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Abstract 

Patients with glioblastoma (GBM) have a short survival, but even among patients receiving 

the same therapies and with good prognostic factors, one can find those with exceptionally 

short and long survival. 

In the Nordic trial, patients with GBM, 60 years or older, were randomized between 2 

radiotherapy arms or TMZ. We selected 59 patients, equally distributed between the 3 

treatment arms and MGMT promoter methylation status, with good prognostic factors, but 

with short or long survival. We performed methylation profiling with the Illumina Infinium 

Methylation EPIC BeadChip arrays in conjunction with a methylation-based CNS tumor 

classifier, analysis of differentially methylated CpG sites (DMCs) and pathway enrichment 

analysis.  

Samples classified as non-GBM IDH wildtype were excluded and in the analysis of long vs. 

short survivors with documented progression or tumor-related death, we found DMCs in the 

TMZ, MGMT promoter methylated group (123,510), as well as in the 60Gy, MGMT 

promoter unmethylated group (4,086) and 34Gy, MGMT promoter methylated group 

(39,649). The joint analysis of the RT arms revealed 319 DMCs in the MGMT unmethylated 

group but no differences for MGMT promoter methylated samples, or in any of the analyses 

independent of MGMT status. Interestingly, in the long-term survivors with methylated 

MGMT promoter treated with TMZ we found hypermethylation of the Wnt signaling and the 

platelet activation, signaling and aggregation pathways. 

We identified DMCs for both TMZ and RT treated patients. Further systematic analysis of 

larger patient cohorts is necessary for confirmation of their predictive properties. 
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Introduction 

Glioblastoma (GBM) remains the most common and deadliest among gliomas. The peak 

incidence is in the individuals above 65 years old and only about 5.6% of patients reach 5-

year survival [1]. Unfortunately, the treatment options are also limited and so far, efforts have 

not provided satisfactory survival benefits, leaving the median survival at 1.2 years [2,3]. 

Standard therapy for GBM patients consists of gross total resection, if feasible, followed by 

concomitant radiotherapy (RT) and chemotherapy with the alkylating agent temozolomide 

(TMZ) and additional six cycles of TMZ [4]. For fit patients, additional treatment with tumor 

treating fields is an option, further prolonging survival for the selected group by near 5 

months [5]. Choosing the best possible treatment is crucial, especially for elderly patients 

often burdened with comorbidities, where the combined treatment is not expected to be 

tolerated. The known positive prognostic factors include the extent of surgery, age, 

performance status and sex of the patient [2]. Thus far, the only predictive biomarker 

associated with response to TMZ treatment is the methylation status of the O6-methylguanine-

DNA-methyltransferase (MGMT) gene and methylated MGMT (m-MGMT) is associated with 

better overall survival (OS) [6,7], although varying responses among patients are still 

observed. 

Notably, the importance of epigenetic changes in gliomas has been emphasized by recent 

discoveries [8-11]. The current classification of brain tumors incorporates molecular 

biomarkers, i.e., mutations of isocitrate dehydrogenase 1 or 2 (IDH1/2) and 1p/19q codeletion 

[12], and methylome profiling adds a promising alternative, which introduces refinement and 

subclassification to the present classification system [8]. Another example is glioma cytosine-

phosphate-guanine (CpG) island methylator phenotype (G-CIMP), which entails genome-

wide hypermethylation of the CpG islands, especially common among IDH1/2 mutated 

gliomas and associated with better outcome [13-15]. There are also other indications that 

methylome profiling could aid in selection of patients with better prognosis within the same 

diagnostic entity, e.g., by using the methylation differences found in short- and long-term 

survivors (STS and LTS, respectively) with GBM [16-18]. Moreover, changes in the 

methylation profiles between primary and recurrent GBM have been reported, with common 

occurrence of switches between methylation subclasses found at progression [18].  

Age is one of the prognostic factors and younger GBM patients are characterized by better 

outcomes [1,2]. Aging is also reflected in the methylation state of the genome, so called 

epigenetic age [19]. Methylation of specific CpG sites undergoes age-dependent changes, 

which can be quantified and expressed through the epigenetic age [20]. Acceleration of the 

epigenetic age, which is the difference between the epigenetic age and chronological age, has 

been reported in many diseases, such as Alzheimer’s disease [21] or Parkinson’s disease [22]. 

It has also been shown to associate with cancer, mortality in cardiovascular diseases [23,24], 

and patients’ outcome in gliomas [25,26]. 

