular diseases (n = 6) 0.993 (0.979, 1.008) 0.988 (0.964, 1.013) 0.992 (0.976, 1.009) 0.986 (0.958, 1.015) 0.992 (0.979, 1.006) 

Lung cancer (n = 12) 0.966 (0.926, 1.007) 0.943 (0.878, 1.012) 0.960 (0.915, 1.008) 0.933 (0.859, 1.014) 0.960 (0.909, 1.013) 
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FIGURES  

 

Figure 1 Schematic flowchart of study assessment and selection processes for 
literature review and meta-analysis.  
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Figure 2 Cross-metric linear relationships and conversion accuracies. The cross-
metric linear relationships were scaled by Pearson’s correlation coefficients. The cross-
metric conversion factors with 95% confidence intervals (95% CI) were estimated by 
non-intercept linear regression models, accompanied with fitting accuracies quantified by 
coefficient of determination (R2) and root mean square error (RMSE) in ppbV. The 
conversion factors were defined as multiples from the original metric by column into the 
target harmonised metric by row, e.g. ADMA8 = 1.671 ADA24, R2 = 0.9736, RMSE = 
7.78 ppbV. Note that by non-intercept linear regression, the values of R2 should no longer 
be equal to the squared Pearson’s linear correlation coefficients. As the cross-metric 
conversion coefficients were estimated statistically, indirect conversions were not 
recommended, since regression noises restricted the validity of equation !"→$ = !"→& ∙
!&→$.  
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Figure 3 Pooled estimates of all-cause mortality risk associated with every 10-ppbV 
incremental O3 exposure by 6mDMA8 metric. Size of the shaded squares in the forest 
plot represents the weight of each study estimated by random-effect model.  

  

Study Cohort Cases (n/N) Risk Ratio RR (95% CI) Weight

Abbey et al. 1999 AHS-M 610/2278 1.064 (0.964, 1.174) 0.30%
Abbey et al. 1999 AHS-F 965/4060 0.964 (0.890, 1.043) 0.40%
Lipfert et al. 2006 WU-EPRI 44111/67108 1.033 (1.012, 1.053) 3.70%
Jerrett et al. 2009 ACS CPS II 118777/448850 0.987 (0.977, 0.995) 7.10%
Krewski et al. 2009 ACS CPS II 128954/488370 1.024 (1.012, 1.036) 6.00%
Smith et al. 2009 ACS CPS II - 1.005 (0.981, 1.034) 2.30%
Lipsett et al. 2011 CTS 7381/101784 0.993 (0.986, 1.002) 6.80%
Carey et al. 2013 CPRD 83103/824654 0.871 (0.782, 0.934) 0.50%
Jerrett et al. 2013 ACS CPS II 19733/73711 1.000 (0.991, 1.008) 7.20%
Bentayeb et al. 2015 GAZEL 1967/20327 0.816 (0.646, 1.032) 0.00%
Crouse et al. 2015 CANCHEC 301115/2521525 1.019 (1.011, 1.027) 7.10%
Tonne et al. 2016 MINAP 5129/18138 0.962 (0.834, 1.098) 0.10%
Turner et al. 2016 ACS CPS II 237201/669046 1.020 (1.010, 1.030) 3.80%
Di et al. 2017 Medicare 22567924/60925443 1.011 (1.010, 1.012) 8.80%
Weichenthal et al. 2017 CANCHEC 233340/2448500 1.058 (1.048, 1.067) 7.20%
Cakmak et al. 2018 CANCHEC 522305/2291250 1.080 (1.020, 1.140) 0.80%
Hvidtfeldt et al. 2019 DDCH 10913/49596 0.949 (0.908, 1.000) 0.80%
Kazemiparkouhi et al. 2019 Medicare 5637693/22159190 1.002 (1.001, 1.003) 8.80%
Lim et al. 2019 NIH-AARP 126806/548780 1.000 (0.990, 1.010) 6.60%
Shi et al. 2021 Medicare 16507164/44684756 1.108 (1.099, 1.117) 7.20%
Strak et al. 2021 ELAPSE 47131/325367 0.806 (0.775, 0.838) 1.40%
Yazdi et al. 2021 Medicare 14589797/44430747 1.008 (1.008, 1.008) 8.80%
Bauwelinck et al. 2022 BC2001 707138/5474470 1.036 (1.014, 1.058) 3.50%
Stafoggia et al. 2022 ELAPSE 3593741/28153138 0.910 (0.866, 0.959) 0.80%

Random-effect model 1.014 (1.009, 1.019) 100.00%
Heterogeneity: I 2 = 97.8%, τ 2 < 0.0001, p < 0.01

0.75 1 1.5
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Figure 4 Pooled estimates of respiratory diseases and COPD mortality risks 
associated with every 10-ppbV incremental O3 exposure by 6mDMA8 metric.  

