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Abstract

Compartmental models are often used to understand and predict the progression of an
infectious disease such as COVID-19. The most basic of these models consider the total
population of a region to be closed. Many incorporate human mobility into their
transmission dynamics, usually based on static and aggregated data. However, mobility
can change dramatically during a global pandemic as seen with COVID-19, making
static data unsuitable. Recently, large mobility datasets derived from mobile devices
have been used, along with COVID-19 infections data, to better understand the
relationship between mobility and COVID-19. However, studies to date have relied on
data that represent only a fraction of their target populations, and the data from mobile
devices have been used for measuring mobility within the study region, without
considering changes to the population as people enter and leave the region.

This work presents a unique case study in Andorra, with comprehensive datasets
that include telecoms data covering 100% of mobile subscribers in the country, and
results from a serology testing program that more than 90% of the population
voluntarily participated in. We use the telecoms data to both measure mobility within
the country and to provide a real-time census of people entering, leaving and remaining
in the country. We develop multiple SEIR (compartmental) models parameterized on
these metrics and show how dynamic population metrics can improve the models. We
find that total daily trips did not have predictive value in the SEIR models while
country entrances did. As a secondary contribution of this work, we show how
Andorra’s serology testing program was likely impacted by people leaving the country.
Overall, this case study suggests how using mobile phone data to measure dynamic
population changes could improve studies that rely on more commonly used mobility
metrics and the overall understanding of a pandemic.

Introduction

At the start of the COVID-19 pandemic, nonpharmaceutical interventions (NPIs) were
widely deployed in an effort to stymie the rate of new infections. These interventions
included stay-at-home orders and restrictions on economic activity, which were used as
a means to reduce contact and hence transmission rates, effectively limiting mobility.
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Country border restrictions were also put in place to reduce the chance of importing the
virus through inter-country travel. At the same time, tests became more available to
better track population infection rates [1]. There has been an influx of data and
research used to study the efficacy of various interventions [2—4]. In particular, this
work addresses the use of population movement data.

Research preceding COVID-19 has indicated a close relationship exists between
human mobility and the spread of infectious disease [5]. Past studies have shown how
mobility data, such as commuter trips, can be used to improve disease forecasting
models [6]. These earlier works highlighted the importance of combining their modeling
frameworks with mobility data to address potential future emergent respiratory viruses,
while also citing a lack of real-time mobility data as a limitation. In the wake of
COVID-19, such real-time mobility data became widely available to study the pandemic,
largely collected through airlines or via mobile phones. This is demonstrated in early
works using aggregated metrics from Baidu LBS [7] to estimate domestic population
movement in China. By combining this data with airline transportation data to
estimate international travel, researchers modeled the effect of travel restrictions and the
international spread of COVID-19 [8]. Similarly, the Baidu LBS data was also used to
model the spatial spread of COVID-19 from Wuhan to evaluate the impact of domestic
control measures [9]. Mobility data collected from mobile phones has also since been
made available by Google [10], Facebook [11], Safegraph [12], transit apps [13], telecoms,
and other companies [14]. Metrics based on these sources have been used to model or
predict COVID-19 transmission rates [15-20] as well as to verify model results [21], with
the assumption that changes in transmission rates are correlated with changes in the
mobility metrics. Researchers have also combined mobile phone data from multiple
sources to better understand the spatiotemporal dynamics of how the virus can spread.
This includes work that simulated relationships between the number of virus cases
imported to an area, subsequent population mobility, and virus spread in multiple
European countries [22]. Whereas another study tracked a specific fast-spreading lineage
of COVID-19 in the United Kingdom by combining aggregated mobility metrics from
both Google and the O2 telecommunications service provider with genomic data [23].

Despite the broad use of these mobility data sources, their relationship to COVID-19
remains unclear. The published mobility metrics are often aggregated statistics
representing the number of trips taken, such as measured through transit apps, or based
on foot traffic to points-of-interest (POIs). Furthermore, the mobility data used in each
of the above works are limited in that they report on a fraction of the population. (For
example Baidu LBS and O2 have about 30% and 35% market share, respectively [9,23],
and Safegraph has one of the larger U.S. datasets yet in 2019 they covered only about
10% of the U.S. population and acknowledged reporting bias [24]). Likewise, other
studies using reported cases microdata or air travel data to analyze the risks of
importing the virus via inter-country travel (e.g. [25,26]) are also limited by data
sources that only report on a fraction of the true data.

Contribution. This work presents a unique case study in Andorra, with
comprehensive datasets that include telecoms data covering 100% of mobile subscribers
in the country, and results from a serology testing program that more than 90% of the
population voluntarily participated in. Previous work used these data sources to
compare various mobility metrics and infection rates with retrospective correlation
analysis [27]. This work builds upon these previous findings and develops
compartmental epidemic models.

At the start of the pandemic in Andorra, border restrictions and economic
lockdowns drastically reduced country entrances and internal country mobility. This
study includes that period as well as when restrictions were lifted. The mobile phone
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data are used to estimate mobility metrics representing trips, similar to related works,
as well as to conduct a real-time census and estimate metrics that represent the
dynamic population changes, such as daily country entrances. These data are then used
to improve the understanding of the pandemic in Andorra in multiple ways.

First, we show how Andorra’s serology testing program, conducted in May 2020, was
likely impacted by people leaving the country. We then show how the estimated country
entrances data can improve epidemiological (SEIR) models that otherwise rely on
mobility measured by trips. Related works have used meta-population SEIR models
where the modeled sub-populations are dynamic, yet based on static census commuting
data or based on a combination of POI visits and static commuting data (e.g. [28]). In
contrast, this work uses comprehensive telecoms data to estimate a real-time census to
more accurately capture the changing dynamics of the population during the period of
study.

We develop and test multiple (SEIR) models that differ in how they parameterize
transmission rates based on the trips and entrances metrics developed in this work. The
models are simple, where their purpose is to illustrate how different types of mobility
information can be better incorporated into SEIR models.

Finally, we use the best model to simulate a hypothetical counterfactual,
representing a scenario where economic and border restrictions had not been put in
place, and trips and entrances metrics had not drastically reduced.

Outline. Before presenting our methods and results, we provide background
information, with a timeline of events around the start of COVID-19 in Andorra, and
the features of the country that contribute to a unique case study. We also provide
background information about compartmental epidemic models to guide the reader in
the presentation of our models.

Background
Andorra and COVID-19

The study region of this work is the small country of Andorra, which is located in the
Pyrenees mountains and shares borders with only France and Spain. The country has a
population of approximately 77,000 [29], yet attracts more than 8 million visitors
annually, mostly for tourism associated with skiing and nature-related activities [30]. In
addition, a large number of cross-border temporary workers reside in the country,
mainly employed in the tourism industry. Andorra lacks an airport or train service so
the primary way to enter or exit the country is by crossing the French or Spanish border
by car. The country is divided into 7 municipalities, called parishes.

