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ABSTRACT  

The role cardiac function plays in the predilection for, and progression of, Alzheimer’s 

disease (AD), is complex and unclear. While a number of low-frequency genetic variants of 

large effect-size have been shown to underlie both cardiovascular disease and dementia, 

recent studies have highlighted the importance of common genetic variants of small-effect 

size, which, in aggregate, are embodied by a polygenic risk score (PRS). In this study we aim 

to investigate the effect of polygenic risk for coronary artery disease (CAD) on brain atrophy 

in AD using whole brain volume (WBV) and put our findings in context with the polygenic 

risk for AD and presumed small vessel disease as quantified by white matter hyperintensities 

(WMH). We used 730 subjects from the ADNI database to investigate PRS effects (beyond 
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APOE) on whole brain volumes, total and regional WMH and amyloid beta across diagnostic 

groups. In a subset of these subjects (N=602) we utilise longitudinal changes in whole brain 

volume over a maximum of 24 months using the boundary shift integral approach. Linear 

regression and linear mixed effects models were used to investigate the effect of WMH at 

baseline as well as AD-PRS and CAD-PRS on whole brain atrophy and whole brain atrophy 

acceleration, respectively. All genetic associations were examined under oligogenic (p=1e-5) 

and the more variant-inclusive polygenic (p=0.5) scenarios. Our results suggest no evidence 

for a link between PRS score and markers of AD pathology at baseline (when stratified by 

diagnostic group). However, both AD-PRS and CAD-PRS were associated with longitudinal 

decline in WBV (AD PRS t=3.3, PFDR=0.007 over 24 months in healthy controls) and 

surprisingly, under certain conditions WBV atrophy is statistically more correlated with 

cardiac PRS than AD PRS (CAD PRS t=2.1, PFDR=0.04 over 24 months in the MCI group). 

Further, in our regional analysis of WMH, AD PRS beyond APOE is predictive of white 

matter volume in the occipital lobe in AD subjects in the polygenic regime. Finally, the rate 

of change of brain volume (or atrophy acceleration) may be sensitive to AD polygenic risk 

beyond APOE in healthy individuals (t=2, p=0.04). For subjects with mild cognitive 

impairment (MCI), beyond APOE, a more inclusive polygenic risk score including more 

variants, shows CAD PRS to be more predictive of WBV atrophy, than an oligogenic 

approach including fewer larger effect size variants.  

 

Keywords: Alzheimer’s disease, coronary artery disease, GWAS, brain atrophy, 

polygenic risk score, white matter hyperintensities 
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1. Introduction 

It is estimated that more than one million people in the UK, and over 44 million individuals 

globally1 are living with dementia. Alzheimer’s disease (AD) is the most common form of 

dementia and is usually diagnosed in the elderly (over the age of 65 years). There are many 

symptoms associated with AD and these include changes in memory, language and 

personality2.  

 

Beyond cognitive testing there has been a large focus on the use of brain imaging to help 

diagnose and track the disease. In particular, a decrease in brain volume and the build-up of 

protein in the form of amyloid plaques (between neurons) and misfolded neurofibrillary 

tangles of hyperphosphorylated tau (within neurons) are seen in brain imaging studies and 

observed in post-mortem examinations of AD patients3. It is thought that the amyloid and tau 

aggregations contribute to the death of neuronal cells resulting in a reduction in regional 

grey-matter volume and neuronal connectivity4. Surprisingly, years of clinical trials involving 

pharmacological interventions targeting these protein deposits have largely been 

unsuccessful5, possibly because they are formed as a result of earlier pathological changes.  

Another explanation may be that drug interventions, thus far, have all been administered too 

late in the disease life-course to be effective, and that intervention earlier in life may be 

required. Current symptomatic treatments of AD symptoms come from acetylcholinesterase 

inhibitors and glutamate blockers which serve, in some cases, to reduce disease severity, but 

are by no means curative6. At the time of writing the monoclonal antibody aducanumab, 

which targets beta-amyloid plaques, had just been approved for clinical use in the United 

States (see www.fda.gov). 

 

AD is often diagnosed alongside vascular dementia in what is called mixed dementia7. 

Vascular dementia (itself the second most common form of dementia following AD) is the 

result of reduced blood flow to brain cells resulting in cell-death. This can be caused by 

cerebral small vessel disease, resulting in subcortical vascular dementia, which affects vessels 

deep in the brain. One imaging marker of small vessel disease is MRI-visible white matter 

changes, or, white matter hyperintensities (WMHs). WMHs are known to increase with 

age8,9, but are also strongly associated with AD10. WMHs have also been associated with a 

range of other pathologies, including amyloid angiopathy, arteriosclerosis, axonal loss, 

blood–brain barrier leakage, demyelination, gliosis, hypoperfusion, hypoxia and 

inflammation11.  
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In coronary artery disease (CAD) plaques aggregate in blood vessels that feed the heart 

oxygen and nutrients. In the extreme, this can lead to angina and heart attack, but a smaller 

prolonged reduction in cardiac function may be responsible for cerebral hypoperfusion. CAD 

has a strong genetic basis, being ~50% heritable with ~60 genetic loci identified12. However, 

the relationship between the genetic contribution to heart health and AD remains largely 

unexplored. 