 
  

Study Cohort Cases (n/N) Risk Ratio RR (95% CI) Weight

Respiratory Diseases
Abbey et al. 1999 AHS-M 63/2278 1.085 (0.890, 1.319) 0.6%
Abbey et al. 1999 AHS-F 72/4060 1.036 (0.867, 1.241) 0.7%
Jerrett et al. 2009 ACS CPS II 9819/448850 1.048 (1.016, 1.081) 9.1%
Smith et al. 2009 ACS CPS II - 1.144 (1.048, 1.247) 2.5%
Lipsett et al. 2011 CTS 702/101784 1.020 (0.993, 1.044) 10.9%
Carey et al. 2013 CPRD 10583/824654 0.782 (0.699, 0.871) 1.7%
Jerrett et al. 2013 ACS CPS II 1973/73711 1.004 (0.978, 1.030) 10.3%
Bentayeb et al. 2015 GAZEL 284/20327 0.953 (0.554, 1.671) 0.1%
Crouse et al. 2015 CANCHEC 24900/2521525 0.980 (0.953, 1.007) 9.9%
Turner et al. 2016 ACS CPS II 20484/669046 1.080 (1.060, 1.110) 9.3%
Weichenthal et al. 2017 CANCHEC 21100/2448500 1.041 (1.011, 1.070) 9.8%
Hvidtfeldt et al. 2019 DDCH 2093/49596 0.970 (0.888, 1.051) 2.8%
Kazemiparkouhi et al. 2019 Medicare 633216/22159190 1.033 (1.030, 1.037) 14.7%
Lim et al. 2019 NIH-AARP 12459/548780 1.040 (1.000, 1.080) 7.7%
Strak et al. 2021 ELAPSE 2865/325367 0.796 (0.679, 0.934) 0.8%
Bauwelinck et al. 2022 BC2001 82341/5474470 1.062 (1.014, 1.111) 6.3%
Stafoggia et al. 2022 ELAPSE 371990/28153138 0.901 (0.831, 0.977) 2.8%

Random-effect model 1.025 (1.010, 1.040) 100.0%
Heterogeneity: I 2 = 83.9%, τ 2 = 0.0004, p < 0.01

Chronic Obstructive Pulmonary Disease
Zanobetti et al. 2011 Medicare 1445000/3210511 1.145 (1.082, 1.188) 16.2%
Crouse et al. 2015 CANCHEC 14170/2521525 0.959 (0.924, 0.996) 16.0%
Turner et al. 2016 ACS CPS II 9967/669046 1.090 (1.050, 1.130) 12.4%
Cakmak et al. 2018 CANCHEC 16470/2291250 1.000 (0.970, 1.030) 18.4%
Kazemiparkouhi et al. 2019 Medicare 328957/22159190 1.084 (1.079, 1.089) 23.8%
Lim et al. 2019 NIH-AARP 7748/548780 1.060 (1.010, 1.120) 11.6%
Strak et al. 2021 ELAPSE 1711/325367 0.746 (0.605, 0.917) 1.6%

Random-effect model 1.056 (1.029, 1.084) 100.0%
Heterogeneity: I 2 = 94.5%, τ 2 = 0.0007, p < 0.01
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Figure 5 Pooled estimates of cardiovascular diseases and congestive heart failure 
mortality risk associated with every 10-ppbV incremental O3 exposure by 6mDMA8 
metric.  

  

Study Cohort Cases (n/N) Risk Ratio RR (95% CI) Weight

Cardiovascular Diseases
Jerrett et al. 2009 ACS CPS II 48884/448850 0.980 (0.965, 0.993) 8.2%
Smith et al. 2009 ACS CPS II - 1.053 (1.014, 1.114) 4.6%
Lipsett et al. 2011 CTS 2919/101784 1.004 (0.991, 1.015) 8.3%
Jerrett et al. 2013 ACS CPS II 8046/73711 1.010 (0.997, 1.022) 8.3%
Bentayeb et al. 2015 GAZEL 165/20327 0.831 (0.397, 1.729) 0.1%
Crouse et al. 2015 CANCHEC 98970/2521525 1.040 (1.025, 1.055) 8.2%
Turner et al. 2016 ACS CPS II 85132/669046 1.026 (1.009, 1.043) 8.0%
Weichenthal et al. 2017 CANCHEC 77000/2448500 1.161 (1.144, 1.178) 8.1%
Hvidtfeldt et al. 2019 DDCH 2319/49596 0.878 (0.817, 0.959) 5.5%
Kazemiparkouhi et al. 2019 Medicare 2333681/22159190 0.997 (0.995, 0.999) 8.6%
Lim et al. 2019 NIH-AARP 39529/548780 1.020 (0.990, 1.030) 8.4%
Paul et al. 2020 ONPHEC 64773/452590 1.105 (1.078, 1.133) 7.3%
Strak et al. 2021 ELAPSE 15542/325367 0.791 (0.734, 0.853) 3.3%
Bauwelinck et al. 2022 BC2001 234549/5474470 1.050 (1.022, 1.076) 7.4%
Stafoggia et al. 2022 ELAPSE 1186101/28153138 0.954 (0.912, 0.996) 5.7%