Partly because of the country’s small size and limited border crossings, Andorra was
able to implement comprehensive policies at the start of the COVID-19 pandemic, as
well as implement a serology testing program which more than 90% of the population
participated in. Furthermore, there is one telecoms provider for the entire country,
which contributes a comprehensive view of all mobile subscribers who spend any time in
Andorra, whether they are Andorran nationals or have foreign SIM cards. The telecoms
data and serology data are used in this work and are described in the Data sources and
preprocessing section.

Timeline of COVID-19 cases and policies

The first COVID-19 case in Andorra was reportedly imported via Italy and confirmed
March 2, 2020 [31]. Reported cases then rose rapidly in March before falling again in
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April (see Fig 1). On March 13, government officials ordered the closure of public
establishments and a quarantine was requested of the entire population. A series of
COVID-19 related policies followed and neighboring country borders were restricted. In
accordance with these policies, mobility within the country dropped and border
crossings ceased. Other NPIs, such as masks and hand sanitizer, were also deployed.
The lockdown measures in Andorra were gradually lifted in April and May, and fully
lifted starting June 1. Borders also reopened in June and border crossings resumed.
Table A.1 in S1 Appendix shows a timeline of COVID-19 related events.

Nationwide serology testing program

In May of 2020, Andorra conducted a nationwide serology testing program. This
resulted in the first published seroprevalence study universally testing the entire
population of a country and one of the largest of its kind [32]. Anyone over the age of 2
was invited to participate in the study, including the country’s temporary workers. The
testing was conducted in two phases: May 4 -14, and May 18 - 28, 2020. The objectives
of the second phase were (a) to track the progression of COVID-19 between the two
surveys and (b) to account for indeterminate or potential false negative results from the
first survey. More than 90% of the population participated voluntarily in at least one of
the two surveys. However, an issue with the testing program was that many
participants in the first phase did not participate in the second, limiting the data
collection and impact of the two-phase study. This issue is further explored and
addressed in the Results section.

SEIR models and COVID-19

SEIR models, and their variations, are compartmental models used in epidemiology.
They have been widely used in forecasting COVID-19 transmission and modeling the
outcomes of government policies [15,33,34]. The basic concept of these models is that
the population is partitioned into sequential compartments, and transitions through the
compartments over time. This framework was first developed by Kermack and
McKendrick in 1927 [35] and has been well described more recently by Keeling et

al. [36]. In short, the SEIR model takes its name from its compartments:
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Fig 1. Daily reported cases, trips, and entrances metrics at the start of the
COVID-19 pandemic in Andorra. The time series data are plotted for March to
August, 2020, which covers the study period. Solid lines show values smoothed over a
7-day rolling window.
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S = Susceptible

E = Exposed

I = Infectious

R = Removed (quarantined, recovered, or deceased)

S represents the number of Susceptible people in the population who have not yet
been exposed to the virus. Individuals transition from Susceptible to Exposed after
exposure to individuals in the Infectious (I) compartment. Hence the transition S to E
is a function of the number of people in the Susceptible (S) and Infectious (I)
compartments, as well as the transmission rate, 3, and the total population size, N. The
standard model considers N constant, and the following conservation holds for any time,
t:

N = 5(t) + E(t) + I(t) + R(t) (1)

Transitions between compartments are modeled by a set of ordinary differential
equations (ODEs).

50 = -7
B0 =570 - B () 2

Where

8 = transmission rate of the infection
o = latent rate

v = removal rate

The latent rate, o, is the average rate to become infectious after exposure (i.e.
o~ !=average incubation period) and the removal rate, v, is the average rate at which
individuals transition from I to R.

The modeled compartments and transitions are simplifications, yet this simple
framework may be well applied to COVID-19 at the start of the pandemic, before
populations were vaccinated or encountering re-infections. (Models for diseases over
longer periods of time may also incorporate changes in the population via birth and
death rates, while other models handle individuals becoming susceptible again [37].)

An epidemic is often characterised by the basic reproduction number, Ry. The
estimation and value of the reproduction number is complex and often misrepresented,
but in general it represents the expected number of secondary infections which would be

caused by a typical infected case if everyone in the population were susceptible [38,39].

Ry can be calculated as the ratio of the transmission rate to the removal rate. Often in
compartmental models, both of these parameters are constant in time. However, if one
or both of these parameters is time-varying, then the variation of Ry over time can be
estimated. While the Ry only represents the true reproductive rate at the start of the
pandemic when the whole population is susceptible, the variation of this ratio over time
isolates the impact of changes in human behavior and NPIs on the reproductive rate.
(The effective reproductive rate Ry, on the other hand, represents the actual
reproductive number at any point in time, given the behaviour as well as the susceptible
portion of the population [40].) Estimates for reproduction numbers have been used to
understand the state of a pandemic and to measure the effectiveness of

interventions [4, 34,41-43].

Ry = B/y
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Ry is a function of both transmission rate and removal rate. The removal rate
represents the rate at which infectious individuals are removed from the population and
then are no longer at risk of infecting susceptible individuals. Removal might occur
because they isolate, or recover and are no longer infectious, or die. The removal rate
may vary due to changes in testing procedures (e.g. more proactive testing can identify
more cases and cause individuals to isolate earlier in their infectious period) or
government policies (e.g. quarantine rules). Likewise, the transmission rate can change
due to governmental policies and behavioral changes (e.g. staying home, wearing masks,
and other NPIs).

Recent models that address COVID-19 have taken into account that transmission
rates vary over time [15,44-46]. Many models do so by incorporating mobility metrics
to estimate behavioral changes and model changes in transmissibility based on these
data. However, these mobility metrics are often based on sources that report on a small
fraction of the population, and where the mobility metrics are aggregated statistics
based on the number of trips to points of interest (POIs), which may not be the most
important indicators of COVID-19 transmission. This is in contrast to the telecoms data
used in this work, which covers all mobile subscribers within the country of Andorra,
and is provided as a complete and unaggregated dataset, not limited to trips to POlIs.

We note that any of the models referenced or presented in this work are
oversimplifications of the complex dynamics of disease spread. They also suffer from
unreliable case reports data, limited by the availability of tests, and reactive to changes
in testing protocols [1].

Materials and methods

This section describes the SEIR models used in this work, and how they are trained and
tested. It then describes data sources and preprocessing methods.

Code and data availability

All aggregated metrics and code used in this work are made available and documented
in a public repository. The code includes analysis notebooks as well as the preprocessing
scripts that produced the aggregated metrics. The data reporting on individuals, which
was used to compute aggregate metrics, is sensitive and kept private.
https://github.com/CityScope/CSL_Andorra_COVID_Public

Modeling

This work develops and compares multiple SEIR models that differ in how they
incorporate trips and entrances data in order to model transmission rates. The trips
data measure mobility behavior within the country while the entrances data measure
new country entrances (described in the Data sources and preprocessing section.)