In the Nordic trial, patients 60 years or older diagnosed with GBM were randomized between 

two different dose regimens of RT or to TMZ treatment alone. Constituting a unique cohort, 

we decided to analyze the global methylation status of tumors from LTS and STS using 

Illumina EPIC bead arrays, to identify potential methylation-based biomarkers or profiles 

related to treatment and outcome.  
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Materials and methods 

Patients 

All patients included in this study were participants of the Nordic randomized, phase 3 trial 

registered under the number ISRCTN81470623 [6], which compared 3 treatment modalities 

for newly diagnosed GBM patients with age 60 and above (TMZ vs. standard RT 60Gy vs. 

hypofractionated RT 34Gy). We selected 59 patients with available formalin fixed paraffin 

embedded (FFPE) tumor tissue from the 3 treatment arms: 20 patients from the TMZ and 

34Gy arms and 19 patients from the 60Gy arm (Figure 1). All patients underwent tumor 

resection and had WHO performance status 0-1, both considered as good prognostic factors. 

All patients were IDH1 negative, tested by immunohistochemistry [6]. Patients were selected, 

so that for each treatment arm half of them belonged to the long survival group and half to the 

short survival group, and in each survival group there would be an equal number of patients 

with methylated MGMT promoter (m-MGMT) and unmethylated MGMT promoter (u-

MGMT) (Table 1). The MGMT methylation status was analyzed with the MDxHealth 

method, Liège, Belgium, as mentioned in [6].  

DNA methylation analysis 

DNA was extracted from 2 tumor tissue sections of 10µm each, using the Maxwell FFPE 

DNA Purification Kit (Promega) according to the manufacturer’s protocol but with a double 

amount of proteinase K (40mg/ml). DNA quantity and quality were checked with NanoDrop 

ND-1000 Spectrophotometer (ThermoFisher) and Quantus Fluorometer (Promega), as well as 

with the Infinium FFPE QC Kit (Illumina). A total of 250-500ng of DNA was subjected to 

bisulfite conversion using the EZ DNA methylation kit (Zymo Research) and genome wide 

DNA methylation was assessed with the Infinium MethylationEPIC BeadChip Kit (Illumina) 

complemented by the Infinium HD FFPE DNA Restore Kit as per manufacturer’s protocol. The 

BeadChip arrays were scanned on the NextSeq 550 (Illumina) and DNA methylation data in 

the form of IDAT files (intensity data files that contain green and red signals from methylated 

and unmethylated CpG sites) were uploaded to the online classifier v11b4 [8], where MGMT 

methylation status was also assessed, with the MGMT-STP27 algorithm [27]. 

Differential methylation analysis 

The IDAT files from Illumina HumanMethylation EPIC arrays were also analyzed using R 

(v4.0.3) [28] and Bioconductor packages (v3.14) [29], e.g., Chip Analysis Methylation Pipeline 

(ChAMP) analysis package (v2.19.3) [30]. The files were pre-processed in ChAMP to filter 

out CpGs with detection p-value >0.01, as well as SNP CpGs, unbound and multi-hit CpGs 

and all CpGs from sex chromosomes. After filtration, the quality check was performed, and 

the files were normalized with the beta-mixture quantile normalization (BMIQ) function. The 

β- and M-values of the samples were calculated against each CpG per sample. Batch effects 

were corrected for with the runCombat function. The differential methylation analysis was 

calculated with the linear modeling (limFit) and eBayes algorithm, comparing two groups 

from the phenotypic dataset and singular value decomposition (SVD) analysis was performed 

to check for confounders (e.g., age, sex) (Supplementary Data, Figure S1). The differential 

methylation analysis was performed first for all samples that were classified as GBM, IDH 

wild-type and then, after removal of patients that died due to causes other than tumor, for 3 

samples from each group with the extreme survival, that is in LTS the 3 with the longest 

survival and STS, the 3 with the shortest survival. The latter analysis found differentially 
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methylated CpGs (DMCs) in the comparison of LTS vs. STS within each treatment arm with 

methylated or unmethylated MGMT promoter, hence further analysis was based on these. The 

DMCs were considered significant at the Bonferroni-Hochberg corrected p-value (p-valueBH) 

<0.05. The hierarchical cluster analysis was performed using the Euclidean distance within 

the ape package (v5.0) [31] in R. 

Structural annotation 

We used AnnotationDbi package (v1.54.1) [32] to annotate DMCs and in-house script to 

visualize their genomic distribution. The statistically significant DMCs (p-valueBH < 0.05) 

were used to create the volcano plot with the mean methylation difference (∆mmd) ≥|0.3|) 

using the EnhancedVolcano package (v1.10.0) [33] in R. The cut-off of ∆mmd was calculated 

using the β-value distribution of all samples with the mean ±2SD (Supplementary Data, 

Figure S2 and Supplementary Data, Table S1).  

The R package ComplexHeatmap (v2.8.0) [34] was used to create the heatmap from individual 

β-values of DMCs (p-valueBH < 0.05; (∆mmd) ≥|0.3|). 

