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AugmentA: Patient-specific Augmented Atrial
model Generation Tool

Luca Azzolin, Martin Eichenlaub, Claudia Nagel, Deborah Nairn, Jorge Sánchez, Laura Unger, Olaf
Dössel, Amir Jadidi, and Axel Loewe

Abstract— Digital twins of patients’ hearts are a promis-
ing tool to assess arrhythmia vulnerability and to personal-
ize therapy. However, the process of building personalized
computational models can be challenging and requires a
high level of human interaction. A pipeline to standardize
the generation of a patient’s atrial digital twin from clinical
data is therefore desirable. We propose a patient-specific
Augmented Atria generation pipeline (AugmentA) as a
highly automated framework which, starting from clinical
geometrical data, provides ready-to-use atrial personalized
computational models. AugmentA consists firstly of a pre-
processing step applied to the input geometry. Secondly,
the atrial orifices are identified and labelled using only
one reference point per atrium. If the user chooses to fit
a statistical shape model (SSM) to the input geometry, it is
first rigidly aligned with the given mean shape before a non-
rigid fitting procedure is applied. AugmentA automatically
generates the fiber orientation and finds local conduction
velocities by minimizing the error between the simulated
and clinical local activation time (LAT) map. The pipeline
was tested on a cohort of 29 patients on both segmented
magnetic resonance images (MRI) and electroanatomical
maps of the left atrium. Moreover, the pipeline was ap-
plied to a bi-atrial volumetric mesh derived from MRI. The
pipeline robustly integrated fiber orientation and anatomi-
cal region annotations in 38.4±5.7 s. The error between in-
silico and clinical LAT maps was on average 12.7 ms. In
conclusion, AugmentA offers an automated and compre-
hensive pipeline delivering atrial digital twins from clinical
data in procedural time.

Index Terms— Cardiac computational model, Conduction
velocity estimation, Digital twin, Electroanatomical map,
Medical images, Pipeline, Statistical shape model fitting.

I. INTRODUCTION

ATRIAL fibrillation (AF) is a cardiac arrhythmia char-
acterized by uncoordinated and chaotic atrial activation
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affecting more than 40 million people worldwide [1]. AF
is the most prevalent arrhythmia and is associated with an
increased long-term risk of other cardiovascular diseases.
Computational modeling provides a novel framework to assess
initiation, maintenance, and progression of AF in a personal-
ized manner [2]–[7]. Cardiac digital twins (CDT) are digital
replicas of patient hearts systematically integrating clinical
data that match like-for-like all available clinical observa-
tions [8], [9]. Due to their intrinsic predictive ability, CDTs
are a promising tool for precision medicine and personalised
treatment aiding clinical decision making and providing an
efficient and cost-effective platform for testing ethically and
safely innovative therapies. However, current frameworks to
deliver CDT integrating both the anatomical and functional
twinning phases, referring to the inference of model anatomy
and electrophysiology from clinical data, are not sufficiently
efficient, robust, and accurate for advanced clinical and in-
dustrial applications. Several techniques to generate different
sorts of atrial models have been presented covering a range
of complexity and level of detail. Personalized computational
models have been developed from either imaging data, e.g. de-
rived from computed tomography (CT) or magnetic resonance
images (MRI) [4], [10]–[12], or electroanatomical maps [13].
However, a standardized pipeline for generating personalised
atrial computer models from geometries derived from either of
the described recording modalities remains unavailable. Lately,
Razeghi et al. presented the CemrgApp open source platform
for image processing to provide MRI segmentation includ-
ing fibrotic tissue distribution derived from late gadolinium
enhancement (LGE) intensity in a semi-automatic and user-
friendly way [14]. In addition, Williams et al. published an
open source platform to import, preprocess and analyze elec-
troanatomical mapping data [15]. What is missing today is a
pipeline that ingests the segmentations as provided for example
by CemrgApp and the functional information as provided for
example by openEP and builds a simulation-ready digital twin
model. Building such model directly from clinical geometrical
data remains a challenging process since imaging data can be
influenced by various degrees of segmentation uncertainty [16]
and electroanatomical maps can miss relevant anatomical
structures (right atrium, appendage, veins). Recently, Nagel
et al. presented a bi-atrial statistical shape model (SSM)
covering the relevant anatomical variability required for in-
silico electrophysiological experiments and well generalizing
to unseen geometries [17]. Moreover, SSM were shown to be
a valuable tool to generate large cohorts of ready-to-use atrial
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models to run electrophysiological simulations [18].
Even more complicated is the functional twinning phase,

where the spatio-temporal myocardial depolarisation is re-
trieved by clinical data possibly affected by noise and uncer-
tainty. In particular, late gadolinium enhancement distribution
and/or electroanatomical maps can be used to infer cardiac
tissue characteristics and estimate conduction velocity [13],
[19]–[22].

