
Quantitative bias analysis in practice: Review of
software for regression with unmeasured

confounding

E Kawabata1,2, K Tilling1,2, RHH Groenwold3,4, and RA Hughes1,2

1MRC Integrative Epidemiology Unit, University of Bristol, Bristol,
United Kingdom

2Population Health Sciences, Bristol Medical School, University of
Bristol, Bristol, United Kingdom

3Department of Clinical Epidemiology, Leiden University Medical
Center, Leiden, The Netherlands

4Department of Biomedical Data Sciences, Leiden University
Medical Center, Leiden, The Netherlands

Abstract

Failure to appropriately account for unmeasured confounding in analy-
ses may lead to bias and erroneous conclusions. Quantitative bias analysis
(QBA) for unmeasured confounding is used to quantify the potential direc-
tion and impact of the bias. The adoption of QBA by applied researchers has
been slow, partly due to the focus of methods for binary outcomes and expo-
sure, and partly due to the lack of accessible software. We provide a review
of the latest developments in QBA software during 2010 to 2020. We de-
scribe in detail 5 QBA methods and their software implementations that can
be applied when the analysis of interest is a linear regression. We illustrate
application of these software programs to real data and provide R and Stata
software code along with a practice example. In our review, all software im-
plementations were of deterministic QBA methods and mostly implemented
as R packages. Graphical presentations of the results and benchmarking are
useful aids of interpretation. However, sole reliance on summary measures
at tipping points should be discouraged as it can encourage analysts to place
too much emphasis on statistical significance. The diversity of QBA methods
presents challenges in the widespread uptake of QBA. Guidelines are needed
on the appropriate choice of QBA method, along with provision of software
implementations in platforms other than R.

Keywords: Causal inference; Linear regression; Review; Sensitivity analysis; Soft-
ware; Unmeasured confounding.
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1 Introduction

The main aim of many epidemiology studies is to estimate the causal effect of an
exposure on an outcome (here onward, shortened to exposure effect). In observa-
tional studies participants are not randomised to exposure (or treatment) groups.
Consequently, factors that affect the outcome are typically unevenly distributed
among the exposure groups, and a direct comparison between the exposure groups
will likely be biased due to confounding. Standard adjustment methods (such as
standardization, inverse probability weighting, regression adjustment, g-estimation,
stratification and matching) assume all of these confounders are measured without
error; that is, no unmeasured (or residual) confounding [1]. Failure to appropriately
account for unmeasured or poorly measured confounders in analyses may lead to
invalid inference (e.g., [2–4]).

There are several approaches which can account for unmeasured confounding
at the analysis stage, including instrumental variable analysis, negative controls,
perturbation variable analysis, methods that use confounder data collected on a
study sub-sample (e.g., propensity score calibration analysis), and quantitative bias
analysis (QBA; also known as a sensitivity analysis) [5]. A QBA is applied when a
study cannot control for unmeasured confounding using available data (e.g., lacks
an appropriate instrument or sub-sample data on the unmeasured confounders).
It quantifies the potential impact of unmeasured confounding on an estimate of
the exposure effect and assesses whether the conclusions of the study change under
different assumptions about the unmeasured confounding.

Lack of knowledge about QBA, and of analyst-friendly methods and software
have been identified as barriers to the widespread implementation of a QBA [6–8].
In the past decade, there have been several reviews of QBA methods [2, 5, 8–12].
Only one of these, [10], reviewed software implementations and since its publication
in 2014 there have been many new software implementations. Also, comparisons
of QBA methods have primarily been limited to analyses with a binary outcome
[9,13–20].

Our paper provides an up to date review on available software for researchers
wishing to implement a QBA to address unmeasured confounding in studies that
consider the total effect of a single exposure. We then describe, illustrate and
compare QBA methods, and their software, applicable when the analysis of interest
is a linear regression. We illustrate how to apply these methods using two real-data
examples: the 2015 − 2016 National Health and Nutrition Examination Survey
(NHANES) study [21] and the Barry Caerphilly Growth (BCG) study [22,23].

2 Quantitative bias analysis for unmeasured con-

founding

We want to estimate the effect of an exposure (or treatment) X on an outcome
Y . The Y − X association is confounded by measured covariates C and unmea-
sured confounders U . The naive estimate of the exposure effect, β̂X|C , assumes no
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unmeasured confounding and is estimated by controlling for C only.
We can use a QBA to quantify the likely magnitude and direction of the bias,

due to unmeasured confounding, under different plausible assumptions about U .
Generally, a QBA requires a model (known as a bias model) for the observed
data, Y,X and C, and unmeasured data, U . The bias model will include one
or more parameters (known as bias or sensitivity parameters) which cannot be
identified from the observed data. For example, bias parameters that specify the
strength of the association between U and X, and between U and Y given X [15].
Information about the likely values of these bias parameters may be obtained from
external sources (such as external validation studies, published literature, or expert
opinion) [7], and from benchmarking (also known as calibration) where strengths of
associations of measured covariates C with X and Y are used as benchmarks [24].
We shall denote the bias parameters by φ and the bias-adjusted estimate of the
exposure effect assuming φ by β̂X|C,U(φ).

A QBA is often conducted as a tipping point analysis, where the analyst identi-
fies the values of φ that correspond to a change in the study conclusions (known as
the “tipping point”). A tipping point analysis may be applied to the point estimate
or confidence interval of the exposure effect; for example, to identify the values of
φ corresponding to a null effect, or the values of φ corresponding to a statistically
insignificant effect (of a non-null point estimate). If the values of φ at the tipping
point(s) are considered unlikely then the study conclusions are said to be robust to
unmeasured confounding.