The aim is to evaluate the relative impact of the trips and entrances data on model
performance; the aim is not to build a state-of-the-art, accurate predictive model. To
this end, the models are highly simplified.

Comparison models

In SEIR models, 5(t) typically represents the average number of people an infected
person would expose per-unit time if everyone were susceptible. In particular, 8(t) is
used to model the transition from the Susceptible to Exposed compartments. The use of
B(t) in our models is captured by the following equation from Eq (2).
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E'(t) = B(t) 2P — o E(t)

We develop multiple models that only differ in how they define 5(t).

In the following descriptions, b0, ...,bn are parameters of 3(t) and are estimated
during model training for each model in which they are included.

One model uses trips without entrances data (model ii). Another model uses both
trips and entrances data (model iii). A model that uses neither data source is used as a
baseline (model i).

Each of the models use the same framework, methods, and training and testing
periods, described further below.

Model i: constant transmissibility
This is a baseline, dummy model where 3(¢) is constant.

B(t) = b0

Model ii: transmission as a function of trips data

B(t) = b0 + bl x trips(t)??

Model iii: transmission as a function of trips and entrances data

In this model, the average rate at which the susceptible population is exposed can be
impacted by the behavior of people within the country (e.g. mobility measured in trips)
as well as the import of new cases (entrances).

E'(t) = B(t) 2P + S(t) f (entrances(t)) — o E(t)
where

B(t) = b0 + bl x trips(t)*?

f(entrances(t)) = % x b3 x entrances(t)*

f(entrances(t)) represents the likelihood of new country entrants importing the
virus. The term Lj\?) reflects the assumption that the likelihood of new country entrants
being infectious tracks with the timeline of infection rates in Andorra. This assumption
is based on the fact that during the study period, the timeline of infections in Andorra
was highly correlated with the timeline of infections in Spain and France (with Pearson
correlation coefficients of 0.922 (p=0.000) and 0.932 (p=0.000), respectively), and the
primary way to enter Andorra is through the Spanish or French borders. Furthermore,
telecoms data showed that 86% of entrances by foreign SIMs were either Spanish or
French, and when accounting for entrances by Andorran SIMs, 68% of all entrances
were by Spanish or French SIMs. See section A.3 in S1 Appendix.

The above functions using entrances and trips can be combined into one equivalent
expression representing transmissibility. We do this to simplify modeling and maintain a
common expression for E’(t).

E'(t) = B(t) 2YE — o E(t)
where

B(t) = b0 + bl x trips(t)*? + b3 x entrances(t)**
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Fig 2. Schematic representing the SEIR model framework used in this work.

The population is divided into compartments where individuals transition through the
compartments: Susceptible, Exposed, Infected, Removed, Case reported, where the
transitions are described by ODEs (Eq (3)).

Model framework

The SEIR framework used in this work is illustrated in Fig 2 and is described by the
ODEs in Eq (3)). We note that many traditional SEIR models use the I compartment
to represent the entirety of an individual’s infectious period. Our modeling framework
assumes that individuals transition from I to R as soon as they suspect they are
infectious. Individuals may then seek a test, and the result of the test will be reported
with some delay. C represents the report of a positive test after that delay, d.

Where

S(t)=N—E(t)—I(t) — R(t)

C(t) is cumulative case reports and accounts for reporting delay, d, and the
reporting rate, r.

Given initial values for the compartments and the other model parameters, time
series data for the compartments can be deterministically estimated by integrating over
the ODEs into the future, where each compartment time series represents the
compartment population on each day, t. This is done to calibrate parameters during
model training as well as to generate forecasts beyond the training period.

Initial values for R and C' at t = 0 are set based on the number of cumulative
reported cases at the start of the study period. Initial values for E, I, are estimated by
model training, along with v and parameters of 3(t). The reporting rate, r, is set to ﬁ,
estimated from the serology and case reports data (Data sources and preprocessing
section). The latent rate, o, is set to 5%, estimated by prior work [47]. The reporting
delay, d, is set to 7, consistent with related works [21,48] and empirical checks (see
section A.7 in S1 Appendix). d is the average time from when an infectious individual is
removed (isolated) to the time the case is reported, and must account for the time it
takes to seek a test, for the test to be processed, and for the result to be included in
reported cases data. At the start of the pandemic, tests in Andorra were sent to Spain
for processing, which may have increased reporting delays. The reporting delay is

incorporated into the models by shifting the trips and entrances metrics time series by d.

See Table A.5 in section A.6 of S1 Appendix for a concise description of model
parameters.
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Training and testing

Cumulative reported cases in Andorra reached a threshold of 2 (over a 7-day average)
on March 14. The serology tests, which were used to estimate the reporting rate, were
conducted in May. In September, massive testing programs began and even before then,
testing started to become more available. These programs and test availability increased
the case identification rate, impacting both the reporting rate and the removal rate,
changing the dynamics in modeling. For these reasons, the study period includes March
to August, 2020. The period of March 14 - May 31 is used for model training and the
following 10 weeks are used for testing.

Training: Parameters and initial values for E(t), I(t) at t = 0 were fit with maximum
likelihood estimation (MLE). Log-likelihood was computed by comparing time series
values of predicted cumulative reported cases (C') to the time series of actual cumulative
reported cases:

log-likelihood = " log Py x(k, \) (4)

Where the sum is over all days in the training data, P x(k, ) is the Poisson
distributed probability mass function, k is actual reported cases, A is predicted reported
cases.

Parameters were optimized by minimizing the negative log-likelihood using the
L-BFGS-B method [49]. See section A.5 in S1 Appendix for details.

Testing: Median absolute percentage error (MAPE) over cumulative estimates has
been used in a recent framework to evaluate and compare COVID-19 models [50], where
the errors incorporate an intercept shift. MAPE is similarly used to evaluate and
compare the performance of models in this work. Given model training estimates
S,E.I,R,C up to time ¢, the trained model is tested starting at time ¢ + 1 as follows.
The value of C(t) is corrected to the true reported cases at time ¢ and further integration
over the ODEs is used to continue the simulation over the test period. The resulting C
estimated over the test period is compared to actual reported cases via MAPE.

Data sources and preprocessing

Three main data sources are used in this work and are further described below: (i)
serology data from the nationwide testing program conducted in May 2020, (ii) telecoms
data covering all mobile subscribers in the country, (iii) official COVID-19 case and
death reports. All time series metrics estimated from (ii) and (iii) are smoothed by
taking the mean over a 7-day rolling window.

Serology Data

As described in the Andorra and COVID-19 section, a nationwide serology testing
program was conducted in May of 2020. The program was voluntary, and conducted in
2 phases, and 91% of the population participated.