We aimed to develop and provide a highly automated
pipeline to generate personalized computational models of hu-
man atria augmented with population-level a-priori knowledge
(fiber orientations and region annotation) suitable for in-silico
experiments. We designed the platform to enhance usability
and reproducibility requiring minimal user interaction.

II. MATERIALS AND METHODS

The automated modeling pipeline for generating detailed
personalized computational models of human atria is illus-
trated in Fig. 1. The input can be an atrial surface obtained
from an electroanatomical mapping system or derived from
tomographic imaging segmentation (e.g. MRI or CT). In the
case of a surface with closed orifices, the pipeline proceeds
with the opening of atrial orifices as described in Sec. II-B
and in Sec. II-C. Next, the user can decide to proceed to fit
a SSM to the target anatomy in case the user would like to
augment possible missing anatomical structures or to resolve
segmentation uncertainties. Provided that the quality of the
original geometry is ensured, the user can directly proceed
to the resampling step presented in Sec. II-H. If the desired
workflow includes fitting an SSM to the target geometry,
the pipeline will first label the atrial orifices as presented
in Sec. II-D, automatically prealign the target mesh to the
average geometry of the SSM and generate the landmarks
needed for the fitting procedure as explained in Sec. II-E.
Consequently, the SSM is fitted as detailed in II-F. Then,
the resulting model is resampled as specified in Sec. II-H.
Finally, the atrial anatomical regions are annotated and fiber
orientation is computed as described in Sec. II-I. We quanti-
tatively evaluated and compared four different methodologies
to estimate conduction velocity from clinical data in Sec. II-J.
The proposed highly automated atrial modeling pipeline was
tested on both electroanatomical maps and MRI segmentations
in a cohort of 29 patients further detailed in Sec. II-A.

A. Dataset
A cohort of 29 persistent AF patients (65±9 years, 86%

male) for which both electroanatomical maps and MRI seg-
mentations of the left atrium (LA) were available were in-
cluded in this study. High density electroanatomical left atrial
maps (2170±478 sites) were acquired in sinus rhythm prior
to pulmonary vein isolation using a 20-polar mapping catheter
(Lasso-Nav or PentaRay-catheter, Biosense Webster Inc., CA,
USA) and the CARTO 3 system (Biosense Webster Inc., CA,
USA). The post-processing of the LA LGE-MRI (3 Tesla,
Somatom Skyra, Siemens Healthcare, Erlangen, Germany))
was performed by an independent expert laboratory (ADAS3D
Medical, Barcelona, Spain) blinded to any clinical data. The

study was approved by the institutional review board, regis-
tered in the German WHO primary registry DRKS (unique
identifier: DRKS00014687), and all patients provided written
informed consent prior to enrollment. Moreover, a bi-atrial
geometry was derived by Subject 3 presented in Krueger et
al. [4]. No electroanatomical map was available in this case.

B. Mitral valve opening annotation

For the case of a closed surface with no valve openings
provided as input to the pipeline, we implemented an auto-
mated algorithm to estimate the location of the mitral valve
(MV) opening. The method differs depending on whether an
electroanatomical map or an MRI segmentation is supplied.

• If the input closed surface comes from an electroanatomi-
cal map, the peak-to-peak bipolar voltage was calculated
from all EGM signals of the electroanatomical map in
the window of the QRS complex. The QRS complex
was found using the ECGdeli toolbox on the ECG lead
V3 [23], [24]. Areas of high voltage (values above the
75 % voltage percentile) were considered as the MV due
to the ventricular far field causing high voltages in this
area. To ensure only the MV was identified and not atrial
wall areas, points were only considered if they had high
voltage during QRS and a low bipolar voltage (<0.5 mV)
outside of the QRS complex.

• Since for the closed atrial surface derived from MRI, no
electrogram signals are available which can be used to
identify the MV, the existing mean shape of the LA where
the MV was marked was used [25]. The mean shape
was rigidly aligned and correspondence was established
to each new patient geometry [25]. Afterwards, the area
marked as MV in the mean shape could then be identified
in the new geometry.