There are two broad classes of QBA methods: deterministic and probabilistic.
A deterministic QBA specifies a range of values for each bias parameter of φ and
then calculates β̂X|C,U(φ) for all combinations of the specified values of φ. Typ-

ically, the results are displayed as a plot (or table) of β̂X|C,U(φ) against different
values of φ. Unlike a deterministic QBA, a probabilistic QBA explicitly models the
analyst’s assumptions about which combinations of φ are most likely to occur and
incorporates their uncertainty about φ [6,25]. A probabilistic QBA achieves this by
specifying a prior probability distribution for φ [6]. Averaging over this probability
distribution generates a distribution of estimates β̂X|C,U(φ) which is summarised to

give a point estimate (i.e., the most likely β̂X|C,U(φ) under the QBA’s assumptions)
and an interval estimate (i.e., defined to contain the true exposure effect with a pre-
specified probability) which accounts for uncertainty due to sampling variability,
unmeasured confounding and about the true values of φ.

3 Overview of available software

The aim of the literature search was to give a brief overview of the available software
implementations of QBA published between 1st January 2010 and 31st December
2020 (inclusive). We have focused on unmeasured confounding for a main effects
analysis, where the exposure effect is quantified using a risk difference, mean differ-
ence, risk ratio, odds ratio, and hazard ratio. We have not covered the special case
of unmeasured confounding for mediation analysis, or multilevel settings. Also, we
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focus on “software programs” (i.e., packages or commands) that the analyst can
apply to their data without adapting the source code.

Our literature search was conducted in three stages. In stage 1, we used Web of
Science to identify papers that mentioned “quantitative bias analysis” and “unmea-
sured confounding” (or their synonyms) in either the title, abstract or as keywords
(see Supplementary Box 1 for our search strategy). In stage 2, the abstracts were
reviewed by two independent reviewers to determine if they were eligible for stage
3 (data extraction), with any disagreements resolved by consensus.

Eligible abstracts were articles or reviews published in a journal which either
introduced a new QBA method or software implementation, or was a comparison or
review of existing QBA methodology, or a tutorial-style paper on how to conduct a
QBA. Examples of ineligible abstracts were meeting abstracts, commentaries, and
articles where either the applied analysis was the primary focus (and so included
limited information on the statistical methodology used) or the authors did not
conduct a QBA (e.g., only mentioned QBA as further work). In stage 3, we read
the full text to check its eligibility and extracted information about the analysis
of interest (e.g., type of outcome and exposure variables), the QBA method (e.g.,
requires individual participant or summary data) and the software (e.g., generates
graphical output).

After excluding duplicates, our Web of Science search identified 301 papers. We
excluded 224 and 63 at the second and third stages respectively, leaving 14 papers
for data extraction.

Table 1 summarises the main features of the 14 software programs we identified,
five of which implement a QBA for an observational study with matched pairs or
matched sets containing multiple controls. Twelve programs are implemented in
software environment R [26], with three of them also available in Stata [27] and
as a Shiny application [28]. Out of the 14 programs, three require the exposure
to be binary, and eight can only be applied to one type of outcome variable. A
program’s range of applicability will depend on its underlying QBA method. For
example, programs sensitivitymv, sensitivitymw and submax all implement a QBA
method which computes sensitivity bounds for P-values, and so can be applied to
many types of outcome variable. All programs can be applied to individual partic-
ipant data, with three programs also applicable for summary data (e.g., exposure
estimates and standard errors). Furthermore, programs E-value and konfound can
compute a QBA for a single study and for a meta-analysis. Not all packages pro-
duced a graphical output or reported benchmark statistics. All programs allow the
analysis of interest to adjust for measured covariates C.

All programs implement a deterministic QBA and can be applied as a tipping
point analysis. Note that, program ui reports an uncertainty interval which is de-
fined be the union of all confidence intervals over the specified values of φ [29].
Other specialisations include: (i) causalsens, treatSens and ui are applicable when
the estimand of interest is the average exposure effect among the exposed (or unex-
posed), (ii) tukeySens is applicable for quantile exposure effects, and (iii) treatSens
and tukeySens allow for flexible modelling of continuous outcome Y .
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Table 1 Software programs implementing quantitative bias analysis for
unmeasured confounding, published between 2010 and 2020

Applicable analysis of interest

Program
(environment)

Type of
analysis

Outcome Exposure Bench-
marking

Graphical
output

causalsens (R) [30] simplea conb binc yes yes

E-Valued (R, Stata,
Shiny) [31–34]

simple,
meta-analysis

bin, con,
TTEe

bin, con no yes

gsa (Stata) [10,35] simple bin, con bin, con,
catf

yes yes

isa (Stata) [36] simple con bin yes yes

konfound (R, Stata,
Shiny) [37]

simple,
meta-analysis

bin, con bin, con yes yes

sensemakr (R, Stata,
Shiny) [38,39]

simple con bin yes yes

sensitivityCalibration
(R) [24]

matched con bin yes yes

sensitivityCaseControl
(R) [40]

matched bin bin no no

sensitivitymv (R) [41] matched allg bin no no

sensitivitymw
(R) [42]