The program was conducted for a previous research study, in which the methods and
results are detailed [32]. The study was approved by the Institutional Review Board of
the Servei Andorra Atencio Sanitaria (register number 0720). An anonymized version of
the dataset was also provided to researchers in our lab as part of a research partnership.
The dataset includes a unique identifier for each participant and results from the 1st
and 2nd round of tests; test results were left empty when there was a lack of
participation. The dataset also includes demographic information for participants,
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including their home parish and whether they are a temporary worker. As previously
described, an issue with the serology testing program was that many of the participants
from the first phase of testing did not participate in the second phase (see Table A.3).

From the serology data, Bayes Theorem [51] was used to estimate the portion of the
population infected up to May. With this number and the official reported cases data,
we estimated a case reporting rate of ﬁ This reporting rate is used in the epidemiology
models described in this work.

Telecoms data and metrics

Andorra has one telecoms provider (Andorra Telecom), which provided the data for this
study. Since they are the sole provider, the dataset covers 100% of mobile subscribers in
the country, including subscribers using foreign SIM cards. This is unlike most telecoms
datasets where the market is fragmented. Each data point includes a unique ID for the
subscriber, a timestamp, the coordinates of the device, and nationality for the
subscriber’s home network. The data have been further described in [52].

The stay-point extraction algorithm of Li et al. (2008) [53] was used to reduce the
series of data points for each subscriber into a series of stay-points of 10 minutes or more
within a radius of 200m or less. The stay-points represent a more concise and reliable
series of places the subscriber spent time; stay-points were used to infer presence in the
country, dynamic population changes, and compute the trips and entrances metrics.

There are gaps in the available telecoms data and the resulting trips and entrances
metrics during the period of study (data gaps are June 28-29, and July 21-27, 2020).
Missing values were imputed by taking the mean across the values from the 7 days
surrounding each missing period of data.

Dynamic population inference and metrics: On each day, a subscriber was
considered present in the country if they had a stay-point in the country within a 7-day
window. The window accounts for unobserved subscriber devices due to a combination
of inactivity, lack of reception in certain areas, or noisy data. The beginnings and
endings of periods of presence were counted as entrances to and departures from the
country, respectively.

Trips metrics: Daily trips for subscribers were counted as their daily number of stay
points minus 1, since a new stay point is recorded when a subscriber moves beyond a
200m radius. Daily trips by subscribers were summed as a total daily trips metric.

Home inference: The home parish of each subscriber was inferred from the telecoms
data, to come up with a population count for each of the 7 parishes of Andorra. This
was done by first assigning each stay-point to the parish in which it was contained.
Each subscriber’s home parish was then determined to be the parish in which they
spent the most cumulative time during night-time hours (12:00am to 6:00am). Related
studies of human mobility that use cellular data have employed similar methods [54-57].

These inferred parish-level populations were compared to the published 2020
population statistics [29]. There is a Pearson correlation coefficient of 0.959 (p < 0.001),
suggesting that the telecoms data are representative of the true population. (See
Table A.2 and Fig A.1 in S1 Appendix). Inferring the parish of residence is done both
to check methodology as well as compare populations to serology test participation (see
the Serology tests and country departures section).
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COVID-19 infection data

This dataset was made available by Johns Hopkins University [58] and downloaded from
OWID [59] as a time series of daily reports. Reported cases in Andorra were used for
model estimation and prediction. There were cases identified in Andorra through the
May serology testing program that were reported late, on June 2 [60]. This reporting
error was handled by removing the excess case reports. Fig 1 plots the resulting daily
new and cumulative case reports over the period of study. Reported deaths data for
Andorra and its neighboring countries, Spain and France, were used in model
assumptions (see section A.3 in S1 Appendix).

Results

2019 versus 2020 metrics

Before presenting our main findings, we first present the start of the pandemic in
Andorra through a series of plots, and compare this period to the same period in 2019,
when Andorra experienced a normal economy with tourism.

Fig 3 shows that by the start of March of 2020, there were already fewer people
(mobile subscribers) in the country than in 2019. This number then substantially

dropped with the start of the border restrictions and economic lockdown in mid March.

There were also already fewer total daily trips being taken at the start of March, 2020,
compared to 2019. This is largely due to fewer people in the country making the trips.
This metric also substantially dropped at the start of the lockdown. This drop was
partly due to even fewer people in the country making trips, and due to the government
imposing restrictions on movement. The number of trips gradually rose again before the
border restrictions were lifted in June, indicating that the population increased internal
mobility. The number of daily entrances to (and departures from) Andorra also
significantly dropped in mid March of 2020, as tourists and others left the country and
border restrictions were imposed, limiting entry to the country. These daily metrics
remained near zero throughout April and May, until border restrictions were lifted in
June.

COVID-19 cases and mobility

The time series of reported COVID-19 cases is shown with the time series of the trips
and entrances metrics in Fig 1. Other studies have implied that changes in case growth
often lag changes in behavior and mobility metrics by 14 or more days [17,21,27].
However, Fig 1 shows that daily trips were able to increase throughout May of 2020
while newly reported cases remained low. Case growth did not increase again until daily
entrances increased again when the border restrictions were lifted in June. This suggests
that the entrances metric is more related to case growth than the trips metric in this
case study. The relative predictive power of these metrics is further shown by the model
results (Models results section).

Serology tests and country departures

Andorra’s nationwide serology testing program conducted in May, 2020 involved two
phases of testing (see the Andorra and COVID-19 section). An issue with this program
was that many of the participants from the first phase of testing did not participate in
the second phase, limiting the impact of the study. An important question for a country
conducting such a program might be why this happened.
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Fig 3. Estimated population, trips, country entrances and departures
metrics for 2020 vs 2019. (Top) daily mobile subscribers counted as present in the
country, (middle) daily total trips, and (bottom) daily country entrances and
departures, for the country of Andorra during the start of the pandemic in 2020 versus
the same period in 2019. All metrics are estimated from telecoms data that covers 100%
of mobile subscribers in the country. Solid lines show values smoothed over a 7-day
rolling window.
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This drop in participation might be particularly concerning, as we found the drop in
participation was more than 3 times higher among temporary workers versus the
general population, and results from the testing program showed that temporary
workers had higher seroprevalence (infection rates) versus the general population. See
Table A.4 in S1 Appendix. This might imply that a more infected demographic group
was then less monitored.

By combining the serology test data with information inferred from the telecoms
data, we find that test participants likely left the country after their first test.

We counted the number of mobile subscribers, by inferred home parish, who were in
the country during the first and second phases of testing (May 4-14 and May 18-28,
2020). Subscribers were counted as present during a testing period if they had at least
one "stay" within the period. We estimated how many subscribers left the country after
the first test by counting how many subscribers were present during only the first test
period versus both test periods.