C. Mesh pre-processing and removing valves and veins

Geometries directly derived from clinical data usually do
not have a sufficient mesh quality for electrophysiological
monodomain simulations [26]. Therefore, regardless of the
input, AugmentA proceeds with a mesh pre-processing step,
which consists in removing self-intersections and degenerate
elements, while regions of the surface without defects are left
unmodified. The pymeshfix Python module [27] is used in this
mesh pre-processing step. Then, the veins are identified as the
regions with highest surface curvature, due to their anatomical
cylindrical configuration. Briefly, the surface curvature at each
node is calculated as 1/R, where R is the radius of the fitted
osculating sphere, as in [28]. The parameter R is set to 3 cm in
both LA and right atrium (RA). Areas with a surface curvature
higher than 1.1 times the surface curvature median value are
labeled as high curvature. Then, the pipeline proceeds with
opening the MV. The algorithm is different depending on
whether the input geometry comes from tomographic imaging
or electroanatomical mapping:

• In the case of a mesh derived from imaging data, the
center of mass of the region marked as MV is computed
after the co-registration presented in Sec. II-B and all
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Fig. 1. Overview of the proposed pipeline for the generation of personalised computational atrial models from different clinical anatomical data.

the elements with a distance less than 2 cm [29] from
the center of mass are removed to create the opening.
Afterwards, the user has to manually select the atrial
appendage apex. The pipeline continues with the clipping
of the pulmonary veins by removing the elements that
belong to high curvature regions and are not including
the manually marked left atrial appendage apex.

• In the case of an electroanatomical map, all the elements
enclosed in a sphere around the center of mass of the
region marked as MV and with a diameter computed as
the largest distance between all the points labelled as MV
are removed. A maximum diameter of 4 cm [29] is set
as upper bound to be consistent with the dimension of
the MV opening from the imaging data. Occasionally,
a geometrical artifact caused by the transseptal puncture
is present in the electroanatomical maps. In those cases,
the reference point is chosen at the tip of the transseptal
puncture instead of the left atrial appendage apex. Later,
the veins are identified as the areas with both high curva-
ture and low bipolar voltage (lower than 0.5 mV), since
the left atrial appendage mostly presents high voltage
and veins mostly present low voltage. Each vein’s ring
is generated by clipping all the elements intersecting a
sphere centered at the point with maximum curvature and
with variable radius chosen as the distance between the
highest curvature point and the closest one with bipolar
voltage higher than 0.5 mV, as shown in Fig. 3. The high
curvature region manually marked as geometrical artifact
due to the transseptal puncture is left out in the clipping
procedure. The remaining high curvature and high voltage
regions are annotated as possible left atrial appendage and
the vertex with highest curvature as the apex. Following
the the clipping step, the resulting processed geometry
with the final openings and the automatically identified
apex of the appendage is visualized using PyVista [30].
At this point, the user can decide to manually select a
different vertex which is going to be used as reference
point in the following labelling step.

D. Automatic labelling of atrial orifices
The atrial orifices (pulmonary veins, MV in the LA and infe-

rior & superior vena cava, tricuspid valve, coronary sinus in the
RA) are automatically identified and labelled using a clustering
algorithm presented in [31]. The only landmarks required are
the apex points of the left and right atrial appendages. Briefly,
the atrial orifices can be detected as the boundary edges.
For the LA, the MV is determined as the largest connected
boundary and the rest of the rings are clustered twice to
distinguish between left and right as well as inferior and
superior pulmonary veins using k-means clustering. At first,
the pulmonary veins belonging to the cluster closer to the left
atrial appendage (LAA) are labelled as left pulmonary veins
(LPV). The remaining cluster is marked as right pulmonary
veins (RPV). Secondly, the LPV are further separated into
superior and inferior. The left inferior pulmonary vein is
detected as the cluster closest to the LAA. The right inferior
pulmonary vein is set as the one belonging to the same
side as the left inferior pulmonary vein of the plane passing
through the LPV, RPV and the MV centers of mass. For the
orifices of the RA, the tricuspid valve (TV) is identified as
the largest one. The cluster closest to the apex point of the
right atrial appendage (RAA) is labelled as superior vena cava
(SVC). The smallest of the remaining two rings is marked as
coronary sinus (CS) and the other as inferior vena cava (IVC).
Subsequently, a plane passing through the centers of the SVC,
IVC and TV is used to identify a band between the IVC and
the SVC and to divide the TV into a septal (TVS) and a lateral
wall part (TVL). These are used as boundary conditions in the
region labelling and fiber generation algorithm presented in
Sec. II-I.

