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Abstract

Purpose Hepatocellular carcinoma is the most common primary liver cancer,
accounting for 90% of cases, and a major cause of death worldwide. Despite this,
alpha-fetoprotein tests are the only blood-based diagnostic tools available, and
their use is limited by their low sensitivity. DNA methylation changes, which
have been implicated in a majority of cancers, offer an alternative method of
diagnosis through measuring such changes in circulating cell-free DNA present
in blood plasma.

Method A genetic programming-based symbolic regression approach was
applied to gain the benefits of machine learning while avoiding the opacity
drawbacks of "black box" models. The data included plasma samples from 36
patients with hepatocellular carcinoma as well as a control group of 55 that
contained patients with and without cirrhosis. A 75-25 train-test splitting was
done before training.

Results The symbolic regression methodology developed an equation utilizing
the methylation levels of three biomarkers, with an accuracy of 91.3%, a
sensitivity of 100%, and a specificity of 87.5% on the test data. The performance
matches prior research while providing the added benefits of transparency.

Conclusion Circulating cell-free DNA presents opportunities for minimally
invasive early diagnosis of hepatocellular carcinoma, and utilizing transparent
machine learning approaches like symbolic regression can allow accurate diag-
nosis by combining biological and mathematical principles. Future validation
of the model obtained here on a larger and more diverse dataset can reveal the
potential for such approaches in cancer diagnosis and pave the way for further
research.
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1 Introduction

Hepatocellular carcinoma (HCC) is the most common primary liver cancer, with approximately
782,000 new cases and 746,000 deaths yearly (Ferlay et al., 2014)). It is the second largest
cause of cancer deaths in East Asia and sub-Saharan Africa as well as being the fastest
rising cause of cancer-related death in the United States (Rawla et al., 2018). Risk factors
such as chronic Hepatitis B (CHB), chronic Hepatitis C (CHC), nonalcoholic steatohepatitis
(NASH), and aflatoxin exposure contribute to the development of hepatocelluar carcinoma,
with CHB and CHC alone accounting for 75% of cases (Chen 2018; Baecker et al., 2018}
Ahmed et al., 2019; Wang & Gribskov} [2019). With alpha-fetoprotein (AFP) tests being
the only blood-based diagnostic tool currently available for HCC — the utility of which is
hampered by its low sensitivity — there is an unmet need for an effective plasma test to enable
early diagnosis (Xu et al., [2017).

CG dinucleotides, also known as CpG pairs, are under-represented in the human genome (21%
of expected) due to the formation of methylcytosine through attachment of methyl groups to
cytosine in CpG pairs; the methylcytosine spontaneously deaminates to thymine ([llingworth
& Bird,, 2009). There are, however, interspersions of largely nonmethylated sequences called
CpG islands (CGIs) that possess large numbers of GC and CG nucleotides (Deaton & Bird),
2011). Hypomethylation or hypermethylation of these CGIs acts as a prevalent molecular
signature for most cancers, including HCC (Wen et al., 2015)). In a number of studies, such
methylation changes were detected years before other signs of cancerous development (Shi et
al., 2007).

Circulating cell-free DNA (cfDNA) is a term describing extracellular DNA found in body
fluids like blood, sputum, urine, etc. (Sun et al., 2019). Its importance and promising outlook
as a non-invasive marker for cancer has been recognized, utilizing genetic, methylation, and,
to a lesser extent, quantitative analyses (Aarthy et al. 2015; Kustanovich et al 2019)). For
HCC in particular, methylation analysis of cfDNA has yielded multiple diagnostic biomarkers,
including but not limited to p15, p16, GSTP1 and RASSF1A (Ng et al., 2018]).