 

While age is the most salient factor in AD risk, there is, alongside environmental and lifestyle 

factors, a genetic component underlying both AD and CAD. In AD, a small number of cases 

(<5%) are due to autosomal dominant early-onset AD for which there are a number of rare, 

large effect-size genetic variants that contribute to the pathology13. These include mutations 

that result in abnormal protein products of amyloid precursor protein (APP), or in the genes 

that code for the enzymes that alter the breakdown of APP, both of which may result in an 

increase in amyloid plaques.  

 

Most AD cases are sporadic and late-onset (typically found in those aged 65 and older) where 

heritability is estimated to be between 60% and 80%14. Here, a number of identified common 

variants, most notably the e4 allele of the APOE gene which accounts for ~5% of AD 

heritability, plus about 20 additional loci, account for ~30% AD heritability15. It is likely that 

the remaining heritability is the result of the combination of a great many (1000s to 100,000s) 

of common variants, each contributing a very small effect.  

 

As a result of these findings, much research has been performed to establish how to best 

capture a composite measure of these many common variants, that individually have such a 

small effect. Polygenic Risk Scores (PRSs) offer a way of doing this and have become 

increasingly used following the many large Genome Wide Association Studies (GWAS) 

which show associations between common genetic variants and diseases. The PRS sums up 

the effect size16 across a selected set of genetic variants shared between a discovery sample 

(some CAD GWAS for example) and target sample (some other genotyped cohort such as the 

Alzheimer's Disease Neuroimaging Initiative, ADNI), resulting in an aggregate score that 

reflects the genetic contribution to the disease phenotype in the target cohort. AD-PRS have 

effectively discriminated between AD cases and controls17, been used as a predictor of 

conversion from MCI to AD18, been linked to inflammatory biomarkers19, CSF amyloid beta 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 13, 2022. ; https://doi.org/10.1101/2022.02.11.22270852doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.11.22270852


 5 

levels20, CSF tau levels21, hippocampal volume22, cortical thickness23 and age of onset of 

AD24. AD-PRS related work has been recently reviewed by25 

 

Just as research has been devoted to investigating how AD-PRS affects AD phenotypes, the 

same concept can be used to investigate genetic risk for other diseases on AD pathology. 

Here, we specifically investigate the role of common, small-effect, cardiac-related genetic 

variants to Alzheimer’s disease. This enables us to elucidate the role that cardiovascular 

health plays in relation to dementia. While we focus here on the influence of underlying 

genetics upon WMHs, whole brain atrophy and the changes therein, the cardiac-

cerebrovascular axis is no doubt complex, encompassing many biological pathways. We 

believe, however, that a combination of genetics and imaging, in particular longitudinal 

images that capture changes over a disease trajectory, will provide important insights into this 

system. 

 
 
 
 
2. Material and methods  

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 

2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. 

The primary goal of ADNI has been to test whether serial magnetic resonance imaging 

(MRI), positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date information, 

see www.adni-info.org. The R-data-package ADNIMERGE (dated 2020-05-19) was used to 

access ADNI data. 

2.1 Computing white matter hyperintensities 

Regional and total WMH values were determined using the Bayesian Model Selection 

(BaMoS) software26, a white matter lesion segmentation algorithm. BaMoS was applied to 

932 ADNIGO and ADNI2 participants following27 and described therein. In short, the label 

fusion algorithm GIF (Geodesic Information Flows)28 was used to parcellate the T1-weighted 

cortical grey matter into various cortical and subcortical brain structures in an automated 

fashion. It additionally carries out skull stripping and generates probabilistic atlases for each 
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individual. These atlases are then input to BaMoS alongside co-registered FLAIR images 

consisting of log-transformed normalised intensities. To determine white matter lesions, 

BaMoS computes the most suitable model description of the data accounting for prevailing 

outliers. It manages this by first partitioning data into inlier and outlier portions and then 

modelling input data in a hierarchical fashion, with elements then separated into one of four 

tissue types – grey matter, white matter, cerebrospinal fluid and non-brain. Each of these in 

turn are modelled via a Gaussian mixture model with the number of constituent parts 

determined using a split-and-merge strategy. An Expectation-Maximization (EM) algorithm 

is used for optimisation with model selection implemented using Bayesian Information 

Criterion to produce probabilistic lesion maps from which measurements of lesion volumes 

are inferred. Regional volumes in cubic mm were also computed across five lobes and four 

radial layers. 

 

 

2.2 Brain atrophy  

To compute changes in brain volume we utilise the Boundary Shift Integral (BSI) 

method29,30. Briefly, the BSI is defined as the difference in brain volume (either in total brain 

or in a brain region via displacement of the boundaries), automatically computed (brain mask 

creation is semi-automated) between a baseline scan and a repeat scan at a later time. The 

KN-BSI30 is an extension of the classic-BSI and carries out tissue-specific intensity 

normalisation which deals with tissue-contrast differences, producing a smaller standard 

deviation in atrophy changes than the classic-BSI. BSI values were obtained from the 

foxlabbsi table in ADNI comprising 2348 subjects (across ADNI1, ADNI2, ADNI3 and 

ADNIGO), where all T1-weighted scans included in the core datasets pertaining to BSI were 

obtained using 3T scanners. Some months had very few available scans so these were 

removed to maintain consistency between scan interval times. MRI scans were originally 

made using accelerated and non-accelerated acquisitions and we have chosen to focus on the 

accelerated scans31 as they have been shown to result in fewer motion artifacts in pairs of 

scans resulting from patient movement. Finally, some scans had BSI-determined brain 

volume increases which may be a result of better subject hydration or due to overall noise. 