Pathway enrichment and correlation analysis 

To reduce the number of DMCs, we first filtered out DMCs based on the genomic location, 

leaving only those from the 5´-untranslated region (5´-UTR) and transcription start site (TSS) 

regions (TSS200 and TSS1500). Further, we applied the ∆mmd cut-off score (as described 

above). The DMCs were converted to their respective official gene symbols (hereafter called 

DMGs, differentially methylated genes) and the list (without/with ∆mmd values) was used for 

the pathway enrichment analysis. The Reactome database (v78) [35] was applied to perform 

the gene set enrichment analysis using the clusterProfiler package (v4.0.5) [36] in R (v4.1) 

with the default parameters setup (e.g., 1000 permutations and p-valueBH < 0.05). Results 

were visualized using ggplot2 (v3.3.3) [37] in-house script.  

Epigenetic age calculation 

The epigenetic age was calculated for the same set of samples that were used in the 

differential methylation analysis (3 samples from STS and LTS per group). We used 

methylation data obtained in this study and followed the methods published for three 

epigenetic clocks, namely Horvath [20], Hannum [39] and PhenoAge [40]. The epigenetic age 

acceleration was calculated as the difference between the epigenetic age and chronological 

age, given in years. Mean chronological and epigenetic ages were compared with the two-

tailed Student-t test and p-value<0.05 were considered significant. Calculations were 

performed with IBM SPSS (v.26). Ethical approval for the Nordic trial and molecular 

analyses were previously obtained (99086, M11-06 T40-09 and 2011/32-32). 

Results 

Methylation-based classification 

Histological review in the primary analysis of the trial material classified 58 out of 59 samples 

included in this study as GBM grade 4 and one sample was classified as astrocytoma grade 3 

but all samples were IDH1 mutation negative. Methylation data for all samples passed the 

quality control and were uploaded to the brain tumor classifier 

(https://www.molecularneuropathology.org/mnp) [8]. Methylation based classification placed 

most of the samples in the GBM, IDH wildtype class, including the mentioned astrocytoma. 

One sample was classified as anaplastic pilocytic astrocytoma and confirmative sequencing of 
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IDH1 and IDH2 displayed the absence of mutation in accordance with the 

immunohistochemistry result. In three cases, samples were classified as “control tissue” 

probably due to low tumor cell content and were excluded. The analysis of methylation 

subclasses revealed that 21 samples belonged to only one subclass, with 2 being midline 

GBM. The remaining (n=34) GBM IDH wildtype samples had 2 or 3 subclasses assigned to 

them. The MGMT methylation analysis results were concordant between the MDxHealth 

method and MGMT-STP27 for all but one sample, even for the samples that were classified 

as control tissue. 

Differential methylation analysis 

We decided to only include samples, where progressive diseases and/or death caused by the 

tumor had been reported because, especially in the STS groups, the true relationship between 

the tumor’s methylation profile and survival could be compromised. After removing cases, 

where death was caused by co-morbidity or complications (e.g., infection, pulmonary 

embolism), we decided to include only three samples with extreme survival times from each 

treatment arm and MGMT group, as survival times, especially in the RT arms, had relatively 

small spread. and  

We compared LTS and STS samples in the separated treatment arms (TMZ, 34Gy, 60Gy, and 

combined RT) and within each treatment we compared m-MGMT and u-MGMT samples 

separately and in combination. DMCs between LTS and STS were identified in the TMZ arm, 

m-MGMT; 34Gy, m-MGMT; 60Gy, u-MGMT and in the combined RT arm, u-MGMT. The 

highest number of DMCs were found in the TMZ group (Supplementary Data, Table S1). The 

cofactor analysis showed that the differential methylation analysis was not influenced by 

included confounders (age, sex, death by the tumor/progressive disease) (Supplementary 

Data, Figure S1). Upon the structural annotation of DMCs, we found that they were similarly 

distributed throughout the genome (Figure 2), with the majority of DMCs found in the gene 

bodies and intergenic regions. Approximately 10% of DMCs were found in the TSS1500 and 

up to 8% in the 5’UTR, with both regions being of regulatory importance for gene expression 

due to the location of gene promoters. We reduced the number of DMCs for further analysis 

by filtering them out based on the genomic location (TSS1500, TSS 200 and 5’-UTR) and 

∆mmd cut-off values. Inspection of density plots created from filtered data revealed that a 

majority of DMCs were hypermethylated in LTS in the TMZ and 34Gy, m-MGMT groups 

and hypomethylated in the LTS from 60Gy, u-MGMT group. All DMCs were 

hypomethylated in the comparison of LTS vs. STS in the combined RT group with u-MGMT 

(Supplementary Data, Figure S2). Next, we performed hierarchical cluster analysis on filtered 

DMCs (Figure 3). We observed that in the TMZ, m-MGMT group, data formed 4 clusters of 

DMCs between LTS and STS. We also found that for the joint RT group with u-MGMT, 

clusters separated LTS and STS but not the radiation doses (34Gy and 60Gy), emphasizing 

the importance of the treatment modality itself. 