These numbers were compared to the parish-level serology test participant
populations. Namely, the portion of serology test participants who did test 1 but not
test 2 was compared to the estimated portion of mobile subscribers who left the country
between test periods, and this comparison was done for each home parish. Comparing
across parishes, there is a statistically significant Pearson correlation coefficient of 0.937
(p=0.0019).

To check the robustness of this result, we also restricted the May 2020 telecoms data
to subscribers who had at least 7 days, or 4 nights, of data. The results are similar with

Pearson correlation coefficients of 0.925 (p=0.0028), and 0.955 (p=0.0008), respectively.

To further validate that the decline in test participation was related to people
leaving the country, we repeated these tests using 2019 telecoms data: we estimated the
number of subscribers by home parish who were in the country during the periods May
4-14 and May 18-28 of 2019 (using 2019 telecoms data) and compared the number of

subscribers who left the country between those periods to the serology test participation.

In this case, there is a Pearson correlation coefficient of 0.4928 (p=0.2612). If the May
2020 subscribers had left the country for reasons not related to the pandemic, we would
expect the correlation to be similar for the 2019 and 2020 data. However, the
correlation for the 2019 data is much lower and not statistically significant. See

Table A.4 in S1 Appendix.

Models results

Simple models based on the SEIR framework, were developed to compare the impact of
trips and entrances data on transmission rates and predicted infections.

The baseline, dummy model (i) assumes a constant transmission rate. For model (ii)
transmission is a function of mobility measured by trips data, and for model (iii)
transmission is a function of both trips and entrances data. (See the Modeling section
for details.)

Models were trained over the period March 14 - May 31, 2020. Table A.5 and
Fig A.5 in S1 Appendix show the parameter values for the best fit models and the
corresponding time series values for the estimated Ry, the compartment populations,
and the predicted reported cases, over the training period.

Models were evaluated by their prediction performance over the weeks that followed
the training period. This was done using MAPE, based on the framework used by
Friedman et al. to evaluate leading COVID-19 models [50]. Results for 1 - 10
forecasting weeks are shown in Table 1. All models performed relatively well during the
period of study. (As a point of comparison, Friedman et al. found in their global
evaluation of COVID-19 models, MAPE values of 1 - 2% for 1 week forecasts and 17 -
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25% for 10 week forecasts. See Fig. 3 and Fig. 5 in [50]. Note their evaluation used
cumulative deaths data whereas this work uses cumulative cases data.)

The model (iii) using both trips and entrances data outperformed the other models
in all but excluding the first week that followed the training period. More importantly,
the model (ii) that used trips data to model transmission rates (without entrances data)
had results similar to, and slightly worse than, the baseline model (i) which assumed a
constant transmission rate. This is not surprising, as the data indicated trips were able
to increase without impacting transmission rates (Fig 1).

This is also shown in that the best fit for model (ii) had parameters that flattened
the impact of the trips data, resulting in a nearly flat reproduction number, Ry. Given
that there were few new infections at the end of the training period (i.e. a smaller
population in the I compartment), this resulted in relatively flat predictions for new
reported cases for model (ii) over the forecasting weeks that followed the training period
(similar to model (i)). This is in contrast to the model (iii) that used both trips and
entrances data, and where predictions for new reported cases closely tracked with actual
predictions. See Fig 4. Overall, these estimated Ry values are reasonable and within the
range of values estimated by previous works [61].

Table 1. MAPE results for the 3 models.

MAPE
model
forecasting weeks | i. constant g | ii. trips data | iii. trips & entrances data

1 0.03 0.02 0.24
2 0.20 0.30 0.19
3 0.65 0.80 0.25
4 0.97 1.16 0.34
5 1.22 1.44 0.52
6 1.47 1.73 0.76
7 1.36 1.60 1.01
8 1.39 1.54 1.08
9 1.59 1.78 1.09
10 1.80 1.98 1.12

Median absolute percentage error (MAPE) used to evaluate the 3 models. The MAPE
measures errors relative to the true values and can vary from 0 to infinity where 0 represents
perfect agreement. The models differ in whether they incorporate trips and entrances data to
model transmissibility. Model (i) is a baseline, dummy model where transmissibility is constant,
model (ii) uses trips data, and model (iii) uses trips and entrances data. All models used the
same framework and methods.

As a robustness check, all models were trained and tested over an additional set of
training and testing periods that ended slightly earlier than those used for the main
results. (The training period for the robustness check was March 14 - May 14, 2020.)
The results are similar to the main results, and shown in Table A.6 and Fig A.6 in
section A.8 of S1 Appendix. However in this case, the model (iii) using trips and
entrances data consistently outperformed the other models for all forecasting weeks.

These results may seem surprising and their interpretation remains unclear. In
epidemiology, the 3 models may be considered as (i) a homogeneous mixing model, (ii) a
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Fig 4. Fit model results. Time series values for (top) the estimated Ry and (bottom)
actual versus predicted reported cases that resulted from model training. Left: Plotted
values for the model which uses just trips data. Right: Plotted values for the model
which uses both trips and entrances data. Models were trained over the period March
14 - May 31 and tested over the weeks that followed. The training and testing periods
are divided by gray and white backgrounds, respectively. Axes for the Ry values are set
to highlight that values were flattened for the trips data model. See Fig A.5 in S1
Appendix for plots that show the full variation in the Ry values.
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model of one population in which transmission depends on local mixing only, and (iii) a
model that accounts for local mixing and external seeding, where trips are a proxy for
local mixing and entrances are a proxy for external seeding. It is possible that the lack
of predictive power of trips in the model is due to the model being calibrated during a
lockdown period, when transmission opportunities represented by trips were not as
important without external seeding. However, it is also possible that while trips have
been used as a proxy for mixing in related works, trips did not necessarily convert to
transmission opportunities in this case. This may be due to trips being safely taken
with social distancing guidelines and other NPIs in place. And again, this may partly be
due to the model being calibrated during a lockdown. At the same time, the entrances
metric may represent more than external seeding, and also represent a more open
economy and additional activities that may increase transmission opportunities.

Counterfactuals

What if Andorra had not imposed a lockdown, which caused reduced mobility? What if
border restrictions had not been put in place, which caused a drop in entrances?
Overall, what if the population mobility, measured in total trips and entrances, had not
dropped in March?

In this section we explore such a counterfactual scenario by using the best fit model
(iii) from the Models results section, which uses the trips and entrances data.