Scans with BSI<0 (corresponding to an increase in whole brain volume over time) were 

removed from the analysis. 
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2.3 ADNI genetic target data pre-processing 

The genetic data used in this work is a combination ADNI1, ADNIGO and ADNI2 

participant genotypes, comprising a total of 1674 subjects32. Details on quality control and 

imputation (use of the HRC reference panel, the Sanger server, EAGLE2 for phasing, and 

PBWT for imputation) are described in33. Briefly, following imputation, multi-allelic SNPs 

and SNPs with INFO score less than 0.3 were removed; then calls with less than 90% 

posterior probability of the imputed genotype were set to missing. SNPs missing in more than 

10% subjects, deviating from Hardy-Weinberg equilibrium (p < 5e-7) and with minor allele 

frequency less than 5% were all removed. These processing steps were carried out using 

PLINK v1.934[www.cog-genomics.org/plink/1.9/] and resulted in a final set of 5,082,879 

autosomal SNPs. For ancestry determination and relatedness analysis, following21,33 a 

HapMap 3 reference panel was utilised where individuals with greater than 80% Central 

European ancestry were held. PLINK v1.9 was then used to retain common SNPs with MAF 

≥ 5% and carry out LD-pruning and construct a genetic relatedness matrix (threshold=0.1) 

and filter to remove related subjects. This resulted in the exclusion of 116 subjects most 

likely due to them being genetically non-central European (there are known to be a number of 

erroneous self-identifications of European descent in this cohort) or being related to other 

subjects.  

 

For the CSF amyloid beta measurements we used ADNIMERGE ABETA.bl values and 

removed subjects with missing data and set values recorded as <1700 to 1700 (PET CSF 

Ab1-42; 192 pg/mL cut-off value; Luminex assay; data range 203 to 1700 with 

mean=1024.7). 

  

2.4 Coronary Artery Disease & Alzheimer’s Disease discovery GWASs 

To investigate the PRS contribution due to AD we utilised the largest currently available 

meta-GWAS of AD featuring 35,274 clinical and autopsy-documented AD cases and 59,163 

controls35. Summary statistics were downloaded from The National Institute on Aging 

Genetics of Alzheimer's Disease Data Storage Site (NIAGADS; July 2020) comprising 

11,480,633 SNPs.  

  

In order to investigate the PRS contribution due to CAD we use a meta-analysis of 60,801 

CAD cases and 123,504 controls36. Summary statistics were downloaded from the 
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CARDIoGRAMplusC4D (Coronary ARtery DIsease Genome-wide Replication and Meta-

analysis (CARDIoGRAM) plus The Coronary Artery Disease (C4D) Genetics) consortium 

http://www.cardiogramplusc4d.org/data-downloads/ in July 2020 comprising 8,624,384 

variants.   

  

Given the very large effect size of APOE-e4 upon AD pathology, we removed the APOE 

region so as to explore genetic effects beyond this risk factor. The block removed from 

chromosome 19 (hg19 coordinates) comprises SNPs 44 400 375 (rs430308) to 46 500 052 

(rs62113435).  

 

 

2.5 Polygenic Risk Scores  

The Polygenic Risk Score (PRS) is a weighted sum of allele counts where the weights are 

odds ratios (effect sizes) from a discovery GWAS and represent the strength between the 

variant and the trait it is associated with. Polygenic Risk Scores were computed using PRSice 

v2.1.937. To ensure that loci are isolated and independent, LD clumping was applied so that 

SNPs in LD with one another are removed such that the SNP with the lowest p-value within 

each LD block of correlated SNPs is held for analysis. LD clumping was conducted with 

clumping window of 250kb on either side of the index SNP, with an r2 threshold of 0.1 and p-

value threshold of 1.  

 

The PRS for each subject was computed using the “--score avg” setting in PRSice by 

summing up the product of each variant by the number of effective alleles observed divided 

by the number of alleles included for that individual. This last divisor makes the PRS scores 

more comparable between subjects in the presence of missing SNPs. PRS was calculated for 

each subject for two p-value cutoffs p=1e-5 (i.e., genome-wide suggestive loci) capturing 

oligogenic effects and p=0.5 capturing polygenic effects, which have been identified as 

sufficient to encompass threshold-variation17.  

 

Of note, it is imperative when working with PRS that there is no sample overlap between 

discovery GWAS (here Kunkle et al. 2019) and the target cohort (here the combined ADNI1, 

ADNIGO and ADNI2). We did not encounter any sample overlap as the discovery GWAS 

use The Alzheimer's Disease Genetics Consortium (ADGC) summary statistics, which only 

use HC and AD cases from ADNI1 comprising of 1.5T scans. However, from the 846 
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individuals with imaging and genetic data, we excluded 116 subjects with non-central 

European ancestry, resulting in the final sample size of 730 for our study. Moreover, 

demographic genetic differences arising from ancestral population structure have been found 

to bias PRS scores38. This is the case particularly for high p-value cut-offs (e.g., p=0.5) 

leading to PRS with many 1000s of SNPs. To account for this effect our linear regression 

models include the first five principal components of population structure as covariates.  