Pathway enrichment analysis 

Next, we used the Reactome database to investigate pathway enrichment among filtered 

DMGs, which were obtained from the annotated DMCs. There were four pathways enriched 

in the hypermethylated DMGs among LTS from the TMZ, m-MGMT group, namely 

metabolism; platelet activation, signaling and aggregation; signaling by WNT and signal 
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transduction. In the same group analysis (LTS from the TMZ, m-MGMT), we found 37 

pathways enriched in the hypomethylated DMGs, e.g., immune system and Rho signaling 

pathways (Supplementary Data, Table S2). In the hypermethylated DMGs in LTS in the 

treatment of 34Gy with m-MGMT we found two enriched pathways (immune system and 

class B/2 secretin family receptors) (Supplementary Data, Table S2). We did not find any 

enriched pathways for the remaining groups. Due to stringent filters applied initially to DMCs 

and low number of detected enriched pathways, we decided to include DMCs removed by the 

∆mmd cut-off and repeat the analysis. Consequently, the number of enriched pathways 

increased, both for the TMZ, m-MGMT and 34Gy, m-MGMT groups (Figure 4), but no 

pathways were enriched in the 60Gy and combined RT groups. We compared the lists of 

enriched pathways and found seven that were common for the TMZ and 34Gy (m-MGMT) 

arms, with 3 of them involved in G-protein coupled receptors (GPCR) signaling (Figure 4). 

One of the hypermethylated pathways found to be enriched in the LTS from the TMZ group 

with m-MGMT was WNT signalling. We wanted to check whether there was a correlation 

between methylation of DMGs from the enrichment core and the expression of these, but gene 

expression data were not available for our samples. Instead, we used 51 primary, IDH wild-

type GBM with RNA-seq and 450k methylation array data from TCGA, accessed via the 

SMART App website [38]. First, we identified which of the DMCs from the enrichment core 

were also covered by 450k bead chip arrays, since our results were based on the newer design, 

850k methylation array. The overlapping DMCs were found for 9 genes, which were then 

analysed with the Spearman correlation coefficient to find if the promoter methylation status 

of the genes correlated with the corresponding mRNA expression, at a significance level 

p<0.05. A negative correlation was found only for the WNT2 gene (R=-0.37, p=0.0067). 

Epigenetic age 

The cofactor analysis showed that chronological age did not affect DMCs (Supplementary 

Data, Figure S1), however, molecular alterations in cancer cells may affect the epigenetic age. 

This prompted us to analyze the epigenetic age of the groups consisting of 3 tumor samples, 

which involved three different epigenetic clocks, Horvath [20], Hannum [39] and PhenoAge 

[40]. The calculated epigenetic ages were compared with the chronological age of the patient. 

According to the Horvath algorithm, all samples had a higher epigenetic than chronological 

age (Figure 5) but there was no difference between epigenetic age in LTS and STS. There 

were also no differences in the age acceleration (Supplementary Data, Table S3). In the 

results from the Hannum and PhenoAge epigenetic clocks, both, epigenetic age acceleration 

and deceleration (epigenetic age<chronological age) were observed, with STS groups usually 

characterized by lower mean epigenetic age (Figure 5 and Supplementary Data, Table S3). 

Significant differences were discovered only in the 34Gy, u-MGMT group (Hannum and 

PhenoAge) and in the combined RT, u-MGMT group (Hannum). In these cases, STS showed 

epigenetic age deceleration and lower mean epigenetic ages than LTS. 

Discussion 

In recent years, an increase in the use of methylome profiling has been observed. The widely 

known brain tumor classifier proposed by Capper et al. [8] allows for a more precise 

classification of brain malignancies. Undoubtedly, methylation of the MGMT promoter 

remains the most important biomarker for GBM, which predicts effect of TMZ treatment 

[2,6,7]. However, we lack validated predictive biomarkers for patients with u-MGMT tumors 
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or treated with RT. Here, we employed the Capper classifier [8], and differential methylation 

to identify biomarkers predisposing to good treatment response or indicating resistance to 

therapy.  

Inter- and intratumor heterogeneity of GBM plays an important role in treatment resistance 

and relapse of the disease. A previous study on spatially separated biopsies showed that 

methylation heterogeneity is common in GBM, though it seems to affect only the 

subclassification, whilst all samples remain classified as GBM IDH wildtype and MGMT 

methylation status also remains stable [42]. This is in line with our results from the 

methylation-based classification, which showed that in 34 samples more than one subclass 

was identified. Interestingly, it has recently been reported that treatments such as chemo- or 

radiotherapy, and even hypoxia, as sources of stress for cancer cells, may induce methylation 

changes that likely contribute to heterogeneity among tumor cells [43] and possibly patients’ 

outcome. 

Our analysis revealed that the WNT signaling pathway was hypermethylated in LTS treated 

with TMZ and with m-MGMT, implicating silencing of WNT signaling and indicating the 

importance of a maintained WNT pathway activity in STS. This aligns with the previously 

presented results by Shinavi et al. [16], where hypermethylation of the promoter of the DKK2 

gene, an antagonist of the WNT pathway, was found in STS. In TCGA data, we found a 

negative correlation between methylation of the sites corresponding to hypermethylated CpGs 

in our samples and the expression of the WNT2 gene. In mice, WNT2 drives the proliferation 

of progenitor cells and development of midbrain, possibly having similar effects in humans 

[44]. WNT signaling is crucial during embryonal development and is commonly altered in 

cancers [45]. In GBM, activation of the WNT pathway is necessary for the maintenance of 

glioblastoma cancer stem cells, which greatly contribute to treatment resistance [46]. 