The lockdown in Andorra began on March 13, 2020, and there was a large drop in
trips and entrances surrounding this date (see Fig 1). We again take a simplified
approach to modeling, and create hypothetical trips and entrances data for a
counterfactual scenario where mobility and border restrictions were not put in place.
We do this by using the true metrics up to March 13 of 2020, and then keeping the
metrics constant at the March 13 values. This is shown in Fig 5. We then estimate
counterfactual case reports by using the previously fit model (i.e. we use the model
parameters that were fit with the true trips and entrances time series values) and
replace the model’s trips and entrances data with the counterfactual data. We then run
the simulation over the same period that was used to train the original model. The
result is a prediction of 2941 cumulative reported cases up to May 31, 2020 under the
counterfactual model, versus the actual 766 reported cases up to May 31, under the true
scenario. The difference is an additional 2175 (more than 3x as many) reported cases
during this time period under the counterfactual scenario.

Discussion

When COVID-19 was introduced to Andorra at the start of March 2020, the country
and its bordering neighbors responded quickly with economic and border restrictions.
These interventions and other NPIs showed to be effective in Andorra, as the country
brought case growth under control from March - May 2020, before the restrictions were
fully lifted. The counterfactual scenario modeled in this work shows a stark alternative
had the mobility changes observed during this period not occurred, with more than an
estimated 3x as many cases, likely overwhelming the hospital system.

Numerous other works have also used mobility data collected from mobile phones to
model the impacts of mobility restrictions on COVID-19 transmission. However, these
studies have relied on data about trips, and the data represented a small sample. Other
works using meta-population SEIR models, where the modeled sub-populations are
dynamic, have been based on static census data. In contrast, this work leverages data
collected from mobile phones that represent 100% of subscribers in a country.
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Fig 5. Counterfactual results. Top: Hypothetical total trips and entrances metrics
that are used to simulate reported cases for a counterfactual scenario where mobility
and border restrictions had not been put in place. Bottom: Simulated reported cases for
such a counterfactual scenario, versus the actual reported cases that occurred in the
true scenario.

We showed how these data could be used to build on previous works by computing
daily trips metrics as well as estimating a dynamic, real-time population census. We
then showed how these data can be used to improve upon the understanding of a
pandemic in two main ways.

First, these data were used in order to better understand why participation in the
nationwide serology testing program dropped between the first and second phases of
testing. The drop in participation may have been concerning as the second phase of
testing was intended to help better detect and track the virus. This decreased ability to
track the virus might have been particularly concerning because the test results showed
that the temporary worker population had the highest infection rates and this
population also had the largest drop in test participation. However, the analysis, which
leveraged the telecoms data to estimate dynamic population changes, suggested that the
decline in participation was likely due to test participants leaving the country after their
first test.
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Second, we showed how the dynamic population data could be used to improve
epidemiological (SEIR) models that otherwise rely on mobility measured by trips. In
our contribution, we developed simple SEIR models that differed in how they used the
trips and entrances metrics developed through this work. These models performed well
compared to the 7 global COVID-19 models evaluated by Friedman et al.

(2021) [15,44,45,50,62—64], but their purpose was not to be highly accurate; the
purpose of these models was to illustrate the relative importance of trips mobility data
versus real-time population data, namely country entrances. In particular, for the case
of Andorra, we find that the population was able to regain internal mobility measured
in daily total trips with limited growth in cases, and that total trips per day did not
have predictive value in the SEIR models while country entrances did.

While we show that the entrances metric had superior predictive power over the
trips metric in Andorra, we do not mean to draw a direct line between country
entrances and new COVID-19 cases. Changes in the entrances metric may have been
highly correlated with other changes that impacted transmission rates, such as changes
in COVID-19 policies and cautions.

In general, the models were limited by their simplifications. For example, there was
likely an interaction effect between the trips and entrances metrics that was not
captured in the models. The models also assumed that the case identification rate (and
hence removal rate) and reporting rate were constant, which related works have as well
(e.g. [21]). However, these rates likely changed with Andorra’s increased testing. Future
works can more accurately model the impacts of mobility and entrances, and the
interaction between these metrics. This might also include incorporating data on the
infection rates for other countries whose populations contribute to entrances. Future
work can also incorporate data on testing rates to better model changes in the removal
and reporting rates.

Furthermore, our modeling approach was able to leverage features that make
Andorra a special case study compared to other countries. In particular, Andorra
normally has a highly dynamic population, given its small population and relatively
large number of cross-border traffic and temporary workers. These features, along with
the fact that our study was conducted over one period at the start of COVID-19, may
make our results less transferable to other countries or contexts.

Despite these limitations, overall, this case study suggests how using mobile phone
data to measure dynamic population changes could improve studies that rely on more
commonly used mobility metrics and the overall understanding of a pandemic.
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S1 Appendix

A.1 Andorra and COVID-19

March 2
March 12
March 13
March 18
April 7
April 17
April 20

May 4

May 4

May 13
May 18
May 18
June 1
June 15
June 21
July 1
September 1

First COVID-19 case confirmed in Andorra.

Ski stations closed.

Partial confinement: school closures and recommended confinement.
Total confinement: all non-essential activities ordered closed.

Beginning of masks delivery and progressive use by population.
Allowance to 1 hour of walk in 1km radius every two days.

Phase 1 reopening: low risk economic activities resume; 1000 people return
to work.

Start of 1st round of population serology screening.

Phase 2 reopening. Additional 4760 workers return to normal activity.
Increase to 2 hours of activity every day to walk or exercise.

Start of 2nd round of population serology screening.

Phase 3 reopening: additional 3300 workers returned to normal activity.
Confinement restrictions completely lifted.

French and Spanish borders opened (with restrictions on Spanish side).
Spain ended state of emergency and further lifted border controls.
Remaining Spanish border restrictions lifted.

Massive testing for teachers and school kids began.

Table A.1. Timeline of the COVID-19 related dates in Andorra.
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A.2 Home parish inference

The parish-level populations inferred from the telecoms data for May 2020 were
compared to published 2020 population statistics [29]. There is a Pearson correlation
coefficient of 0.959 (p<<0.001), suggesting that the telecoms data are representative of
the true population.

Parish Published population Inferred mobile subscriber population
Andorra la Vella 22504 13555

Canillo 4371 4367

Encamp 11716 6766

Escaldes-Engordany 14626 7366

La Massana 10199 6165

Ordino 4957 2427

Sant Julia de Loria 9374 4339

Table A.2. Published parish populations compared to parish populations inferred
from telecoms data.