E. Rigid alignment and landmark generation
After the labelling of the atrial orifices, the user can choose

whether to proceed with fitting a SSM to the target geometry
or directly jump to the resampling step followed by region
annotation and fiber generation. In case the user wants to
fit a SSM to the target geometry, a rigid alignment in space
is required before the fitting procedure since translation and
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rotation are not represented by eigenmodes of the SSM. The
transformation matrix was derived by minimizing the weighted
sum of squared deviations [32] between the atrial orifices
centroids of the two surfaces. 36 characteristic points were
then automatically identified in the LA using geodesic paths
connecting the previously marked orifices. 10 landmarks in
the pulmonary veins, 4 around the MV ring, 4 in the roof,
2 in the septum, 1 in the left lateral wall, 9 in the anterior
wall, 5 in the posterior wall, 1 at the LAA apex) were
used for the subsequent fitting procedure. The location of the
landmarks on the relative paths can be found in Sec. S.II. of
the Supplementary Material.

F. Non-rigid shape model fit using Iterative Closest
Points and Gaussian Process regression

We aimed at establishing correspondence between a bi-atrial
SSM [17] and the clinical geometry at hand. The geometries
used in this work were not included in the process of building
the SSM. Non-rigid fitting was performed by a combination
of Iterative Closest Points (ICP) and Gaussian Process (GP)
regression [33]. This methodology differs from the typical
rigid ICP [34], which consists of identifying the best rigid
transformation between two meshes. Briefly, the main steps
of the classical rigid ICP are the following:

• find candidate correspondences between the moving mesh
(i.e. SSM instance) and the target (i.e. clinically derived
geometry) by considering the closest point on the target
mesh as a candidate;

• solve for the best rigid transform between the moving
mesh and the target mesh using Procrustes analysis [32];

• transform the moving mesh using this transformation;
• repeat until convergence.

The non-rigid ICP algorithm used in this study for model
fitting performs the same steps. However, instead of finding
a rigid transformation, it solves for a non-rigid one using GP
regression [35]. The non-rigid transformation consists of the
deformation that is encoded in the SSM eigenmodes. Given
a set of points (in this case belonging to an instance of the
SSM), we attribute the closest point on the target as a candidate
correspondence to each of the points in the set. The returned
sequence of points contains the candidate correspondences to
the input points. The first main idea behind ICP is to use
the candidate correspondences in a GP regression to find the
best model instance explaining the observed deformations even
though the correspondences are not perfect. We then defined a
function that, given a sequence of identifiers of model points
and their candidate correspondence positions, computes a GP
regression based on the resulting deformation field and returns
the principal component coefficients of the model instance
fitting the candidate deformations best. These coefficients were
then used as input to retrieve a bi-atrial geometry that fits our
target LA. The non-rigid fitting of our SSM was implemented
using ScalismoLab (https://scalismo.org).

G. Co-registration of multi-modal data sets
The fitting method established correspondence between

each target geometry and the SSM. Each data vector (local

activation time, voltage, LGE IIR, etc.) was mapped from the
original mesh to the fitted SSM using a nearest neighbour
algorithm. Since the best fitted SSM instance is a deformed
version of the mean shape, it always features the same number
of nodes and vertex IDs. Therefore, the electrophysiological
data mapped from one patient’s electroanatomical map to
the resulting best fit of the SSM could be easily transferred
to the respective SSM instance derived from imaging data.
Since we assumed that the MRI segmentation was a better
representation of the patient’s real atrial anatomy compared
to the electroanatomical mesh, local activation time, uni- and
bipolar voltage maps were registered to the SSM instance
derived from the MRI fitting.

H. Resampling
Even though the SSM in general already provides a good

quality mesh, electrophysiological simulations performed with
finite elements methods require a fine spatial resolution [26],
[36]. We therefore procedeeded with a mesh resampling
step providing a final high quality mesh with an average
edge length of 0.4 mm. A combined smoothing and up-
sampling algorithm was performed using one iteration of
Laplacian smoothing and the isotropic explicit remeshing
filter of PyMeshLab [37], a Python library interfacing to
MeshLab [38], an open source software to edit and process
3D triangular meshes.

I. Automated region annotation and fiber generation
algorithm

Atrial fiber architecture is characterized by the presence
of multiple overlapping bundles running along different di-
rections, differently from the ventricular fibers architecture
where myofibers are aligned along regular patterns. Rule-based
methods are widely used strategies to generate myocardial
fiber orientation in computational cardiac models [39], [40]. A
particular class of algorithms is known as Laplace–Dirichlet-
Rule-Based methods (LDRBM) since they rely on the solution
of Laplace problems with Dirichlet boundary conditions. In
this work, a fully automated method to annotate the different
atrial regions and for generating fiber orientation, based on
the LDRBM proposed by Piersanti et al. [41] and updated in
Zheng et al. [31] was implemented.