Importantly, methylation may be the main regulatory mechanism of the WNT pathway in 

GBM, as mutations are rare [46]. GBM is also proposed to originate from the subventricular 

zone (SVZ), an area supporting neural progenitor cells [47], and tumor proximity to the SVZ 

has been linked to STS [48]. Methylation of gene promoters in newly diagnosed GBM and 

their impact on gene expression, and survival of patients treated with concomitant 

radiochemotherapy, was also previously reported by Etcheverry et al. [9]. They found six CpG 

sites, for which methylation was associated with decreased survival, and two of the CpG sites 

were localized in the SOX10 gene promoter. We did not find SOX10 among DMGs in any of 

the treatment arms but active WNT signaling acts inhibitory on SOX10 expression [49]. To 

further emphasize this signaling pathway, study by Wu et al. [11] showed, that SOX10 acts as 

a master regulator of the receptor tyrosine kinase I (RTK1) subtype of GBM, which often 

harbors platelet derived growth factor receptor alpha amplification [11]. 

Another interesting finding is hypermethylation of the platelet activation, signaling and 

aggregation pathway in LTS with m-MGMT promoter treated with TMZ. Up to 30% of GBM 

patients experience venous thromboembolism, making it one of the most common and serious 

complications, which may influence survival [50]. Hypermethylation of the platelet activation 

pathway may therefore have a protective function. 

Among the hypomethylated enriched pathways we found some that were labelled as neuronal 

system, neurotransmitter receptors, transmission across chemical synapses and potassium 

channels, all of which have been shown to partake in GBM development and progression 
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[51,52]. In our study however, these pathways associated to LTS. It should be noted that in 

most of the published studies mentioned here, STS is referred to patients with a survival <1 

year and LTS to those with a survival >3 years. In our study of elderly patients with GBM, 

median survival was 12 months and the survival range of 4.5-126 months for the most 

favorable group, those treated with TMZ and m-MGMT. 

TMZ is most commonly used in GBM treatment due to its good blood brain barrier 

penetration and generally mild toxicity [53] and MGMT promoter methylation status is 

predictive for the treatment response to TMZ [6]. However, not all GBMs are tested for 

MGMT [54]. Chai et al. investigated the potential benefits of TMZ in patients with u-MGMT 

and showed that by using a methylation signature of 31 genes, it is possible to select patients 

with u-MGMT to obtain a survival similar to that of patients with m-MGMT [10]. 

Unfortunately, we did not find any DMCs separating LTS and STS in the TMZ arm with u-

MGMT. 

The pathway enriched in the hypermethylated DMGs in LTS from the 34Gy treatment arm 

with m-MGMT promoter, is the pathway of the secretin family receptors, a subgroup of G-

protein coupled receptors (GPCR). Pathways involving GPCR are enriched in the TMZ and 

34Gy arms when filtering conditions are less stringent. GPCR is the largest family of 

membrane proteins involved in cell metabolism, migration, neurotransmission, immune 

response, and cell differentiation [55]. Hypermethylation of these pathways may lead to 

downregulation of gene expression and decreased activity, potentially having a protective 

effect on the patients. In fact, GPCRs are explored in various studies as treatment targets for 

glioblastoma [55] but in our limited study, we did not find any DMCs in the combined RT 

group to indicate the importance of methylation of GPCR for RT outcome. 

Although we did not find consistent and significant differences in the epigenetic age of LTS 

and STS in most of the analyzed treatment groups, we observed a general distortion in the 

epigenetic age in comparison to the chronological age. The magnitude and direction of 

epigenetic age changes was dependent on the applied algorithm but overall, we observed a 

trend towards lower epigenetic age in STS in comparison to LTS in all algorithms. The 

Horvath’s clock pioneered the field and can be universally used for different tissues [20], the 

Hannum’s clock is primarily designed for assessment of epigenetic age from blood and the 

PhenoAge model was built on phenotypic age, including many morbidities and mortality 

related factors. The Hannum’s method and PhenoAge both showed deceleration of epigenetic 

age instead of acceleration, which is likely dictated by the tissues and factors used for model 

development. However, the results from Horvath’s clock are in line with previous studies 

performed on gliomas, indicating acceleration of epigenetic age in tumor tissue [25,26]. The 

surprising effect of epigenetic age deceleration or lower age in STS could speculatively be the 

result of stem-like cells involvement in GBM development, since stem cells are characterized 

by lower epigenetic age [20].  