Andorra la Vella

Escaldes-Engordany

Encamp

La Massana

parish

Sant Julia de Loria

Ordino
population
Canillo mmm inferred subscriber population
0 5000 10000 15000 20000
population

Fig A.1. Published parish populations compared to parish populations inferred
from telecoms data There is a Pearson correlation coefficient of 0.959 (p<0.001), suggesting
that the data are representative of the true population.
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A.3 Comparing entrances and infection rates between Andorra,
France, and Spain

The SEIR model (iii) in this work incorporates trips and entrances data to model
transmission rates. It includes an assumption that the likelihood of new country
entrants being infectious tracks with the timeline of infection rates in Andorra. In order
to check this assumption, we compare the rates of COVID-19 between the country of
Andorra and its bordering neighbors, Spain and France, during our period of study. This
is done by comparing the timeline of reported deaths per 1 million residents, where data
is smoothed over a 7 day rolling window. Death reports are used instead of case reports
as a more stable comparison indicator in this study and others because death reports
were considered to be less impacted than case reports by the dynamically changing
testing procedures which varied by country [21,65]. The Pearson correlation coefficients
between Andorra and France and Andorra and Spain are 0.916 (p < 0.001) and 0.928 (p
< 0.001), respectively. We note there was an error in the Spain data with negative
deaths values in late May. We changed the negative values to 0 for this comparison.
Without the change, the correlation was still statistically significant with Pearson
correlation coefficient 0.918 (p < 0.001). The timeline of infections is shown in Fig A.2.

During this same period, telecoms data showed that 86% of entrances by foreign
SIMs were either Spanish or French, and 68% of all entrances were by Spanish or French
SIMs when accounting for entrances by Andorran SIMs. The timeline of entrances by
SIM nationality is shown in Fig A.3.

25 1 —— Andorra
—— France
—— Spain

—

Mar 15 Apr01  Aprl5 May 01 May 15 Jun 01 Jun 15 Jul 01 Jul 15

new deaths per million (7 day avg)

Fig A.2. Comparison of reported deaths per 1 million residents between the
country of Andorra and its only bordering neighbor countries, Spain and France.
The Pearson correlation coefficients between Andorra and France and Andorra and Spain are
0.916 (p<0.001) and 0.928 (p<0.001), respectively.

7000
e Andorran °
6000 ~ e Spanish .
5000 e e French . . .
\ o British . . .
4000 + e Other . % '. k

country entrances

.,,*!\M
Mar 15

Apr 01 Apr 15 May 01  May 15 Jun 01 Jun 15 Jul 01 Jul 15

Fig A.3. The timeline of country entrances, measured via Andorra Telecom data,
by mobile subscribers’ SIM nationality. During the period of March through July, 2020,
86% of entrances by foreign SIMs were either Spanish or French, and 68% of all entrances were
by Spanish or French SIMs when accounting for entrances by Andorran SIMs.


https://doi.org/10.1101/2021.11.06.21265955
http://creativecommons.org/licenses/by-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2021.11.06.21265955; this version posted February 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-ND 4.0 International license .

A.4 Serology tests and country departures

Note that the sum of survey participation varies due to missing values regarding the
participants’ parish of residence or temporary worker status.

survey 2 participation
91.6%
70.7%

Table A.3. Serological survey participation and results for temporary workers

versus general population. Seroprevalence results were previously reported by

Royo-Cebrecos et al. Survey 2 participation indicates how many individuals who participated

in survey 1 also participated in survey 2.

survey 1 participants (N) survey 1 seroprevalence
all 70,626 9.7%
temporary workers 2,714 13.3%

Two cross sectional serological surveys were conducted in Andorra from May 4-28,
2020, using a rapid serological test (nCOV IgG/IgM) [32]. For each participant, the test
data include the dates of their participation in surveys 1 and/or 2, the positive versus
negative results for IgG/IgM antibodies for each round of testing, the participant’s
parish of residence, whether the participant is a temporary worker, and other
demographic information. Table A.3 shows the number of participants and
seroprevalence from survey 1 as well how many participants from survey 1 also
participated in survey 2. Data for temporary workers is highlighted. Seroprevalence
data is from previously reported results and was calculated based on the number of
individuals who had a positive result of IgG and/or IgM [32]. The testing was voluntary;
an issue with the testing was that many people who participated in the first survey did
not participate in the second survey. Seroprevalence was higher among temporary
workers. At the same time, temporary workers who participated in survey 1 were less
likely to participate in survey 2 versus the general population. See Table A.3.

parish serology survey participants 2020 mobile subscribers present 2019 mobile subscribers present
survey 1 (N) | survey 1 & 2 | decline ;‘;I:lljzi/ 1 f)t?llsgs 1&2 decline Is)irr‘;sg 1 ;igoegs 1&2 decline

Andorra la Vella 4542 4262 6.2% 15803 15415 2.5% 27531 23295 15.4%
Canillo 4495 4017 10.6% 5406 5121 5.3% 5095 3936 22.7%
Encamp 10846 10273 5.3% 7613 7449 2.2% 8102 7397 8.7%
Escaldes-Engordany 28924 27688 4.3% 8336 8172 2.0% 9089 6961 23.4%
La Massana 8843 8451 4.4% 7389 7214 2.4% 9813 8365 14.8%
Ordino 4214 4049 3.9% 2821 2758 2.2% 3446 2964 14.0%
Sant Julia de Loria 8632 8295 3.9% 5056 4929 2.5% 9201 8197 10.9%

Table A.4. Serological survey participation and mobile subscribers by home parish.

We counted the number of mobile subscribers, by inferred home parish, who were in
the country during the first and second survey periods (May 4-14 and May 18-28, 2020).
Subscribers were counted as present during a survey period if they had at least one
"stay" within the period. We estimated the rate at which subscribers left the country
after the first test by counting how many subscribers were present during only the first
period versus both periods.

These numbers were compared to the parish-level serology test participant
populations. Namely, the portion of serology survey participants who did survey 1 but
not survey 2 was compared to the estimated portion of mobile subscribers who left the
country between survey periods. There is a statistically significant Pearson correlation
coefficient of 0.937 (p=0.0019).

To further validate that the decline in test participation was related to people
leaving the country, we repeated these tests using 2019 telecoms data. In this case,
there is a Pearson correlation coefficient of 0.4928 (p=0.2612), which is not statistically
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significant. If the May 2020 subscribers had left the country for reasons not related to
the pandemic, we would expect the correlation to be similar for the 2019 and 2020 data.
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A.5 Model training details

All modeling work is publicly accessible in a Python Jupyter notebook:
https://github.com/CityScope/CSL_Andorra_COVID_Public/blob/main/
analysis/SEIR_models_trips_entrances.ipynb.

Optimal parameters were estimated by minimizing the negative log-likelihood
function using the L-BFGS-B method with the Python SciPy library [49,66]. This step
searches for optimal parameters by taking initial parameters which are then modified
towards improved values, with specified bounds. The (minimum, maximum) bounds for
~ were set to (1/10, 1/2). The bounds used for each of the parameters related to § -
b0, b1, b2, b3, b4 - were (0, 2), with the observation that the parameters for the best fit
models did not come up against these bounds. The (minimum, maximum) bounds for
both E(0) and I(0) were set to (40, 4000), where t=0 corresponds to March 14, the first
day of the training period. The values of (40, 4000) were conservatively set where the
minimum was based on reported active cases, and the maximum based on reported
cumulative cases. In addition, the training routine discarded models where E(0) and
I(0) values differed by more than 3000.