 

 

2.6 Second-order grey matter changes 

By plotting longitudinal whole brain volume change, or BSI (from baseline in units of cubic 

cm or ml where 1cm3=1ml), for each subject taken at three, six, twelve and twenty-four 

months post baseline, the gradient of the line of best fit gives a second order change (the 

second derivative) in whole brain volume, or the rate of change of BSI per subject. We term 

this rate of change the “atrophy rate”, which provides a measure of how fast the whole brain 

volume is declining. By way of illustration, if, for example, there is a BSI of 6ml between 

months 0-24 then the gradient would be 0.25ml/month2 (which equals 3ml/yr2) and would 

have an intercept of zero.  

 
 
 
2.7 Statistical analysis 

We first investigated polygenic risk scores for AD (AD PRS) as well as polygenic risk scores 

for CAD (CAD PRS) and their relationship with total whole brain volume WBV over a range 

of timepoints (which are normalised by dividing by Intracranial Volume, ICV), total White 

Matter Hyperintensities WMH (tot) at baseline (which are log-transformed) and CSF amyloid 

beta measurements. We used linear regressions within each diagnostic group adjusting for 

age, sex, education, APOE-e4 burden and the first five principal components of population 

structure. In the case of the WMH (tot) we also included the ICV as an additional covariate. 

Regressions provided t-values as well as p-values for the association between PRS and 

biomarkers; given the large number of comparisons (36 = 2 PRS thresholds x 2 PRS x 3 

diagnoses x 3 biomarkers) we have adjusted p-values for multiple comparisons using an 

FDR-correction (rate=5%). Given that both increasing whole brain atrophy, WMHs as well 

as BSI values are all known to lead to worse health outcomes all p-values are based on one-

tailed tests. For the regional WMH data we carried out an identical analysis but over five 

lobar regions: frontal, parietal, occipital, temporal and a combined basal ganglia, thalami and 
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infratentorial volume. Each of these regions was normalised by their corresponding regional 

volume. Finally, the occipital region was explored in more detail through four radial layers of 

increasing distance from the ventricular system, such that the first two layers represent the 

inner periventricular WMH loads and the final two layers the deep WMH loads.   

 

In addition, for the atrophy accelerations we also used linear mixed effects models (with 

subject as random intercept and time-since-baseline as random slope across diagnostic 

groups; R library lme4) across both p-value PRS-thresholds. In addition, to explore further 

how atrophy accelerations are associated with polygenic risk we also utilised linear mixed 

effects models. Here subject is the random effect so the atrophy acceleration is calculated per 

subject. In this way we allow for a positive correlation among measurements for the same 

individual once the fixed effects have been accounted for. Time or months since baseline is 

also included as a random effect. For both of these variables there is one intercept. In order to 

get the influence of PRS on the 'rate of atrophy' (atrophy acceleration) the model includes the 

PRS-by-time interaction (PRS*time). This allows different PRSs to influence the rate of 

BSIs. This is all implemented using the R library function lme4 with dependent variable the 

BSI measurement and the independent variable PRS*time or polygenic score-by-time 

interaction, where time is the months since baseline) across both p-value PRS-thresholds: 

full_model = lmer(atrophy ~ PRS * time + AGE + SEX + EDUCSTION + APOE4 + 

PC1...PC5 + (1 + time | ID)) 

 

Similar covariates as used in previous linear regressions and with the PRS*time comprise the 

fixed effects. We used a likelihood ratio test to compare full models and reduced models 

(without the polygenic score-by-time interaction in the reduced model) to compute model p-

values: 

 

reduced_model = lmer(atrophy ~ PRS + time + AGE + SEX + EDUCATION + APOE4 + 
PC1...PC5 + (1 + time | ID)) 
anova(full_model, reduced_model) 

 

We used a likelihood ratio test to compare full models and reduced models (without the 

polygenic score-by-time interaction) to compute model p-values. 
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3. Results  

 

 

 

Figure 1: Illustration of the selection of subjects filtered for analysis leaving 730 subjects that comprise 

CORE DATASET 1 and 602 subjects that comprise CORE DATASET 2. 

 

3.1 Filtering core datasets 

A total of 2269 unique subjects were extracted from ADNIMERGE of which 2257 had 

available baseline diagnoses. To maximise the numbers per diagnostic group, sub-diagnostic 

groups were merged: (1) "CN" (Control/Normal) and "SMC" (Significant Memory Concern) 

to "HC" (Healthy Control); (2) "EMCI" (Early Mild Cognitive Impairment) and "LMCI" 

(Late Mild Cognitive Impairment) to Mild Cognitive Impairment label "MCI"; (3) "AD" 

(Alzheimer’s Disease) remaining unchanged. A subset of these subjects with computed total 

and regional WMH using BaMoS (see below) results in a cohort of 871 individuals. Further 

subjects were excluded following addition of AD PRS and later CAD PRS (134,456 and 

135,584 variants respectively) and principal components of population structure, leaving 

N=730 subjects that comprise CORE DATASET 1 (Figure 1).  