The value of methylome profiling for brain tumors has been largely shown through the 

methylation-based CNS classifier [8]. Alhough our analyses are limited due to the number of 

samples, they also highlight methylation differences that exist between LTS and STS with 

GBM, that might be clinically relevant. Also, epigenetic age assessment may potentially be a 

valuable tool to select patients with good prognosis. However, systematic analysis of larger 
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cohorts of patients with LTS and STS is necessary and warranted for validation of our 

findings. 
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Table 1. Patient characteristics. 

Treatment Survival 

group 

MGMT status N= Males Mean age at 

diagnosis 

(range) [years] 

Median survival 

(range) [months] 

TMZ 

LTS 
Methylated 5  3 64 (60-69) 20.1 (13.7-125.9) 

Unmethylated 5  3 72 (67-77) 13.3 (9.9-18.9) 

STS 
Methylated 5 2 70.6 (67-78) 9.2 (3.5-10.4) 

Unmethylated 5 3 66.8 (64-69) 2.9 (2.1-3.8) 

34Gy 

LTS 
Methylated 5 1 69.2 (63-77) 14.6 (12.6-24.3) 

Unmethylated 5 3 72.4 (69-81) 14.6 (12.6-35.7) 

STS 
Methylated 5 2 72.4 (65-77) 4 (1.3-5.5) 

Unmethylated 5 2 68.6 (64-74) 4.6 (3.3-5.1) 

60Gy 

LTS 
Methylated 5 2 64.2 (60-72) 14 (12.1-16.6) 

Unmethylated 5 4 64.6 (60-70) 17.9 (15.6-33.4) 

STS 
Methylated 4 3 69.3 (62-73) 7.8 (6.6-10.1) 

Unmethylated 5 4 69.2 (65-74) 1.7 (1.1-4.2) 
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Figure 1. Patients from the Nordic trial included in the study. Patients with good prognostic 

factors were selected from each treatment arm (temozolomide -TMZ, radiotherapy 34Gy-RT 

34Gy and radiotherapy 60Gy- RT60Gy). Half of the tumors had methylated MGMT promoter 

(m-MGMT) and half had unmethylated MGMT (u-MGMT). These patients were further 

divided into long-term survivors (LTS) and short-term survivors (STS). N- number of patients 
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Figure 2. Pie charts representing the structural genomic distribution of DMCs discovered in 

samples with exceptionally long (n=3) and short (n=3) survival within different treatment 

arms and with specified MGMT promoter methylation status. TSS200- 200 bases upstream 

transcription start site, TSS1500- 1500 bases upstream transcription start site, UTR-

untranslated region, IGR- intergenic region 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 22, 2022. ; https://doi.org/10.1101/2022.02.21.22271286doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.21.22271286
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

Figure 3. Heatmaps representing β-values of the DMCs for (A) TMZ, m-MGMT, (B) 34Gy, 

m-MGMT, (C) 60Gy, u-MGMT, (D) RT, u-MGMT.  
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Figure 4. Results of pathway enrichment analysis for DMGs from (A) TMZ, m-MGMT (top 

50 pathways) and (B) 34Gy, m-MGMT (B). Venn diagram (C) shows the number of unique 

and shared enriched pathways between the two groups (TMZ (blue) and 34Gy (red)) and lists 

the latter.  

 

  

Figure 5. Results of the epigenetic age analyses. The epigenetic age acceleration (difference 

between the epigenetic age and the chronological age) is shown in years on the y-axis, 

horizontal lines represent the median values, boxplots represent the 1st and 3rd quartile, errors 

are represented by the T-bars. All data above the dashed line represents an acceleration in 

epigenetic age, and data below the dotted line represents a deceleration in epigenetic age. 
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Supplementary Figure S1. Results of the singular value decomposition (SVD) analysis 

checking for confounders in the groups with discovered DMCs; (A) TMZ, m-MGMT, (B) 

34Gy, m-MGMT, (C) 60Gy, u-MGMT, (D) combined RT, u-MGMT.  
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Supplementary Figure S2. Volcano plots (left side) and density plots (right side) 

representing DMCs from (A) TMZ, m-MGMT, (B) 34Gy, m-MGMT, (C) 60Gy, u-MGMT, 

(D) RT, u-MGMT. Colored dots in the volcano plots in the darkest shades of blue and red 
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represent DMCs fulfilling the cut-off requirements (p-valueBH < 0.05; (∆mmd) ≥|0.3|). 

Hypermethylated DMCs have positive values on the logFC axis in the density plots and 

hypomethylated DMCs have negative values logFC. 

Supplementary Table S1. Number of differentially methylated CpGs (DMCs) and genes 

(DMGs) before and after location-based filtration. 

Comparison group 

(LTS vs. STS) 

Differentially methylated CpGs 

before filtering only located at TSS and 5’UTR 

DMCs DMGs DMCs DMGs 

TMZ, m-MGMT 123510 18344 26626 11443 

34Gy, m-MGMT 39649 1104 39649 4915 

60Gy, u-MGMT 4086 1961 4086 816 

RT, u-MGMT 319 181 319 82 

 

Supplementary Table S2. Results of Reactome pathway enrichment analysis for filtered 

DMGs. 