In the pipeline, six Laplace problems for the LA and six
for the RA were formulated:

∆ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
= 0 (1)

with proper Dirichlet boundary conditions ψa and ψb on the re-
spective boundaries Γa and Γb. These partial differential equa-
tions were solved using the open electrophysiology simulator
openCARP [42]. The domain of the Laplace problems is the
atrial mesh. The boundary condition domains were obtained
using the method described in Sec. II-D. We further decreased
the number of required manually selected seed points from
four to two (apex of LAA and RAA), thus decreasing user
interaction and effort and enhancing reproducibility. The two
additional landmarks needed previously in [31] on the LAA
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basis were automatically identified by solving two additional
Laplace equations ψab2 with ψa = 0 in the RPV and ψb = 1
at the LAA apex and ψr2 with ψa = 0 at both LPV and
RPV and ψb = 1 at the MV ring as Dirichlet boundary
conditions. In addition, a supplementary Laplace system ψv2

with ψa = 1 in the IVC and ψb = 0 at the RAA apex is
solved in the RA to improve the identification of the RAA
compared to Zheng et al. [31]. The complete list of boundary
conditions used can be found in Tab.1 of the Supplementary
Material. The bundle selection was automatically performed
and the bundles’ dimension was adjusted for each patient using
a region growing method. Following the bundle selection, an
orthonormal local coordinate system was built at each element
of the atrial domain by performing a Gram–Schmidt orthogo-
nalization. In the case that only an endocardial surface mesh
is provided as input, we computed the transversal direction as
the normal vector to the atrial surface at each point and the
option of generating a bilayer model [43] with different endo-
and epicardial fiber arrangement was included in the pipeline.

J. Conduction velocity estimation methods
Cardiac tissue conduction velocity (CV) was estimated

using four different methodologies. Regional anisotropy ratio
was fixed to 3.75:1 in the LA [44]. In the first two, only
non-invasive data coming from the LGE-MRI were used (i.e.,
IIR). The third and fourth method, estimate the CV from the
clinically recorded local activation time (LAT) map.

• The first method consisted in discretely applying different
CV depending on the IIR value (CVdi). We tuned the
monodomain conductivity to reach a longitudinal CV of
1.0 m/s in the healthy tissue (IIR<1.2), of 0.7 m/s in the
interstitial fibrosis areas (1.2≤IIR<1.32) and of 0.6 m/s
in the dense fibrosis regions (IIR≥1.32) [19], [45].

• In the second method we applied a CV following a
regression model (CVrm) relating CV to IIR value [45]:

CV = 1m/s · exp(0.6731 − 0.9177 ∗ IIR). (2)

• In the third method, we calculated the CV by fitting radial
basis functions (CVrb) [21], [46]. The algorithm selects
stable catheter positions, finds the local activation times
(LAT), considers the wall contact and calculates all CV
estimates within the area covered by the catheter.

• The fourth method consisted in iteratively tuning (CVtu)
each element conductivity to minimize the root mean
squared error (RMSE) between the simulated LAT and
the recorded clinical LAT. The fiber field used is the
one presented in Sec. II-I. The clinical LAT map is
divided into activation bands from the earliest to the
latest activation in steps of 30 ms. However, selecting
the location of earliest activation as the very first acti-
vated map point or electrogram point can be error-prone.
Therefore, the earliest activated point is identified as the
center of mass of the region with clinical LAT within
the 2.5th percentile. Firstly, the earliest 2.5th percentile
LAT points are identified and then their center of mass
is calculated and used as earliest activated point in the
in-silico experiment. Before proceeding with the iterative

Fig. 2. Identification and generation of mitral valve opening. Elements
marked as mitral valve (in red) after the co-registration procedure and
the resulting mitral valve opening. The remaining high curvature region
is the left atrial appendage. Top row: example based on an MRI segmen-
tation (patient 28). Bottom row: example based on an electroanatomical
map (patient 28).

fitting of the clinical LAT, we detect the nodes with an
earlier activation than the neighboring vertices and mark
them as wrong annotations, as illustrated in Fig. 9B. The
LAT annotations in these areas are not used in the fitting
process and the conductivity is chosen as the mean of the
region boundary.