 

We augmented CORE DATASET 1 with available boundary shift integral (BSI) data 

(ADNIMERGE foxlabbsi table) to investigate atrophy accelerations, i.e., changes in whole 

brain volumes over time. Given the paucity of scans at months 8, 18, 36, 48, 60, 72, 84, 96, 
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120, 132, 144 and 156 (see supplementary Figure S2) only scans from months 3, 6, 12 and 24 

were retained (Figure S3). The remaining atrophy values comprised 824 instances of negative 

total KN-BSIs (across all months), implying a growth in whole brain volume over time. As 

this is unlikely these scans were considered to be inaccurate and removed from the sample 

which resulted in a loss of 51 subjects. This formed CORE DATASET 2 which comprises 

1501 scans over N=602 subjects (Figure 1). 

 

3.1.1 Core dataset summaries 

Table 1 shows the demographics of CORE DATASET 1 and 2 respectively. There were 

significant differences in age and years of education between the diagnostic categories 

 

Table 1: Baseline demographics of Table 1a (top) CORE DATASET 1 and Table 1b (bottom) CORE 

DATASET 2. For CORE DATASET 1 more than half of the subjects fall in the MCI diagnostic category, 

almost a third HC and less than a fifth AD. The HC group has a higher fraction of females and as expected the 

AD participants are slightly older on average and there is a slight decrease in time spent in education for the AD 

subset (one-way ANOVA - age: p=1.49e-05; education: p= 0.0064). In CORE DATASET 2 we see a similar 

breakdown of sample sizes, sex, age and education by diagnostic group one-way ANOVA - age: p=2.51e-05; 

education: p=0.06). 

 HC MCI AD TOTAL 

N 218 (29.9%) 390 (53.4%) 122 (16.7%) 730 

Female (%) 117(53.7%) 171 (43.8%) 51(41.8%) 339 (46.4%) 

Age (SD) 73.4 (5.9) 71.5 (7.5) 74.8 (8.0) 72.6 (7.2) 

Education (SD) 16.7 (2.5) 16.3 (2.6) 15.7 (2.7) 16.3 (2.6) 

 

 HC MCI AD TOTAL 

N 172 (28.6%) 336 (55.8%) 94 (15.6%) 602 

Female (%) 91 (52.9%) 151 (44.9%) 37 (39.4%) 279 (46.3%) 

Age (SD) 73.7 (6.1) 71.7 (7.3) 75.1 (7.5) 72.8 (7.1) 

Education (SD) 16.6 (2.5) 16.4 (2.6) 15.8 (2.7) 16.3 (2.6) 

 

Table S1 (and Figure S3) show the number of follow-up MRI scans available within each 

diagnostic group. The proportions match the sample-size distributions. However, only a few 

scans were available at the 24-month mark for the AD subgroup.  
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3.2 White matter lesions 

WMH volume was greater in the AD group (Tukey multiple comparisons of means, AD-to-

MCI:padj=0.007, AD-to-HC:padj=0.03) and marginally greater in the MCI group over the 

healthy controls (Figure S1, a relationship which holds when WMH is corrected for subject 

age; WMH volume was also greater in the AD group when broken down by sex; Table S2). 

Following an exploration of regional WMH (including total frontal, parietal, temporal and 

occipital WMH volumes (results not shown) the most compelling result was the combined 

basal ganglia and infratentorial WMH volumes in male subjects, which showed a clear 

difference between diagnostic groups (Figure S4).  

 

3.3 Polygenic risk 

Our linear regression analysis for an effect between AD PRS or CAD PRS (over both PRS 

thresholds) on baseline GM, total WMH or CSF amyloid did not find any statistically 

significant results (PFDR>0.05; Table 2). However, for individuals with an AD diagnosis both 

AD PRS (PFDR=0.03) and CAD PRS (PFDR=0.04) are associated with occipital lobe WMH at 

the PRS-threshold of p=0.5 (Table 4).  

 

Table 2: Results from CORE DATASET 1 using the low p-cut-off 1e-05 and the high p-cut-off 0.5. t-

values (p-values, one-tailed FDR-corrected) to 2sf. following linear regression with confounders for age, sex, 

education, APOE-e4 burden and first five principal components of population structure (additional ICV 

confounder for log transformed WMH regression) across diagnostic groups for AD PRS and CAD PRS; WBV 

normalised by ICV; AD PRS and CAD PRS both exclude APOE region. For amyloid beta, subjects with 

missing data were removed from the linear model (n=665). 
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Table 3: Regional WMH analysis from CORE DATASET 1 using the low p-cut-off 1e-05 and the high p-

cut-off 0.5. T-values (p-values, one-tailed FDR-corrected) to 2dp. following linear regression with confounders 

for age, sex, education, APOE-e4 burden and first five principal components of population structure and natural 

log of regional WMH normalised by regional volume. 