Symbolic regression is a machine learning (ML) technique that attempts to create a math-
ematical expression to explain the target variable utilizing a range of basic mathematical
functions, and, specifically, genetic programming-based symbolic regression (GPSR) is an
implementation of SR that uses genetic programming to search the massive SR solution
spaces effectively (Wilstrup & Kasak, 2021)). GPSR has been able to perform well in deriving
expressions for real-world applications in fields as disparate as biology, robotics, physics
and finance (Orzechowski et al., 2018). Evidence suggests that it outperforms other ML
techniques on smaller datasets, which is useful in clinical and biological contexts where data
is often limited (Wilstrup & Kasak, 2021). Its transparency compared to other "black box'
machine learning models also makes it more suited to application in clinical settings (Quinn
et al., 2021} Price, 2018)).
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2 Materials and Methods

The data used for the analysis were obtained from the NCBI Gene Expression Omnibus
with the accession number GSE63775. The data consist of plasma samples from 55 control
subjects, out of which 17 had cirrhosis, and 36 HCC patients (Wen et al [2015). Values
for each CGI in the samples are measured in methylated alleles per million mapped reads
(MePM). Stratified random train-test splitting was performed in a 75-25 ratio (random seed
of 1) to obtain the training and testing sets respectively.

Python 3.7.12 was used, with pandas and numpy for preprocessing, matplotlib and seaborn
for plotting and visualization, scikit-learn for train-test splitting and model evaluation,
and gplearn for training the symbolic classifier model. A symbolic classifier works by first
developing a symbolic regressor and then passing the output through a logistic function
to produce a prediction value, which corresponds to 0 (negative) if less than 0.5, and 1
(positive) otherwise. The symbolic classifier was trained using population_size=2000 and
parsimony_coefficient=0.01, with a random seed of 1 to ensure reproducibility
L. Beam, [2020)).

3 Results

Figure [I] shows the output expression in a tree form. Equation [I] shows the final model as a
standard mathematical equation, where chrs, chry; and chrig represent the levels of the three
CGls identified as biomarkers by GPSR, — chr5:92923487-92924497, chr21:40757602-40757900
and chr19:41531804-41532051, respectively. z is the output, and can be put through the
logistic function to obtain the probability (p) of hepatocellular carcinoma, as shown in
Equation 2| A probability less than 0.5 indicates that the absence of HCC is more likely, and
vice versa.

Figure 1: Output Equation as Tree
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The results when utilizing this equation for classification on the testing dataset are shown in
Figure [2| in the form of a confusion matrix. The accuracy comes out to be 91.3%, and the
sensitivity and specificity are 100% and 87.5%, respectively.
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Figure 2: Confusion Matrix on Test Data

4 Discussion

Prior ML work in this area has attained similar performances, though it lacks the explainability
of symbolic regression (Filho et al., 2020; [Khalid et al., [2015)). Utilizing a combination of
random forest, the least absolute shrinkage and selection operator (LASSO) and logistic
regression, | Xu et al.| (2017) obtained a sensitivity of 83.3% and a specificity of 90.5% on their
validation set. [Zhang et al. (2020) were able to get a sensitivity and specificity of 91.93% and
100% respectively using 11 biomarkers identified by a support vector machine (SVM) model.
Another study also used an SVM to achieve a precision (positive predictive value) of 96%
and a recall (sensitivity) of 86% (Gongalves et al., 2021).

Multiple studies have identified blood plasma biomarkers without applying ML.
(2005) showed that around 77% of HCC patients possess pl6 methylation and 41% possess
DAPK methylation. 55.7% of patients have a methylated CCND2 gene (Tsutsui et al., [2010)).
RASSF1A hypermethylation was present in 42.5% of patients, correlating with tumor size
(Yeo et al.l 2005). Ji et al. (2004) identified MT1M and MT1G as biomarkers with high
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specificities of 93.5% and 87.1% respectively, though their sensitivities were low, at 48.8%
and 70.2% respectively.

Compared to simple biomarker analysis, machine learning techniques display better perfor-
mance due to their more complex nature. The symbolic regression approach described in this
paper, however, attains similar sensitivity and specificity to conventional ML approaches, is
much more transparent and allows for mathematical reasoning of the results in a biological
context, which can be a source of useful further research (Narayanan et al., 2022; Cardoso et
al., 2020)).

Since the data in this study contained ¢fDNA — which can be obtained from blood plasma
— rather than analyzing liver tissue, the results present possibilities for minimally invasive
diagnosis of HCC. Indeed, ¢fDNA holds potential for improved early cancer diagnosis in
general (Stewart et al., 2018]). Further analysis of the results on a larger and more diverse
validation set as well as biological analyses of the three-biomarker signature are important,
but the results obtained here show initial promise.

5 Data Availability Statement

The data are available in the National Center for Biotechnology Information’s Gene Expression
Omnibus (NCBI GEO) under the accession number GSE63775.
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