K. Atrial models and computational tools
The myocyte membrane dynamics were represented with

a variant of the original Courtemanche et al. model [47]
reflecting AF-induced remodeling [48]. Atrial tissue regions
with IIR higher than 1.2 were labelled as fibrosis. We set
30% of the elements in the fibrotic regions as almost not
conductive (conductivity of 10−7 S/m) to account for structural
remodeling and the presence of scar tissue. This approach
modelled the macroscopic passive barrier behaviour caused
by the electrical decoupling of the myocytes in the tissue
infiltrated by fibrosis, also referred to as ’percolation’ [49].
In the other 70%, several ionic conductances were rescaled
to consider effects of cytokine-related remodeling [50] (-50%
gK1, -40% gNa and -50% gCaL). The spread of the electrical
depolarization in the atrial myocardium was simulated by
solving the monodomain equation using openCARP [42] and
a time step of 0.02 ms.

III. RESULTS

A. Removing mitral valve and pulmonary veins
The automatic annotation of the MV opening region iden-

tified the location of the MV in all 29 patients both in
electroanatomical maps and MRI segmentations. Fig. 2 shows
an example of both the MV labelling step and the consequent
creation of the valve ring. Regions with surface curvature
higher than 1.1 times the median value identified both veins
and appendage in the case of MRI segmentation and the
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Fig. 3. Pulmonary veins clipping using the surface curvature. Regions
with surface curvature higher than 1.1 the median value are shown in
red and the mesh after the removal of the pulmonary veins in the right
column. Top row: example based on an MRI segmentation (patient 28).
Bottom row: example based on an electroanatomical map (patient 28).

Fig. 4. Output of the atrial openings annotation step (mitral valve
and roof view of the labelled atrial orifices). Top row: example based
on an MRI segmentation (patient 28). Bottom row: example based
on an electroanatomical map (patient 28). LAA: left atrial appendage
apex, MV: mitral valve, LIPV: left inferior pulmonary vein, LSPV: left
superior pulmonary vein, RIPV: right inferior pulmonary vein, RSPV:
right superior pulmonary vein.

pipeline correctly proceeded with the clipping of the veins
regions, though maintaining the appendage, as shown in Fig. 3.
When the input geometry was derived from an electroanatom-
ical map, the combination of high surface curvature and low
bipolar voltage resulted in an accurate location of the pul-
monary vein regions in the LA. The remaining high curvature
area always corresponded to the LAA.

B. Atrial orifices labelling

Atrial orifices were automatically identified and correctly
labelled from the pipeline in all 29 patients. The accuracy of
the labelling was checked by visual inspection. An example of
the resulting annotated geometry in both an MRI segmentation
and an electroanatomical map is shown in Fig. 4. The decision

of using only the atrial appendage apexes as reference point for
the labelling method turned out to be appropriate to robustly
discriminate between valves and veins in both left and right
atrium.

C. Statistical shape model fitting process
All 36 landmarks were correctly and automatically iden-

tified in the whole patient cohort using the geodesic paths
connecting the atrial orifices labelled in the previous step.
The reference points covered most of the atrial surface and
localized the most important atrial structures, as shown in
Fig. 5. The non-rigid fitting procedure provided the best
fitted SSM instance for each electroanatomical map and MRI
segmentation, as presented in Fig. 6. Fig. 7 shows the surface-
to-surface distance between the best fitted SSM and the
target electroanatomical map (2.72±2.17 mm). The surface-
to-surface distance in the case of target atrial geometries
derived from MRI segmentations was 2.13±1.79 mm across
all patients (Fig. 7).

D. Atrial region annotation and fiber orientation
generation

Atrial structures were automatically annotated in all 29
LA SSM instances and the pipeline carefully identified each
region using the previously labelled atrial orifices and the
LAA apex. Finally, bilayer models including realistic fiber
orientation were generated. The pipeline was therefore tested
on a bi-atrial surface model coming from the mean shape
of a SSM [17]. In both LA and RA, regions were correctly
annotated (Fig. 8). Moreover, fiber orientation was calculated
and a bi-atrial bilayer model was generated along with inter-
atrial bundles, as presented in Fig. 8. We recall that in the
case of a bi-atrial surface as input, the only two manual
reference points needed by the full pipeline are left and right
atrial appendage apexes. In Fig. 8, we show the results of
region annotation and fiber orientation on a volumetric bi-atrial
mesh derived from MRI segmentation [4]. The same pipeline
was further applied to 100 different volumetric atrial models
with homogeneous thickness coming from various instances
of a SSM [17] and made publicly available [51]. In Zheng
et al. [31], a volumetric bi-atrial mesh with heterogeneous
myocardial thickness [52] was used as input and the pipeline
proceeded with region annotation and fiber generation.