matched all bin no no

submax (R) [43] matched all bin no no

treatSens (R) [44,45] simple con bin, con yes yes

tukeySens (R) [46] simple con bin yes yes

ui (R) [47] simple bin bin no yes

aUnmatched analysis from a single study; bcontinuous variable; cbinary variable; dR
package EValue, Stata command evalue and Shiny web application E-value; etime to
event variable; fcategorical variable; gincludes Huber-Maritz M-scores, ranked scores,
outcomes compatible with permutational t-test.
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4 Quantitative bias analysis methods for linear

regression

We selected the following five QBA programs to describe and illustrate in this paper:
treatSens [44,45], causalsens [30], sensemakr [48], E-value [31], and konfound [37].
We selected software programs from Table 1 applicable for an unmatched analysis,
where the exposure effect is estimated by a linear regression model. We decided
to focus on relatively straightforward methods and so excluded program tukeySens
which accommodates flexible models of complex data (e.g., Dirichlet processes mix-
ture models). Also, for reasons of brevity, we excluded programs isa and gsa as
they are similar to the more recently published treatSens.

Below, we summarise the QBA methods implemented by the selected programs
(see the Supplementary Materials for detailed descriptions, including software de-
tails). The main features of the selected QBA methods and software (not given in
Table 1) are shown in Table 2 and their strengths and weaknesses in Table 3.

4.1 treatSens

R package treatSens simulates U using its bias model and then estimates β̂X|C,U(φ)

from a linear regression of Y on X adjusted for C and the simulated U (the analysis
model). The bias model consists of three sub-models: the analysis model, the
treatment model which is a regression of X on C and U (e.g., linear or probit
regression for continuous or binary X, respectively), and a marginal model for U
(standard Normal or Bernoulli). The bias model has two bias parameters φ =
(ζY , ζZ): ζY is the coefficient for the Y − U association in the analysis model and
ζZ is the coefficient for the X − U association in the treatment model. To allow
for unmeasured confounding bias in both directions (i.e., increased exposure effect,
and reduced or reversed exposure effect), positive and negative values are specified
for ζZ . By default, treatSens selects the range of values for ζY and ζZ based on the
residual variances of the analysis and treatment models, respectively. Additionally,
treatSens allows analysts to specify their own ranges for ζY and ζZ . The remaining
parameters of the bias model are estimated from the observed data. To gauge the
plausible magnitudes of ζY and ζZ , the coefficients of measured covariates C (from
the regressions of Y on X and C, and X on C) are used as benchmark values.
All continuous variables are standardised to facilitate comparison between these
benchmark values and the bias parameters.

treatSens outputs a contour plot (and tables) displaying estimates β̂X|C,U(φ) for
the prespecified values of ζY and ζZ , indicating the combinations that correspond
to the tipping points for the point estimate and CI of the exposure effect. The
default tipping point for the CI is 5% statistical insignificance (i.e., 95% CI for
β̂X|C,U(φ) includes the null) which the analyst can change, while the tipping point

for the point estimate is fixed at the null effect (i.e., β̂X|C,U(φ) = 0). To help quicken
the runtime of treatSens there is an option to specify multiple central processing
unit cores for parallel processing.
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4.2 causalsens

R package causalsens uses a bias model to generate a modified outcome, Y adj
φ ,

which is adjusted for the unmeasured confounding for fixed values of φ. The naive
analysis is then reapplied using Y adj

φ instead of Y , and β̂X|C,U(φ) and its CI are the
corresponding exposure effect estimates. The bias model consists of a user-specified
function, called the “confounding function”, which quantifies the unmeasured con-
founding, and a treatment model which is a logistic regression used to estimate
the probability of being in the exposed group given covariates C. Note, causalsens
requires a binary X. The confounding function [49, 50] is based on the potential
outcomes framework [51]. For binary X, the confounding function quantifies the
average difference in potential outcomes to exposure (or non-exposure) between
the exposed and unexposed groups, where any non-zero difference is attributed
to unmeasured confounding. causalsens supplies two choices for the confounding
function, the one-sided function and the alignment function, and also allows the
analyst to specify their own function. Both supplied functions are parameterised
by a single bias parameter, φ = (α). The one-sided function assumes the true
exposure effect is identical in the exposed and unexposed groups. When α > 0 the
mean of the potential outcomes to exposure (and non-exposure) is higher for the
exposed group than the unexposed group, leading β̂X|C to be positively biased; and
vice versa for α < 0. (See the Supplementary Materials for details on the alignment
function.) By default, causalsens selects 11 values for α covering the interquartile
range of outcome Y . Both negative and positive values of α are selected to allow
for the effect of unmeasured confounding in both directions. The analyst can also
specify their own values for α.

causalsens outputs a line plot displaying estimates β̂X|C,U(φ) and its 95% CI for
the prespecified values of α. The tipping point for the CI is fixed at 5% statistical
insignificance. The tipping point of the point estimate is not set to a particular
value as the analyst can select their own value from the vertical axis of the plot.
Since α is difficult to interpret, causalsens offers an alternative parameterisation
R2
α = sgn(α) × R2

U , where sgn(α) denotes the sign of α (i.e., direction of bias)
and R2

U is the partial R2 for the proportion of residual variance in the potential
outcomes explained by U . For this alternative parameterisation, the line plot indi-
cates benchmarks for α based on the partial R2 values of the measured covariates
C from the naive analysis (i.e., for each measured covariate Cj, the benchmark
is R2

Y∼Cj |X,C−j
, the proportion of the variance of Y , not explained by X and the

remaining covariates C−j, that is explained by Cj).