Random-effect model 1.019 (1.004, 1.035) 100.0%
Heterogeneity: I 2 = 97.6%, τ 2 = 0.0009, p < 0.01

Congestive Heart Failure
Zanobetti et al. 2011 Medicare 865000/1561819 1.124 (1.061, 1.166) 16.9%
Turner et al. 2016 ACS CPS II 18314/669046 1.090 (1.060, 1.130) 17.4%
Kazemiparkouhi et al. 2019 Medicare 158649/22159190 1.072 (1.063, 1.080) 50.1%
Lim et al. 2019 NIH-AARP 6811/548780 1.010 (0.970, 1.050) 15.6%

Random-effect model 1.074 (1.054, 1.093) 100.0%
Heterogeneity: I 2 = 85.8%, τ 2 = 0.0003, p < 0.01
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Figure 6 Pooled estimates of ischaemic heart disease, cerebrovascular diseases, lung 
cancer, ischaemic stroke, and pneumonia mortality risks associated with every 10-
ppbV incremental O3 exposure by 6mDMA8 metric.  

 

Study Cohort Cases (n/N) Risk Ratio RR (95% CI) Weight

Ischaemic Heart Disease
Jerrett et al. 2009 ACS CPS II 27642/448850 0.968 (0.950, 0.986) 10.6%
Krewski et al. 2009 ACS CPS II - 1.012 (0.988, 1.024) 11.0%
Lipsett et al. 2011 CTS 1358/101784 1.020 (1.002, 1.040) 10.5%
Jerrett et al. 2013 ACS CPS II 4540/73711 1.021 (1.004, 1.039) 10.7%
Crouse et al. 2015 CANCHEC 63050/2521525 1.065 (1.047, 1.084) 10.7%
Turner et al. 2016 ACS CPS II 45644/669046 0.980 (0.960, 1.000) 10.7%
Cakmak et al. 2018 CANCHEC 72634/2291250 1.120 (1.100, 1.130) 11.1%
Kazemiparkouhi et al. 2019 Medicare 1245041/22159190 0.996 (0.993, 0.999) 11.2%
Lim et al. 2019 NIH-AARP 22327/548780 1.030 (1.000, 1.060) 9.9%
Strak et al. 2021 ELAPSE 7265/325367 0.761 (0.679, 0.851) 3.6%

Random-effect model 1.012 (0.987, 1.039) 100.0%
Heterogeneity: I 2 = 98.7%, τ 2 = 0.0015, p < 0.01

Cerebrovascular Diseases
Lipsett et al. 2011 CTS 728/101784 0.998 (0.971, 1.022) 20.8%
Crouse et al. 2015 CANCHEC 19725/2521525 1.024 (0.993, 1.058) 14.1%
Turner et al. 2016 ACS CPS II 170851/669046 1.020 (0.990, 1.050) 13.7%
Kazemiparkouhi et al. 2019 Medicare 410187/22159190 0.987 (0.982, 0.991) 45.8%
Lim et al. 2019 NIH-AARP 5592/548780 0.920 (0.860, 0.980) 4.7%
Strak et al. 2021 ELAPSE 3740/325367 0.782 (0.673, 0.910) 0.9%

Random-effect model 0.993 (0.979, 1.008) 100.0%
Heterogeneity: I 2 = 80.6%, τ 2 = 0.0001, p < 0.01

Lung Cancer
Abbey et al. 1999 AHS-M 18/2278 1.705 (0.993, 2.921) 0.6%
Abbey et al. 1999 AHS-F 12/4060 0.829 (0.489, 1.408) 0.6%
Krewski et al. 2009 ACS CPS II 9788/488370 0.988 (0.952, 1.024) 9.7%
Lipsett et al. 2011 CTS 433/101784 0.989 (0.956, 1.022) 9.9%
Carey et al. 2013 CPRD 5273/824654 0.811 (0.699, 0.934) 4.6%
Jerrett et al. 2013 ACS CPS II 1481/73711 0.968 (0.939, 0.998) 10.0%
Crouse et al. 2015 CANCHEC 30545/2521525 0.972 (0.947, 0.997) 10.1%
Turner et al. 2016 ACS CPS II 16432/669046 0.970 (0.940, 1.000) 9.3%
Cakmak et al. 2018 CANCHEC 53220/2291250 1.040 (0.970, 1.120) 8.2%
Kazemiparkouhi et al. 2019 Medicare 350357/22159190 1.016 (1.011, 1.021) 10.5%
Lim et al. 2019 NIH-AARP 13529/548780 0.980 (0.950, 1.000) 9.9%
Bauwelinck et al. 2022 BC2001 52211/5474470 0.927 (0.880, 0.975) 9.1%
Stafoggia et al. 2022 ELAPSE 246509/28153138 0.857 (0.791, 0.929) 7.6%

Random-effect model 0.966 (0.926, 1.007) 100.0%
Heterogeneity: I 2 = 84.2%, τ 2 = 0.0044, p < 0.01
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