Before describing how initial parameters were handled, first note that the optimizing
function is not convex. To avoid the optimization function terminating at local minima,
a grid search was used for the initial parameters. The same grid search method was
used for each of the models.

In addition to the grid search routine, another step was taken to find optimal model
fits: The models using the trips and entrances data were initially fit using spline
approximations of these metrics, where the splines were estimated from the true metrics
using knots spaced by 7 days. Fig A.4 shows the comparison of the true metrics versus
their spline approximations. This step was taken to further smooth the data and ease
the computational complexity of the model fitting routine. Without this improvement,
the model training was slow and rarely resulted in successful outcomes, and the
estimated parameters rarely varied from their initial values.
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2500 A1
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Fig A.4. Metrics and spline approximations. Daily estimated total trips and entrances
metrics, and the linear spline approximations of these metrics where knots are spaced by 7 days.

After the models were fit using the spline approximations of the data, the models
were finally fit again using the true data, where the parameters found via the fitting
routine with the spline approximations of the data were used as the initial parameters
in the L-BFGS-B method.
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A.6 Fit model values and parameters

Table A.5 shows the values of the parameters for the best fit models that resulted from
model training. Fig A.5 shows the corresponding time series values representing each of
the best fit models. The values include Ry, the compartment populations, and the
predicted reported cases.

The best fit models were determined as those with the best log-likelihood score when
fit over the training data, where the training data period was March 14 - May 31, 2020.
See section A.8 for values from the robustness check.

Models were trained based on the standard SEIR model where:

and

S(t)=N—E()—I(t) — R(t)

C(t) is cumulative case reports and accounts for reporting delay, d, and reporting
rate, 7.

The 3 models in this work differed based on how they defined transmission rate and
the transition from S to E. See the Modeling section for details.

Model i: baseline model with constant transmission rate
Model ii: daily transmission a function of daily trips data
Model iii: daily transmission a function of daily trips and entrances data
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Fig A.5. Fit models. The time series values for (top) estimated Ry, (middle) estimated
compartment populations, and (bottom) actual reported cases versus predicted reported cases.
Plots are shown for each of the models: (left) model i is the baseline, dummy model with a
constant transmission rate, (middle) model ii uses trips data, (right) model iii uses trips and
entrances data.
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parameter model
description i. constant # | ii. trips data | iii. trips & entrances data

N Population. Set based on estimated population. 77,000 77,000 77,000
r Reporting rate. Set based on serology and case reports data. | 117! 1171 1171
d Reporting delay. Set based on prior information. 7 7 7
o Latent rate. Set based on prior work. 5271 5.271 5.271
ol Removal rate. Fit by model training. 0.10 0.10 0.18
b0 Transmission rate parameter. Fit by model training. 0.0529 0.0289 3.9126e-03
bl Transmission rate parameter. Fit by model training. - 0.027 7.69112e-02
b2 Transmission rate parameter. Fit by model training. - 0.004 7.2082e-03
b3 Transmission rate parameter. Fit by model training. - - 2.6668e-06
b4 Transmission rate parameter. Fit by model training. - - 1.3168
E(0) | Initial exposed population. Fit by model training. 3408 3105 1261
1(0) Initial infectious population. Fit by model training. 1488 1597 567
R(0) | Initial removed population. Set based on reported cases. 7 77 7
LL Log-likelihood value for model fit over the training period 528.08 545.01 415.2

Table A.5. Parameters for fit models.
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A.7 Time from exposure to reported case

The average delay in time from exposure to reported case in our model (i.e. the full
transition through compartments E,I,R,C) is due to the average latent period, o1, plus
average infectious period, y~1, plus average reporting delay, d. o' is set to 5.2 based
on previous research [47], y~1 is estimated via model training, and d is set to 7 based on
related work [21,48]. Reporting delays, d, can be due to the time it takes to seek a test,
for the test to be processed, and then officially reported. Note that at the start of the
pandemic in Andorra, tests were sent for processing to Spain, potentially adding extra
time to reporting delays.

A study in Singapore from March 2020 estimated an average reporting delay of 6.4
days (95% CI 5.8, 6.9) [48]. A reporting delay of d = 7 was implicitly assumed by
Arroyo-Marioli et al. [21]. They estimated time series values for the effective
reproduction number for 124 countries across the world and validated their work by
correlating their estimates of R; to mobility data from the "COVID-19 Community
Mobility Reports" collected by Google, where the lag between R; and mobility was 14
days (2 weeks). They assumed an SIR model rather than an SEIR model, with time
from exposure to removed, =1, of 7 days, implying a reporting delay of 7 days (14 — 7).
We note that Arroyo-Marioli et al. produced time series estimates for R; in Andorra.
However their estimates are not comparable to the Ry estimates in this work because
(a) they did not correct for the reporting error that caused an influx of 78 additional
cases June 1-10 [60], as was done in this work, and (b) their estimates were for the
effective reproduction number versus the basic reproduction number. We also note that
Google’s “COVID-19 Community Mobility Reports” are not available for Andorra.

The best fit for the model estimated y~! ~ 5.5 days (y = 0.18). Combined with
o~1 =5.2, d = 7 results in a total estimated average delay from exposure to case report
~17.7 days. This is consistent with previous work over a similar study period in
Andorra that studied the correlation between mobility metrics and transmission rates
over various lags and found the best correlations were with mobility metrics lagged by
18 days [27].
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A.8 Robustness check

As a robustness check, we trained and tested all models over an additional set of
training and testing periods that ended slightly earlier than those used for the main
results. The training period for the robustness check was March 14 - May 14, 2020. The
models were then tested on the period that directly followed this training period.
Table A.6 shows the comparison of MAPE values for each of the 3 models evaluated
over the testing period. The model that uses the trips and entrances data consistently
outperforms the other models.

MAPE
model
forecasting weeks | i. constant g | ii. trips data | iii. trips & entrances data

1 2.12 1.65 1.13
2 3.86 2.99 2.02
3 5.37 4.12 2.74
4 6.66 5.06 3.02
5 7.37 5.44 3.15
6 7.73 5.50 3.23
7 8.44 5.92 3.34
8 9.24 6.45 3.44
9 9.87 6.83 3.57
10 9.88 6.48 3.47

Table A.6. MAPE. MAPE values for the 3 models trained over the period used for a
robustness check: March 14 - May 14, 2020.

Fig A.6 shows the resulting model time series values over the training period March

14 - May 14.
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Fig A.6. Robustness check fit models. The time series values for the models fit for the
robustness check. Values include (top) estimated R, (middle) estimated compartment
populations, and (bottom) actual reported cases versus predicted reported cases. Plots are
shown for each of the models: (left) model i is the baseline model and has a constant
transmission rate, (middle) model ii uses trips data, (right) model iii uses trips and entrances
data.
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