4.3 sensemakr

sensemakr expresses the magnitude of the bias as a function of estimated quan-
tities from the naive analysis and bias parameters φ. For a user-specified value
of φ, sensemakr calculates the magnitude of the bias, which is then used to de-
rive β̂X|C,U(φ) and its corresponding standard error. There are two bias parameters
R2
X∼U |C and R2

Y∼U |X,C which denote the partial R2 of U with the exposure and
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outcome, respectively. By default, sensemakr sets the range of values for R2
X∼U |C

and R2
Y∼U |X,C and the direction of the effect of U is set to reduce the absolute value

of the exposure effect. The analyst can override these default settings. sensemakr
calculates upper bounds (called ‘benchmark bounds’) for bias parameters R2

X∼U |C
and R2

Y∼U |X,C based on the measured covariates. Importantly, these benchmarks

are based on the intended analysis, Y |X,C, U and are not solely derived from the
naive analysis, Y |X,C [48].

sensmakr outputs a table of benchmark bounds and two contours plots of es-
timates β̂X|C,U(φ) and corresponding t-value for the prespecified values of R2

X∼U |C
and R2

Y∼U |X,C , indicating the combinations that correspond to the tipping points
for the point estimate and CI of the exposure effect. The default tipping points are
the null effect and 5% statistical insignificance, both of which can be changed by
the analyst.

4.4 E-value

Program E-value reports a single summary measure, called an E-value, which quan-
tifies the minimum magnitude of the associations between U and X and between U
and Y , conditional on C, needed to move β̂X|C to a specified value (such as the null)

or render β̂X|C to be statistically insignificant. The E-value is a positive number
≥ 1 with higher values indicating that greater levels of unmeasured confounding
(i.e., stronger X−U and Y −U associations) are required to change the study con-
clusions (e.g., reduce the exposure effect to the null). The rationale of the E-value
is based on an upper bound of a bias factor, BFφ, for a given level of unmeasured
confounding φ, where BFφ is used to derive bounds for the bias-adjusted results.
This upper bound, BFφ, is expressed as a function of estimated quantities from
the naive analysis and two bias parameters RRXU and RRUY which represent the
strength of the X − U and Y − U associations on the risk ratio scale, respectively
(see the Supplementary Material for more details). Setting these two bias param-
eters as equal, φequal, the E-value is the minimum value of φequal at which BFφ
equals a set tipping point.

The E-value is defined (and interpreted) on the risk ratio scale. However, pro-
gram E-value can also calculate an E-value for a mean or risk difference, or odds
or hazard ratio by first converting the effect measure to a risk ratio (under various
assumptions [31]). The program outputs the E-value for the point estimate and
CI limit, along with a line graph depicting the combinations of RRXU and RRUY

that result in the tipping points values. By default, the tipping points for the point
estimate and statistical significance are the null effect and 5%, respectively, both
of which can be changed by the analyst.

Note that, the E-value is a measure of sensitivity to unmeasured confounding for
an extreme scenario since the prevalence of X among those without U is assumed
to be at a value that generates maximum bias [15]. For example, when the tipping
point is a null exposure effect, then the prevalence of X among those without U
is 0% (i.e., all exposed people have a non-zero value for U). Therefore, program
E-value does not calculate benchmark values for bias parameters RRUY and RRXU .
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Instead, for purposes of comparison, VanderWeele and Ding suggest omitting each
measured covariate in turn and recalculating the E-value [31].

4.5 konfound

konfound assesses sensitivity to a change in the statistical significance/insignificance
status of β̂X|C . This includes the scenario where U explains all of the statistical

significance of β̂X|C (i.e., β̂X|C is statistically significant but β̂X|C,U(φ) is statistically
insignificant) and the converse scenario where U restores the statistical significance
of β̂X|C (i.e., β̂X|C is statistically insignificant but β̂X|C,U(φ) is statistically signifi-
cant). konfound refers to the first scenario as U “invalidating inference” and the
second as U “sustaining inference”. konfound reports two measures that quantify
the level of unmeasured confounding necessary to change conclusions on statistical
significance: percent bias and impact threshold. Percent bias is a measure of the
minimum percentage of β̂X|C that would need to be explained away by U in order
for unmeasured confounding to invalidate inference. Impact threshold is a measure
of the minimum strength of the partial correlation between U and Y , and U and
X (conditional on C) in order for unmeasured confounding to invalidate or sustain
inference. For both measures, larger (absolute) values indicate greater robustness
to unmeasured confounding.

konfound outputs the percent bias, depicted by a bar graph (called a “thresh-
old plot”) and the impact threshold, depicted by a causal-type diagram (called a
“correlation plot”). Also, konfound outputs a table of benchmarks for the impact
threshold which are based on partial correlations of the measured covariates with X
and Y from the naive analysis (i.e., the product of the partial correlations between
measured covariate Cj and X, and between Cj and Y (conditional on the remaining
confounders C−j). By default, the significance level is 5% and the null hypothesis
is “no exposure effect”, both of which can be changed by the analyst.
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Table 3 Strengths and weaknesses of five quantitative bias analysis (QBA)
methods assessing sensitivity of the effect of exposure X on outcome Y (given
measured covariates C) to unmeasured confounding by U .