Reactome ID Reactome Pathway Enrichment score Adjusted p-value 

TMZ, m-MGMT, hypermethylated DMGs 

R-HSA-1430728 Metabolism 0.2310 4x10-2 

R-HSA-76002 Platelet activation, 

signaling and 

aggregation 

0.4427 4x10-2 

R-HSA-162582 Signal Transduction 0.1964 4x10-2 

R-HSA-195721 Signaling by WNT 0.5736 4x10-2 

TMZ, m-MGMT, hypomethylated DMGs 

R-HSA-168256 Immune System 0.2813 2x10-7 

R-HSA-162582 Signal Transduction 0.2006 9x10-6 

R-HSA-168249 Innate Immune System 0.2994 2x10-4 

R-HSA-5653656 Vesicle-mediated 

transport 

0.3626 2x10-3 

R-HSA-597592 Post-translational 

protein modification 

0.2861 2x10-3 

R-HSA-1643685 Disease 0.2282 2x10-3 

R-HSA-2682334 EPH-Ephrin signaling 0.6375 2x10-3 
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R-HSA-199991 Membrane Trafficking 0.3641 2x10-3 

R-HSA-1280215 Cytokine Signaling in 

Immune system 

0.2969 2x10-3 

R-HSA-5663205 Infectious disease 0.2796 2x10-3 

R-HSA-109582 Hemostasis 0.2902 2x10-3 

R-HSA-392499 Metabolism of 

proteins 

0.2262 3x10-3 

R-HSA-6798695 Neutrophil 

degranulation 

0.3438 3x10-3 

R-HSA-112314 Neurotransmitter 

receptors and 

postsynaptic signal 

transmission 

0.3745 3x10-3 

R-HSA-112315 Transmission across 

Chemical Synapses 

0.3340 3x10-3 

R-HSA-1280218 Adaptive Immune 

System 

0.2992 6x10-3 

R-HSA-112316 Neuronal System 0.2673 6x10-3 

R-HSA-74160 Gene expression 

(Transcription) 

0.2246 6x10-3 

R-HSA-9675108 Nervous system 

development 

0.2727 9x10-3 

R-HSA-212436 Generic Transcription 

Pathway 

0.2258 9x10-3 

R-HSA-73857 RNA Polymerase II 

Transcription 

0.2258 9x10-3 

R-HSA-1266738 Developmental 

Biology 

0.2040 1x10-2 

R-HSA-422475 Axon guidance 0.2704 1x10-2 

R-HSA-202733 Cell surface 

interactions at the 

vascular wall 

0.4847 2x10-2 

R-HSA-9006934 Signaling by Receptor 

Tyrosine Kinases 

0.2480 2x10-2 

R-HSA-1296071 Potassium Channels 0.4801 2x10-2 

R-HSA-977443 GABA receptor 

activation 

0.4791 2x10-2 
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R-HSA-194315 Signaling by Rho 

GTPases 

0.2796 2x10-2 

R-HSA-9716542 Signaling by Rho 

GTPases, Miro 

GTPases and 

RHOBTB3 

0.2796 2x10-2 

R-HSA-397014 Muscle contraction 0.3594 2x10-2 

R-HSA-556833 Metabolism of lipids 0.3 2x10-2 

R-HSA-449147 Signaling by 

Interleukins 

0.3006 3x10-2 

R-HSA-2029480 Fcgamma receptor 

(FCGR) dependent 

phagocytosis 

0.4053 3x10-2 

R-HSA-1430728 Metabolism 0.1621 3x10-2 

R-HSA-1500931 Cell-Cell 

communication 

0.4229 4x10-2 

R-HSA-9658195 Leishmania infection 0.2667 4x10-2 

R-HSA-418346 Platelet homeostasis 0.4401 4x10-2 

34Gy, m-MGMT, hypermethylated DMGs 

R-HSA-168256 Immune System 0.1954 4x10-2 

R-HSA-373080 Class B/2 (Secretin 

family receptors) 

0.6234 4x10-2 
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Supplementary Table S3. Results of the epigenetic age calculations and comparisons of mean ages between LTS and STS. 

Treatment MGMT status 

Biological 

age [LTS 

vs. STS; 

p] 

Horvath 

[LTS 

vs. 

STS; p] 

Hannum 

[LTS vs. 

STS; p] 

PhenoAge 

[LTS vs. 

STS; p] 

Horvath 

acceleration 

[LTS vs. 

STS; p] 

Hannum 

acceleration 

[LTS vs. 

STS; p] 

PhenoAge 

acceleration 

[LTS vs. 

STS; p] 

TMZ 

Methylated 
65 vs. 69; 

p=0.23 

98.5 vs. 

82.9; 

p=0.454 

65.9 vs. 

62.3; 

p=0.725 

60.5 vs. 