    HC           MCI             AD 

     AD 

PRS 

CAD 

PRS 

AD 

PRS 

CAD 

PRS 

AD 

PRS 

CAD 

PRS 

P
=1

e-
05

 

frontal 0.29 

(0.45) 

0.24 

(0.41) 

-0.98 

(0.34) 

-2.0 

(0.21) 

1.8 

(0.29) 

-1.2 

(0.25) 

parietal -0.15 

(0.49) 

0.52 

(0.45) 

-1.0 

(0.49) 

-0.95 

(0.49) 

1.8 

(0.12) 

-1.5 

(0.16) 

occipital 0.66 

(0.45) 

0.29 

(0.46) 

-1.1 

(0.17) 

-1.6  

(0.5) 

1.4 

(0.06) 

-0.96 

(0.2) 

temporal -0.03 

(0.44) 

1.2 

(0.31) 

-0.13 

(0.42) 

-1.3 

(0.45) 

2.3 

(0.38) 

-0.69 

(0.28) 

basal ganglia + 

thalami + 

infratentorial 

0.28 

(0.46) 

-0.15 

(0.47) 

-1.0 

(0.11) 

-0.53 

(0.46) 

0.93 

(0.49) 

-0.21 

(0.47) 

P
=0

.5
 

frontal 0.64 

(0.38) 

0.76 

(0.27) 

-0.26 

(0.34) 

-0.10 

(0.49) 

1.1 

(0.29) 

0.80 

(0.25) 

parietal 0.52 

(0.49) 

0.29 

(0.45) 

-0.47 

(0.47) 

-0.09 

(0.49) 

1.5 

(0.12) 

1.2  

(0.16) 

occipital 0.48 

(0.34) 

0.27 

(0.46) 

-0.92 

(0.17) 

0.03  

(0.5) 

1.7 

(0.03) 

2.0  

(0.04) 

temporal 0.53 

(0.34) 

0.69 

(0.31) 

-1.3 

(0.20) 

-0.31 

(0.45) 

2.0 

(0.39) 

1.3  

(0.17) 

basal ganglia + 

thalami + 

infratentorial 

0.71 

(0.46) 

-0.42 

(0.45) 

-0.71 

(0.05) 

0.15 

(0.46) 

0.76 

(0.49) 

0.35 

(0.47) 

 

3.3 Whole brain atrophy 

Given that a snapshot of whole brain volume at baseline may not be sufficiently informative, 

we investigated the effect of total WMH at baseline and PRS on longitudinal changes in 

whole brain volumes. Following the baseline scan, KN-BSI increases (representing a 

decrease in whole brain volume) with passing months in all three diagnostic groups (Figure 

2), but this is most pronounced in the AD cohort (see Figure S4 for multiple comparison p-

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 13, 2022. ; https://doi.org/10.1101/2022.02.11.22270852doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.11.22270852


values). Using linear regression, we found a statistically significant effect (PFDR<0.05) of 

baseline WMH on WBV atrophy in all diagnostic groups over differing times (Table 4). This 

association also held in a corresponding regional analysis of frontal, parietal, occipital, 

temporal and combined basal ganglia, thalami and infratentorial WMH volumes (Table S3) 

with WBV drop being particularly correlated over months 12 and 24 (especially in the MCI 

cohort). 

 

 

 

Figure2: whole brain atrophy (KN-BSI) in each diagnostic group across all time intervals – m03, m06, 

m12 and m24 represent 3, 6, 12 and 24 months following baseline scan respectively. 

 

 

AD PRS is associated with whole brain atrophy (KN-BSI) in HC and MCI, but not in 

subjects with AD. Moreover, in the MCI cohort AD PRS is correlated with brain atrophy at 

each time-point but only for the p=1e-5 PRS threshold. Finally, in the HC cohort the KN-BSI 

and AD PRS are correlated in the later month 12 and month 24.  

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 13, 2022. ; https://doi.org/10.1101/2022.02.11.22270852doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.11.22270852


There is no statistically significant correlation between CAD PRS and KN-BSI in both the 

HC and AD diagnostic groups. However, in the MCI cohort we see a correlation in the later 

month 12 and month 24, but only for the p=0.5 threshold. So in the p=0.5 threshold for 

month 12 and month 24, the CAD PRS is more correlated with whole brain atrophy than the 

AD PRS (month 12: t=2.2, PFDR=0.03; month 24: t=2.1, PFDR=0.04).  

 

 

Table 4: Results from CORE DATASET 2. T-values (p-values) for a range of KN-BSI whole brain atrophy 

over scans at months 3, 6, 12 and 24 with respect to natural log of WMH (at baseline or month 0), CAD PRS 

and AD PRS in different diagnostic groups; linear regression with confounders for age, sex, education, APOE-

e4 burden and five principal components of population structure (including ICV confounder for WMH 

regression) across diagnostic groups for two PRS thresholds; APOE region excluded in AD PRS and CAD PRS. 

All PRS regression p-values are corrected for multiple testing and are one-tailed. 

 

 

 

3.4 whole brain atrophy acceleration 

 

To probe the rate of change of whole brain volume over longitudinal scans per subject with 

respect to the underlying genetics we enumerate the ‘atrophy acceleration’ in Table 5a. 

Atrophy acceleration is significantly greater in the AD cohort compared to HC and MCI 

(p<4.3e-13; Figure 3). While there is no correlation between CAD PRS and atrophy 

acceleration (Table 5a), there is a statistically significant correlation between AD PRS and 

atrophy acceleration for the p=0.5 threshold in the healthy controls (HC). It is also notable 

that at the p=1e-5 threshold this correlation shows a statistical trend (PFDR=0.06). Our mixed 

effect analysis (Table 5b) showed that there is no association between longitudinal changes in 

grey matter (quantified by the BSI) and time-by-CAD polygenic score interaction, however, 
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time-by-AD polygenic score interaction is correlated with longitudinal WBV changes in both 

the HC (PFDR =0.01) and MCI (PFDR =0.03) subsets at the p=1e-5 PRS-threshold.  