Method Strengths Weaknesses

treatSens
Applicable when Y |X,C is a Bayesian
additive regression tree

Nontrivial runtimes increasing with
sample size

QBA method familiar to users of mul-
tiple imputation

Conservative for multiple confounders

causalsens User-specified confounding function
provides flexibility

Limited control over Y − U and X −
U associations as both encapsulated by
single parameter

Few restrictions placed on functional
form of U

Software does not allow the user to
change the tipping points

sensemakr
Able to group multiple measured co-
variates for benchmarking

Conservative for multiple confounders

Benchmarking accounts for U

E-value

Applicable to wide range of effect mea-
sures

Approximation to risk ratio scale re-
quires additional assumptions

Requires only summary data; adapted
for meta analyses

Only reports results at tipping point

Measure of sensitivity for extreme
prevalence of the confounder

konfound

Requires only summary data; adapted
for meta analyses

Only considers sensitivity of statistical
significance

Only reports results at tipping point

Conservative for multiple confounders

5 Real data examples

We applied the 5 QBA methods of Section 4 to data from the BCG and NHANES
studies. In both examples the naive analysis was the linear regression Y |X,C
with binary exposure X. We used measured variables to represent the unmeasured
confounders U . So, in effect our analyses examined the effect of not including
certain confounders and we assumed that after adjustment for U and C there was
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no unmeasured confounding. For the BCG example, U was a single confounder
and adjustment for U did not change the study conclusions. In contrast for the
NHANES example, U represented multiple confounders which did affect the study
conclusions.

For treatSens we used Probit regression for its treatment model because X was
binary, and for causalsens we used the one-sided confounding function because we
assumed the exposure effect was the same in both exposure groups. Using measured
covariates C, we calculated benchmark values the E-values of the point estimate
and CI limit, and for the bias parameters, φ, of the other four programs.

As these are illustrative examples (of QBA to unmeasured confounding) we have
ignored other potential sources of bias (such as missing data) and only considered
a small number of measured covariates. We restricted our analyses to participants
with complete data on Y,X,C and U .

We introduce each example, separately describe each QBA’s results and then
conclude with a summary across of 5 methods.

5.1 Example 1: BCG Study

The BCG study is a follow-up of a dietary intervention randomized controlled trial
of pregnant women and their offspring [22,23]. Data were collected on the offspring
(gestational age, sex, and 14 weight and height measures at birth, 6 weeks, 3, 6, 9
and 12 months, and thereafter at 6-monthly intervals until aged 5 years) and their
parents (anthropometric measures, health behaviours and socioeconomic charac-
teristics). When aged 25, these offspring were invited to participate in a follow-up
study in which standard anthropometric measures were recorded. We refer to the
offspring, later young adults in the follow-up study, as the study participants.

Our analysis was a linear regression of adult body mass index (BMI) at age 25
on being overweight at age 5 years (BMI ≥ 17.44 kg/m2 [52]). Measured covari-
ates C were participant’s sex and gestational age, and parents’ height and weight
measurements. We refer to maternal weight as the “strongest measured covari-
ate” because it had the largest associations with child overweight and adult BMI.
The unmeasured confounder U was a measure of childhood socioeconomic position
(SEP) (paternal occupational social class based on the UK registrar general classifi-
cation [53]). Based on the 544 participants with complete data on all variables, β̂X|C
was 2.28 kg/m2 (95% confidence interval (CI) 1.39, 3.17 kg/m2; P-value < 0.0001)
and the fully adjusted estimate (i.e., adjusted for C and U) was 2.24 kg/m2 (95%
CI 1.35, 3.13 kg/m2; P-value < 0.0001). Statistical significance was defined at the
5% level.

5.1.1 Results from treatSens

The treatSens QBA results are shown in Figure 1(a). The axes represent values of
the bias parameters φ = (ζZ , ζY ), where ζZ and ζY denote the conditional associa-
tions between U and child overweight, and between U and adult BMI, respectively.
Each contour represents the different combinations of φ that result in the same
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bias-adjusted estimate, β̂X|C,U(φ). For example, β̂X|C,U(φ) = 0.18 standard devia-
tions of BMI when ζY = 0.2 and ζZ = 0.45, and when ζY = 0.4 and ζZ = 0.25.
(Note that, treatSens standardises all continuous variables.) The black horizontal
contour at ζY = 0 denotes the naive estimate of 0.51 standard deviations of BMI.
The red contour represents the combinations of φ that would result in a null ex-
posure estimate, and the blue contours bracket statistically insignificant exposure
estimates. The pluses and inverted triangles denote the benchmark values of φ
based on measured covariates C. The pluses denote confounders positively asso-
ciated with adult BMI, and the inverted triangles denote confounders negatively
associated with adult BMI, with those negative associations rescaled by −1. The
red cross furthest away from the origin denotes the strongest measured covariate
(maternal weight), and if U had a similar confounding effect to maternal weight
then β̂X|C,U(φ) would be 0.49 standard deviations of BMI. The grey contour denotes

the combinations of φ such that β̂X|C,U(φ) = 0.49.
The contour plot suggests that a U similar to one of the measured covariates

would at most reduce the point estimate by 3 or increase it by 4 standard deviations
of BMI (i.e., β̂X|C,U(φ) ≈ 0.55 if ζZ was negative and of a similar magnitude to that
of the association between child overweight and maternal weight). Furthermore,
in order for U to change the study conclusions (such as explain away β̂X|C or its

statistical significance, or double the value of β̂X|C) then U would need to be a far
stronger confounder than the strongest measured covariate (i.e., the magnitudes of
ζZ and ζY would need to be more than double the associations between maternal
weight and child overweight and adult BMI, respectively).