51.8; 

p=0.69 

33.5 vs. 

13.9; 

p=0.33 

0.9 vs. -6.7; 

p=0.443 

-4.5 vs.  

-17.2; 

p=0.54 

Unmethylated 

73.3 vs. 

67.7; 

p=0.086 

97.3 vs. 

81.4; 

p=0.48 

68.9 vs. 

67.7; 

p=0.936 

62.6 vs. 

39.6; 

p=0.187 

24 vs. 13.7; 

p=0.629 

-4.5 vs. 0.1; 

p=0.712 

-10.7 vs. 

-28.1; 

p=0.258 

Methylated+ 

unmethylated 

69.2 vs. 

68.3; 

p=0.749 

97.9 vs. 

82.1; 

p=0.234 

67.4 vs. 

65; 

p=0.756 

61.6 vs. 

45.7; 

p=0.196 

28.8 vs. 

13.8; 

p=0.242 

-1.8 vs.  

-3.3; 

p=0.827 

-7.6 vs.  

-22.6; 

p=0.19 

34Gy 

Methylated 

69.3 vs. 

69.3; 

p=1.0 

107.2 

vs. 99; 

p=0.584 

66.2 vs. 

77.2; 

p=0.556 

79.3 vs. 

64.1; 

p=0.639 

37.8 vs. 

29.6; 

p=0.537 

-3.1 vs. 7.9; 

p=0.505 

9.9 vs. -5.3; 

p=0.593 

Unmethylated 

70.3 vs. 

67.7; 

p=0.294 

115.4 

vs. 

83.3; 

p=0.078 

76.7 vs. 

53.8; 

p=0.021* 

68.9 vs. 

41.1; 

p=0.02* 

45 vs. 15.6; 

p=0.073 

6.4 vs. 

-13.9; 

p=0.023* 

-1.4 vs. 

-26.6; 

p=0.036* 

Methylated+ 

unmethylated 

69.8 vs. 

68.5; 

p=0.581 

111.3 

vs. 

91.1; 

p=0.061 

71.4 vs. 

65.6; 

p=0.568 

74.1 vs. 

53.6; 

p=0.18 

41.4 vs. 

22.6; 

p=0.051 

1.6 vs. -3; 

p=0.621 

4.3 vs.  

-15.9; 

p=0.163 
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60Gy 

Methylated 

60.3 vs. 

71.7; 

p=0.0003* 

107.7 

vs. 106; 

p=0.958 

83.7 vs. 

73.3; 

p=0.442 

82.8 vs. 

55; 

p=0.389 

47.3 vs. 

34.4; 

p=0.671 

23.4 vs. 

1.6; 

p=0.156 

22.5 vs. 

-16.7; 

p=0.251 

Unmethylated 

66.7 vs. 

68; 

p=0.735 

114.2 

vs. 

102.5; 

p=0.649 

78.2 vs. 

63.1; 

p=0.361 

52 vs. 54; 

p=0.931 

47.6 vs. 

34.5; 

p=0.603 

11.5 vs. 

-4.9; 

p=0.318 

-14.7 vs.  

-14.1; 

p=0.977 

Methylated+ 

unmethylated 

63.5 vs. 

69.8; 

p=0.023* 

111 vs. 

104.3; 

p=0.696 

80.9 vs. 

68.2; 

p=0.183 

67.4 vs. 

54.5; 

p=0.474 

47.5 vs. 

34.5; 

p=0.444 

17.4 vs.  

-1.6: 

p=0.061 

3.9 vs.  

-15.4; 

p=0.307 

RT 

Methylated 

64.8 vs. 

70.5; 

p=0.085 

107.4 

vs. 

102.5; 

p=0.735 

74.9 vs. 

75.3; 

p=0.977 

81 vs. 

59.5; 

p=0.277 

42.6 vs. 32; 

p=0.466 

10.1 vs. 

4.7; 

p=0.627 

16.2 vs.  

-11; 

p=0.161 

Unmethylated 

68.5 vs. 

67.8; 

p=0.756 

114.8 

vs. 93; 

p=0.124 

77.4 vs. 

58.5; 

p=0.028* 

60.5 vs. 

47.5; 

p=0.27 

46.3 vs. 25; 

p=0.119 

8.9 vs.  

-9.36; 

p=0.031* 

-8 vs. -20.3; 

p=0.269 

Methylated+ 

unmethylated 

66.7 vs. 

69.1; 

p=0.192 

111.1 

vs. 

97.7; 

p=0.165 

76.1 vs. 

66.9; 

p=0.169 

70.8 vs. 

53.5; 

p=0.131 

44.4 vs. 

28.5; 

p=0.091 

9.5 vs. -2.3; 

p=0.084 

4.1 vs. 

 -15.7; 

p=0.078 

*p<0.05 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 22, 2022. ; https://doi.org/10.1101/2022.02.21.22271286doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.21.22271286
http://creativecommons.org/licenses/by-nc-nd/4.0/