 

 

 

 

Figure 3: Median atrophy acceleration in cubic cm/month^2 across diagnostic groups. AD subjects whole 

brain volume is decreasing much faster than MCI, which are decreasing faster than HC. Multiple comparison 

Kruskal-Wallis p-values shown. 

 

Table 5: Table 5a (top) T-values (p-values) for atrophy acceleration, or, rate of change of whole brain 

volume (gradient from line of best fit over serial scans at months 3, 6, 12 and 24 per subject) with respect 

to AD PRS and CAD PRS. Following linear regression with confounders for age, sex, education, APOE-e4 

burden and five principal components of population structure across diagnostic groups for two PRS thresholds; 

APOE region excluded in AD PRS and CAD PRS. All PRS regression p-values are corrected for multiple 

testing and are one-tailed. Table 5b (bottom) P-values from linear mixed effects model with subject as 

random intercept and time-since-baseline as random slope. Across diagnostic groups and oligogenic and 

polygenic thresholds for atrophy acceleration or rate of change whole brain volume (gradient from line of best 

fit over serial scans at months 3, 6, 12 and 24 per subject) with respect to CAD PRS- and AD PRS-by-time 

interaction. 

Diagnostic 

group 

PRS 

cut-off 

CAD PRS AD PRS 

HC P=1e-5 -1.35 (0.28) 1.84 (0.06) 
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P=0.5 0.58 (0.35) 2.06 (0.04) 

MCI P=1e-5 -1.98 (0.26) 0.77 (0.49) 

P=0.5 -0.49 (0.34) -0.16 (0.49) 

AD P=1e-5 0.35 (0.47) -1.21 (0.49) 

P=0.5 -0.3 (0.47) 0.03 (0.49) 

 

Diagnostic 

group 

PRS 

cut-off 

CAD PRS AD PRS 

HC P=1e-5 0.46 0.01 

P=0.5 0.51 0.05 

MCI P=1e-5 0.27 0.03 

P=0.5 0.58 0.16 

AD P=1e-5 0.31 0.97 

P=0.5 0.86 0.72 
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4. Discussion [1771 words] 

In this study we aimed to investigate possible associations between cardiac genetics and 

Alzheimer’s dementia. We focused upon the genetic variants outside of the APOE locus that 

have been shown to be associated with AD, and separately, with CAD genetic variants. In 

particular we looked at their impacts upon white matter lesions and whole brain volume 

changes. We found a correlation between coronary artery genetic risk and whole brain 

atrophy suggesting that many small effect-size variants contribute to neuronal loss in mildly 

cognitively impaired (MCI) individuals. Surprisingly, under certain PRS-thresholds and at 

certain times in the disease-course the underlying polymorphisms for coronary artery disease 

may well have more of an impact than those of AD. We have also highlighted how whole 

brain atrophy acceleration is associated with Alzheimer’s disease polygenic risk score outside 

the APOE locus in healthy individuals. Further, we have shown for the first time that genetic 

variants that contribute to both AD and CAD beyond APOE are a strong predictor of white 

matter lesions in the occipital lobe in subjects already diagnosed with AD.  

 

White matter lesions were clearly higher in the AD group, something that is driven in part by 

age (Figure S5). While all linear models treated age as a covariate, disentangling white 

matter lesion increase as a function of time separate to any age-related AD pathologies is 

challenging. This may well be of great import if early pharmaceutical intervention is 

necessary to curtail AD in later life as WMH extent could be utilised as a surrogate 

biomarker for downstream dementia39. 

 

No associations were found between AD PRS or CAD PRS and baseline total WBV and 

WMH volumes across all diagnostic groups, although PRSs have been shown to be predictive 

of AD risk40. That said, AD PRS beyond APOE is correlated with white matter load in the 

occipital lobe in AD subjects upon the inclusion of many variants (polygenic p=0.5). In fact, 

our regional analysis of WMH showed statistically significant association between both AD 

PRS and CAD PRS with occipital lobe WMH lesion volume in the AD group at a PRS-

threshold of p=0.5. This confirms the presence of significant WMH lesions in this lobe seen 

in other dementia cohorts41 and the finding that occipital WMH is correlated with reduced 

executive function42. This may also be related to the cerebral amyloid angiopathy pathway. 

We were unable to establish this white matter load association by occipital lobe layer, 

however, this is to our knowledge the first confirmation of a genetic link with this regional 

WMH and a genetic link to coronary artery disease.  
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There are also no statistically significant correlations with CSF amyloid beta and CAD or AD 

PRS, presumably we did not find evidence for an association with AD PRS because amyloid 

biomarkers are mainly influenced by the APOE-e4 genotype21. Moreover, the analysis was 

conducted within disease groups and not between-disease-groups where stronger differences 

are known to exist43. 

 

When it came to investigating whole brain changes over time our analysis confirmed an 

association of baseline WMH with WBV decline across all three diagnostic groups. 

WMH here was derived from scans at baseline and not at the time of repeat scans, thus, 

WMH burden may indeed serve as an indicator of near-term or future decreases in whole 

brain volume. The strength of these associations was driven by sample size and time between 

baseline and follow-up WBV measure. These results confirm earlier studies41,44 that showed 

higher white matter lesion load is correlated with decreasing whole brain volume, albeit using 

cross-sectional WBV measures. Earlier studies investigating longitudinal whole brain volume 

change only found an association with WMH in healthy controls 45 or hippocampal atrophy 

in MCI subjects46, in contrast to our analysis which extends this correlation to participants 

with AD. 