5.1.2 causalsens

Figure 1(b) shows the results of the causalsens QBA where the amount of un-
measured confounding and its direction of effect is represented by the directional
proportion R2

α. The black line represents the bias-adjusted exposure estimates, the
grey shaded area the corresponding 95% confidence intervals, and the crosses are
the benchmark partial R2 values based on measured covariates C (n.b., each bench-
mark is depicted as having a negative and positive direction of effect). Values of
R2
α > 0 corresponds to individuals in the exposed group tending to have higher po-

tential outcomes (to both exposure to being overweight and not overweight at age
5) than individuals in the unexposed group (i.e., unexposed group are healthier);
and the converse for R2

α < 0.
If the residual variance explained by U was comparable to that of the strongest

measured covariate (i.e., |R2
α| ≈ 5.5%) then β̂X|C,U(φ) could be as large as 5 kg/m2

(with P-value < 0.05) or close to the null. For weaker levels of confounding (|R2
α| <

0.01), β̂X|C,U(φ) could be between 1.25 and 3.50 kg/m2. To explain away statistical
significance, the unexposed group would need to be healthier than the exposed
group (regardless of exposure status) and U would need to account for at least 2%
of the residual variance of adult BMI (i.e., R2

α ≥ 0.02)).
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5.1.3 sensemakr

Figures 1(c) and (d) show the contour plots of the QBA results for the point es-
timate and t-value, respectively, when U is assumed to reduce the point estimate.
The axes represent values of the bias parameters R2

X∼U |C (partial R2 of U with

exposure X) and R2
Y∼U |X,C (partial R2 of U with outcome Y ). The contours have a

similar interpretation as discussed for treatSens. For example, the red contour rep-
resents different combinations of R2

X∼U |C and R2
Y∼U |X,C that result in a null point

estimate (Figure 1(c)) and t-value corresponding to 5% statistical significance (Fig-
ure 1(d)). The black triangle denotes the naive result and the red diamonds denote
once, twice and thrice the benchmark values based on the strongest measured co-
variate (maternal weight). Results indicate that the proportion of residual variance
of child overweight and adult BMI explained by U would need to be more than 3
times that of maternal weight in order for unmeasured confounding to either explain
away all of β̂X|C or its statistical significance. If the magnitude of the confounding
effect of U was comparable to that of maternal weight, and U reduced the point
estimate, then β̂X|C,U(φ) would be about 1.96 kg/m2 with corresponding t-value of
4.44 (P-value < 0.0001).

The robustness values for β̂X|C and its statistical significance were 19.47% and

12.36%, respectively. So, U could explain away all of β̂X|C (or its statistical signif-
icance) if U accounted for at least 19.47% (or 12.36%) of the residual variance of
both child overweight and adult BMI after conditioning on C. In keeping with the
contour plots, these robustness values were substantially higher than the bench-
mark values for R2

X∼U |C and R2
Y∼U |X,C (Supplementary Table S1) indicating that

the confounding effect of U would need to be far stronger than that of even the
strongest measured covariate in order for unmeasured confounding to reduce the
exposure effect to the null or remove its statistical significance.

Supplementary Figures S1(a) and (b) show the corresponding contour plots for
the point estimate and t-value, respectively, when U is assumed to increase the
point estimate. If the magnitude of the confounding effect of U was comparable to
that of maternal weight, and U increased the point estimate, then β̂X|C,U(φ) would
be about 2.60 kg/m2 with corresponding t-value of 5.02 (P-value < 0.0001).

5.1.4 E-value

The E-value for a null exposure effect was 2.55 indicating that the exposure effect
after adjusting for C and U could be null (or in the reverse direction) if associations
between U and child overweight and between U and adult BMI, after conditioning
on C, exceeded 2.55 on the risk ratio scale (Supplementary Figure S2). For slightly
weaker associations with U , ≥ 1.98 but < 2.55, the exposure effect estimate would
remain positive but be statistically insignificant. The benchmark E-values (Sup-
plementary Table S2) for the point estimate and lower CI limit were comparable to
the E-values for β̂X|C and its CI limit. Omitting the strongest measured covariate
resulted in a small increase of both E-values.
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5.1.5 konfound

The percent bias and impact threshold were 60.1% (Supplementary Figure S3) and
0.139 (Supplementary Figure S4), respectively. Therefore, in order for unmeasured
confounding to explain away the statistical significance of β̂X|C then (1) U would

need to account for at least 60.1% of β̂X|C (i.e., giving an exposure estimate adjusted
for C and U of ≤ 1.37 kg/m2) and (2) the partial correlations of U with adult
BMI and child overweight must both exceed 0.373 (i.e.,

√
0.139). If the partial

correlations of U with adult BMI and child overweight were comparable to those
of the measured covariates (Supplementary Table S3) then we would expect the
exposure effect to remain statistically significant even after adjusting for U .

5.1.6 Summary

The results from treatSens, sensemakr, E-value and konfound indicate that if U
was comparable to even the strongest measured covariate then we would still con-
clude that children overweight at age 5 years tended to have a higher BMI in young
adulthood. Furthermore, treatSens and sensemakr indicated that the strength of
the X − U and Y − U associations would need to be at least double those of
the strongest measured covariate in order for unmeasured confounding to substan-
tially change the study conclusions (i.e., statistically insignificant effect, or a null
or reversed effect). In contrast, from causalsens we conclude that unmeasured
confounding could substantially change the study conclusions (i.e., if U was com-
parable to the strongest measured covariate then we cannot exclude the possibility
that being overweight at age 5 years had no (or little effect) on a person’s BMI in
young adulthood).