E. Conduction velocity estimation
The simulated LAT map based on an underlying CV as esti-

mated with the fourth method from the clinical LAT for patient
1 is shown in Fig. 9. The in-silico LAT maps computed with
all four CV estimation methodologies presented in Sec. II-J
can be found in Fig. S1 of the Supplementary Material. The
root mean square error (RMSE) between the simulated and the
clinical LAT maps was calculated for each of the presented CV
estimation method and presented in Tab. I.

Moreover, we computed the relative error per patient be-
tween the simulated and the clinical LAT map as:

Relative LAT error =
Simulated LAT − Clinical LAT

max (Clinical LAT)
(3)
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Fig. 5. Posterior, roof and anterior view of the landmarks generation procedure on the left SSM mean instance [17]. Geodesic paths used to
identify the landmarks locations in white and respective 36 landmarks in black.

Fig. 6. Top row: Roof and anterior view of the SSM instance (grey) best
fitting to the target MRI segmentation (semi-transparent blue). Bottom
row: Roof and anterior view of the SSM instance (grey) best fitting to the
target electroanatomical map (semi-transparent blue).

TABLE I
RMSE (MS) BETWEEN THE SIMULATED AND THE CLINICAL LAT MAPS

USING THE DIFFERENT CV ESTIMATION METHODS.

CV estimation method RMSE (ms)
CVdi 27.1±13.6
CVrm 36.7±14.1
CVrb 107.5±44.5
CVtu 12.7±5.8

and the distributions of the relative LAT error using the various
methodologies to estimate CV are shown in Fig. 10. The
relative LAT errors for each patient can be found in Fig.S2-S5
the Supplementary Material.

F. Processing time

The full pipeline took 38.4±5.7 s to complete the open-
ing and labelling of atrial orifices, the fitting process, mesh
resampling, the region annotation and fiber generation steps,
demonstrating the feasibility of an in-situ application.

IV. DISCUSSION

A. Opening and labelling atrial orifices
The pipeline automatically identified and proceeded with

the opening of the atrial orifices. In comparison to Cemr-
gApp [14], in which the user has to manually select the mitral
valve and all pulmonary vein regions, the only user-interaction
needed by our pipeline is the selection of the atrial appendage
apex.

B. Statistical shape model fitting
The SSM fitting step allowed to establish correspondences

between each geometry derived from clinical data and the
SSM. Regions with higher distance were located mostly close
to the appendage. However, we have to recall that the LAA
volume is often only partly covered during electroanatomical
mapping. The average distance of 2.13 mm between the origi-
nal MRI segmentation is in the range of one to two voxels [17],
[53] omitting segmentation uncertainty. Therefore, the best
fitted SSM instance very well represented the original anatomy
and augmented the missing anatomical structures (e.g. ap-
pendages), as shown in our previous work [33]. The SSM gen-
eralized well to unseen geometries and accurately represented
relevant anatomical features. Moreover, the patient-specific
generalization in regions with high inter-individual variability
such as the appendages and the PVs could be improved by
updating the SSM with more clinical data.

C. Region annotation and fiber generation
We have developed a highly automated pipeline that ac-

curately generated the fiber direction of the human atria
according to histological data. Additionally, we provide a
pipeline that annotates the anatomical regions independently
from the atrial geometrical variability due to the region grow-
ing implementation. We demonstrated how the pipeline can
generate both volumetric and bilayer 3D models, perform
with anatomical variations, and create accurate models of
the human atrial anatomy. The pipeline well represented the
complex atrial fiber architecture and captured the complex
fiber bundles arrangements in both LA and RA. Different
endocardial and epicardial fiber orientation were included to
faithfully represent the transmural variability even in a bilayer
computational model. Comparing to the existing method by
Wachter et al. [40] that requires 21 manually defined seed
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Fig. 7. Top row: surface-to-surface distance between the best fitting SSM instance and the respective electroanatomical map. Bottom row:
surface-to-surface distance between the best fitting SSM instance and the respective MRI segmentation.

Fig. 8. Posterior view of the fiber orientation computed with AugmentA in a bi-atrial bilayer model derived from a SSM [17] and anterior view of
the region annotation in a bi-atrial volumetric model [4] in which the wide Bachmann’s Bundle is highlighted in white.

points and a longer calculation time, our pipeline significantly
reduces the calculation time and human manual interaction.
The original LDRBM by Piersanti et al. [41] and updated by
Zheng et al. [31] was further improved enhancing automation
and reproducibility by limiting the manual user interaction to
the selection of one reference point per atrium and using an
extra set of Laplace solutions. Roney et al. [52] presented a
methodology to assign the fiber orientation by mapping the
fiber field from a human atrial fiber atlas to different patient
specific atrial models. Even if the impact of the fiber field
on average activation times computed in paced rhythm was
relatively small, it had a larger effect on maximum LAT differ-
ences. Moreover, arrhythmia dynamics were highly dependent
on the fiber field, suggesting that atrial fiber fields should be
carefully assigned to patient-specific arrhythmia models. Our
pipeline ensures personalization of both region annotation and
specification of fiber orientation to each anatomical structure
in the human atria.

D. Conduction velocity estimation
We systematically evaluated three state-of-the-art methods

to estimate cardiac tissue CV from clinical data and compared
them to our newly proposed iterative fitting to the clinical LAT
map algorithm. Monodomain conductivity in each element
was calculated directly from the CV map using a regression
curve representing the relationship between CV and conduc-
tivity computed tuning the tissue conductivities to match a
specific CV in a tissue slab. This approach can potentially
underestimate longitudinal CV if the excitation direction is
not completely parallel to the myocyte orientation. This might
be part of the reason for the bias towards positive errors. The
CVrb method had the highest RMSE due to its sensitivity to
sparse data recordings.

V. LIMITATIONS

The used SSM did not include different numbers of PVs.
Therefore, the fitted SSM instance will always provide an atrial
surface with four pulmonary veins. In the multi-modal data
co-registration step, the data vector interpolation rather than
nearest neighbor mapping might improve data fidelity.
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Fig. 9. A: posterior and anterior view of the clinical LAT map of patient 1.
B: posterior and anterior view of the clinical LAT map of patient 1 in which
we marked in black the nodes with an earlier activation with respect to
the neighbours. C: posterior and anterior view of the simulated LAT map
of patient 1 using the CVtu estimation method.

Fig. 10. Relative LAT error between simulated and clinical LAT map
using the four conduction velocity estimation methods.

VI. DATA AVAILABILITY

All personalized computational models used in this study
including fiber orientation and anatomical labels are available
online (https://doi.org/10.5281/zenodo.5589289).

VII. CONCLUSION

The pipeline presented in this work offers a highly auto-
mated, comprehensive and reproducible framework to process
geometries derived from clinical data and generate atrial
anatomical and functional digital twins. AugmentA was able

to provide ready-to-use atrial models starting from either elec-
troanatomical maps or imaging data. The pipeline incorporates
various region labels and detailed fiber orientation reducing
the user-interaction to the selection of one reference point per
atrium. The pipeline was moreover tested with surface and vol-
umetric input and it correctly proceeded with atrial structure
annotation and fiber generation. AugmentA could thus become
a default framework for the generation of atrial digital twin
models from clinical data in future studies. This work is a
step forward to improve comparability and reproducibility of
atrial models derived from clinical data and to facilitate the
evaluation of arrhythmia vulnerability and ablation planning
automating the computational model generation steps.
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A. Loewe, “A Bi-atrial Statistical Shape Model and 100 Volumetric
Anatomical Models of the Atria,” Jun. 2021.

[52] C. H. Roney, R. Bendikas, F. Pashakhanloo, C. Corrado, E. J. Vigmond,
E. R. McVeigh, N. A. Trayanova, and S. A. Niederer, “Constructing a
human atrial fibre atlas.” Annals of biomedical engineering, 5 2020.

[53] R. Karim et al., “Algorithms for left atrial wall segmentation and
thickness - evaluation on an open-source CT and MRI image database.”
Medical image analysis, vol. 50, pp. 36–53, 12 2018.

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 15, 2022. ; https://doi.org/10.1101/2022.02.13.22270835doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.13.22270835
http://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Materials and Methods
	Dataset
	Mitral valve opening annotation
	Mesh pre-processing and removing valves and veins
	Automatic labelling of atrial orifices
	Rigid alignment and landmark generation
	Non-rigid shape model fit using Iterative Closest Points and Gaussian Process regression
	Co-registration of multi-modal data sets
	Resampling
	Automated region annotation and fiber generation algorithm
	Conduction velocity estimation methods
	Atrial models and computational tools

	Results
	Removing mitral valve and pulmonary veins
	Atrial orifices labelling
	Statistical shape model fitting process
	Atrial region annotation and fiber orientation generation
	Conduction velocity estimation
	Processing time

	Discussion
	Opening and labelling atrial orifices
	Statistical shape model fitting
	Region annotation and fiber generation
	Conduction velocity estimation

	Limitations
	Data availability
	Conclusion
	References