5.2 Example 2: NHANES study

The NHANES study consists of a series of health and nutrition surveys conducted
by the National Center for Health Statistics. Every year since 1999, approximately
5, 000 individuals of all ages are interviewed in their homes with health examinations
conducted in a mobile examination centres. We analysed data from the 2015−2016
NHANES survey.

Our analysis was a linear regression of systolic blood pressure (SBP) on diabetes
among adults aged ≥ 18 years. Diabetes was defined as a HbA1c measurement
of at least 6.5% (diabetes= 1 if HbA1C ≥ 6.5%, 0 otherwise) [54]. Measured
covariates were age and sex, with age as the strongest measured covariate (i.e.,
largest associations with diabetes and SBP). The unmeasured confounders were
BMI, ethnicity and poverty income ratio (PIR; the ratio of family income to the
federal poverty line [55]). Based on the 4, 576 participants with complete data on
all variables, β̂X|C was 3.48 mmHg (99% CI 1.55, 5.40 mmHg; P-value < 0.0001)
and the fully adjusted estimate was 1.67 mmHg (99% CI −0.27, 3.61 mmHg; P-
value 0.03). So, controlling for BMI, ethnicity and PIR explained 48% of β̂X|C
and resulted in a 99% CI that contained the null (i.e., P-value greater than 0.01).
Statistical significance was defined at the 1% level.
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Note that, we applied sensemakr with age and sex as a grouped benchmark,
and had to edit the source code of causalsens in order to change the statistical
significance level from 5% to 1%.

5.2.1 treatSens

Figure 2(a) shows the results of the treatSens QBA. If the magnitudes of the
diabetes−U and SBP-U associations were comparable to those of the strongest
measured covariate, age (diabetes−age= 0.45, and SBP−age= 0.44 on the stan-
dardised scale) then β̂X|C,U(φ) could be ≈ 0.28 standard deviations of SBP (47%

increase of β̂X|C and statistically significant) or approximately 0.105 standard de-

viations of SBP (47% reduction of β̂X|C) with a P-value of 0.01. Therefore, a
confounder comparable to age could explain away the statistical significance of
β̂X|C . For unmeasured confounding to explain away all of β̂X|C then U would need
to have stronger associations with either diabetes, SBP or both (e.g., double that
of diabetes−age (ζz ≈ 1, ζy ≈ 0.44), double that of SBP−age (ζz ≈ 0.45, ζy ≈ 1),
or in-between for both (ζz ≈ 0.55, ζy ≈ 0.75)).

5.2.2 causalsens

Figure 2(b) shows the results of the causalsens QBA, where R2
α > 0 corresponds

to individuals in the diabetic group tending to have higher potential SBP values
(to both exposure to diabetes and no exposure) than the non-diabetic group (i.e.,
healthier individuals were non-diabetic); and the converse for R2

α < 0. Note that,
the default scale for R2

α > 0 excluded the benchmark for the strongest measured
confounder (age).

If the residual variance explained by U was comparable to that of the weakest
measured covariate, sex, (|R2

α| = 0.0108) then β̂X|C,U(φ) could be as large as 10
mmHg or a reversed effect of about −2 mmHg; both with a P-value < 0.01. And, if
U had a partial R2 value closer to that of age then β̂X|C,U(φ) could be ≤ −10 mmHg

or ≥ 15 mmHg. In order to explain away all of β̂X|C or its statistical significance,
then U would need to explain a smaller proportion of the residual variance than sex
and individuals in the non-diabetic group would need to be healthier than those of
the diabetic group (regardless of diabetes status).

5.2.3 sensemakr

The robustness values for β̂X|C and 1% statistical significance were 6.65% and
4.36%, respectively. Since Supplementary Table S4 shows at least one of the mea-
sured covariates accounts for at least 6.65% of the residual variation of diabetes and
SBP, then we cannot exclude the possibility that unmeasured confounding could
explain away all of β̂X|C or all of its 1% statistical significance. This is supported
by Figures 2(c) and (d) which show that even if U was a weaker confounder than
age, provided the direction of its effect was to reduce the point estimate, then ac-
counting for U could result in a null or statistically insignificant exposure effect.
Depending on the direction of the effect of U , if the magnitude of the confounding
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effect of U was comparable to age then the exposure effect could be reversed with
β̂X|C,U(φ) = −3.41 mmHg (Figure 2(c)) or increased to β̂X|C,U(φ) = 15.73 mmHg
(Supplementary Figure S5(a)).

5.2.4 E-value

The E-value for a null exposure effect was 1.67, and the E-value for a P-value ≤ 0.01
was 1.38 (Supplementary Figure S6). These risk ratios are not implausibly large
and so indicate that the exposure effect could be null or statistically insignificant
after adjusting for U . The benchmark E-values for age were noticeably larger
(Supplementary Table S5) than the E-values.

5.2.5 konfound

According to konfound, controlling for U could result in a statistically insignificant
exposure effect (at the 1% level) if U explained away at least 44.67% of β̂X|C (i.e.,

β̂X|C,U(φ) < 1.93mmHg; Supplementary Figure S3) or the magnitude of the par-
tial correlations of U with SBP and diabetes both exceeded 0.178 (Supplementary
Figure S4). The benchmark partial correlations (Supplementary Table S7) for age
were noticeably larger than 0.178.

5.2.6 Summary

If U were comparable to the strongest measured covariate age then causalsens,
sensemakr, and E-value indicated that the exposure effect adjusted for C and U
would either be null or in the reverse direction, while treatSens suggested that the
exposure effect would still be positive although not statistically significant at the 1%
level. konfound also indicated that the statistical significance of the exposure effect
was not robust to unmeasured confounding. Given there were only two measured
covariates, it seems plausible that unmeasured confounding would at least change
the study conclusions with respect to statistical significance, and possibly also the
direction of the exposure effect.

6 Discussion

We have conducted an up-to-date review of software implementations of QBA to
unmeasured confounding, and a comparative evaluations of 5 different implemen-
tations applicable for a linear regression analysis. Our review reported many new
QBA software programs since the last published review [10], most of which are im-
plemented in the freely available statistical software environment R. Many programs
include features such as benchmarking and graphical displays of the QBA results
to aid interpretation. Our comparative evaluation illustrated the wide variation
in the types of QBA methods applicable to a linear regression analysis. Methods
that only indicated sensitivity at a tipping point (i.e., E-value and konfound) were
less informative than those that provided bias-adjusted results across a range of
scenarios (i.e, treatSens, sensemakr and causalsens).
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When the unmeasured confounder (or confounders) are known the analyst can
obtain information about the potential values of the bias parameters from external
sources such as published studies. Obtaining this external information can be diffi-
cult for parameters that are not routinely reported; for example, when the analysis
of interest is a linear regression, studies tend to report regression coefficients and
not partial R2 values. Therefore, it is generally easier to find external information
on QBA methods such as treatSens (where the bias parameters are coefficients of
a regression) compared to those of methods such as sensemakr, causalsens, and
konfound.

Benchmarking is a useful tool to aid researchers in judging the plausibility
of the values of the bias parameters, especially when the identity of the unmea-
sured confounders is unknown, or external information is unattainable. Generally,
benchmarking assumes that U has similar confounding properties to a measured
covariate Cj (or group of covariates). Ideally, these benchmark values should be es-
timated after adjustment for the omission of the unmeasured confounder(s) [24,38].
However, several QBA methods (such as treatSens, causalsens and konfound and
others [56, 57]) calculate their benchmarks based on the naive model Y |X,C; for
example, using the coefficient for covariate Cj from the naive model Y |X,C (for
C = (Cj, C−j) as a benchmark for the conditional association of Y −U given X and
C. Omitting U when estimating a benchmark can change its value even when C and
U are independent, which can lead to incorrect conclusions about the sensitivity of
the exposure effect to unmeasured confounding [24, 38]. Benchmark methods that
adjust for C have been proposed, including sensemakr which defines upper bounds
for its benchmarks [24, 38, 58]. Benchmarking cannot be applied in a meaningful
way to QBA methods based on an extreme scenario (such as the E-value) [24].

Examples of QBAs tend to focus on a single unmeasured confounder when in
fact many weaker unmeasured confounders can jointly change a study’s conclu-
sions [4]. However, several QBA methods are generalisable to multiple unmeasured
confounders without burdening the analyst with additional bias parameters. For ex-
ample, a common assumption is that U represents a linear combination of multiple
unmeasured confounders, with the elementary scenario that U is a single unmea-
sured confounder. A drawback of this appealing assumption is that the QBA tends
to be conservative for multiple unmeasured confounders [38]. Alternatively, a QBA
method may leave the functional form of U unspecified and instead define its bias
parameters as upper bounds (such as the E-value where U is a categorical variable
with categories representing all possible combinations of the multiple unmeasured
confounders and its bias parameters RRXU and RRUY are the maximum risk ra-
tios comparing any two categories of U [59]). A drawback of these upper bounds is
that they correspond to extreme situations, making it hard to locate appropriate
benchmarks values or external information. To address both drawbacks, a QBA
could explicitly model each unmeasured confounder separately whilst allowing for
correlations between the confounders, although this would then increase the num-
ber of bias parameters. If many unmeasured confounders are suspected, then the
analyst should question if a QBA is suitable since the accuracy of a QBA generally
relies on a study having measured key confounders. Importantly, a QBA is not a
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replacement for a correctly designed and conducted study.
In our review, all software implementations were of deterministic QBA methods.

In general, deterministic QBA are tipping point analyses with statistical significance
as one of the tipping points. Given the call to move away from reliance on statistical
significance [60], we recommend QBA methods that provide bias-adjusted results
for all specified values of the bias parameters to give a complete picture of the
effect of unmeasured confounding (such as treatSens, sensemakr and causalsens).
However, presenting and interpreting these results can be challenging, especially
when there are more than two bias parameters due to the large number of possi-
ble value combinations (e.g., three parameters each with 10 possible values gives
1000 combinations). An alternative is a probabilistic QBA which summarises the
results as a point estimate and accompanying interval estimate. The advantages
of the probabilistic QBA are: (1) the output is familiar to epidemiologists (i.e.,
similar to point estimate and 95% CI), (2) the interval estimate accounts for all
sources of uncertainty due to bias and random sampling, and (3) less reliance on the
statistical significance interpretation. Further work is needed to provide software
implementations of probabilistic QBAs.

In summary, there have been several new software implementations of QBAs,
most of which are available in R. And our comparative evaluation has illustrated
the wide diversity in the types of QBA method that can be applied to the same
substantive analysis of interest. Such diversity of QBA methods presents challenges
in the widespread uptake of QBA methods. Guidelines are needed on the appro-
priate choice of QBA method, along with provision of software implementations in
platforms other than R.
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