 

In the matter of whether PRS are predictive of longitudinal decline in WBV, our analysis 

showed correlations between AD PRS and WBV decline in the HC group (later months) and 

MCI group (all months), but not the AD group. Decline in the healthy controls group reflects 

regional WBV decline with respect to AD PRS observed previously47. The lack of a 

polygenic effect in the AD group, may originate from either limited statistical power, the 

overall extent of WBV damage in AD or that while AD is advanced WBV volume decrease 

is driven by other factors beyond AD-risk variants. As in the HC group, the AD PRS, like 

baseline WMH, is correlated with WBV decrease in later months 12 and 24, which raises the 

question as to whether genetic effects become more influential with time. Before this can be 

answered we would have to account for there being more samples in months 12 and 24, and 

the fact that picking up changes in WBV volumes over months 3 and 6 will be more difficult 

as they will likely be more subtle. Interestingly, the AD PRS correlation with WBV atrophy 

in the MCI group was significant at all time points for the oligogenic (p=1e-5) PRS-threshold 

but not the polygenic (p=0.5) PRS-threshold. This suggests that there are some larger effect-

size, common variants (i.e., the peaks in the Manhattan plot outside the APOE locus) that are 
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predictive of brain atrophy in persons that already display some cognitive impairment. This 

result confirms the hypothesis that a small number of AD-SNPs allow maximal predictive 

power in AD-related subjects48. MCI, however, is a heterogeneous group of which only a 

subset exhibit MCI due to an underlying AD pathology. This is also the most bimodal group 

in terms of whether they have AD (progressors vs. not progressors). Thus, the AD PRS may 

correctly predict WBV decline in subjects who have MCI due to AD.  

 

The motivation for this study was an exploration of the genetic effects of coronary artery 

disease on Alzheimer’s disease. The CAD PRS was only correlated with WBV decline in the 

MCI group reflecting incidence-based relationships seen in other studies49. Again, the PRS-

WBV atrophy association was strongest in the later months 12 and 24 but showed a statistical 

trend in the earlier months 3 and 6. In the MCI group, CAD PRS is significantly correlated 

with WBV atrophy for polygenic effects (p=0.5 threshold) but AD PRS is significantly 

correlated with WBV atrophy for oligogenic effects (p=1e-5 threshold). One interpretation 

might be that the more genetic variants included, the more important the role of cardiac 

genetics over AD genetics in individuals with mild cognitive impairment. Another 

interpretation may be that AD PRS is contributing to individuals with MCI due to developing 

AD dementia, whereas CAD PRS is bestowing subjects a more vascular component to their 

cognitive loss. 

 

Recent work50,51 investigating the genetic architecture of AD with regards to PRS thresholds 

argues that the polygenic threshold is optimal. Their work shows that studies using an 

oligogenic threshold ignore the fact that there will be fewer APOE-e4 carrying individuals in 

the older category biasing results against high p-value threshold variants. In our study we 

removed the APOE locus so as to explore genetic changes outside this genetic region, 

however, all linear regressions include APOE-e4 burden as a confounding variable. 

Investigators have shown that APOE’s effect on AD is greater in older cohorts and suggest 

that variants outside of APOE could contribute to AD in older persons52. As APOE has been 

considered a target for both the treatment of coronary heart disease and AD these two 

pathologies may both be affected by similar pathways. We examined regression models with 

and without the APOE-e4 covariate using ANOVA. The inclusion of the APOE-e4 burden 

improved all models significantly (padj < 0.01) with the exception being WBV volume 

decline in months 3 (padj=0.8) and 6 (padj=0.1) in the HC group (results not shown). 
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Brain volume is decreasing faster in AD subjects than MCI subjects, where in turn it is 

decreasing faster than in healthy individuals (Figure 3). The study of polygenic risk suggests 

that many small effect-size AD variants beyond APOE are a predictor of atrophy acceleration 

in healthy individuals (and perhaps also MCI subjects). This is in many ways a surprising 

result as one would expect the AD cohort (and perhaps the MCI cohort) to be comprised of 

persons whose WBV decrease is accelerating as the pathology develops. Some caution is 

warranted here given that AD cohort subjects have fewer longitudinal scans thereby biasing 

the computed gradient. That said, the HC correlation may indicate that genetic effects 

modulate the speed at which brain cells atrophy during healthy stages. What we do not know 

is whether a larger atrophy acceleration while healthy makes AD inevitable, more likely or in 

no way indicative of downstream pathology. However, it is reassuring that the AD PRS in 

healthy controls is corroborated in the mixed effects models, which are more flexible, 

embodying both random intercepts and random slopes so as to more realistically capture the 

subject-level heterogeneity. 

 

The BSI data available through ADNI are not mid-point symmetric: WBV change going from 

scan A-to-C is not the same as adding WBV volume changes in scan A-to-B and scan B-to-C. 

The implication is that one has to be cautious about saying anything about the time-varying 

nature of these non-symmetric BSIs. We investigated this effect using symmetric BSI data 53 

for the same ADNIGO and ADNI2 subjects (n=572; 3T, accelerated, identical scanner 

protocol, removing BSI<0, only months 3, 6, 12 and 24 post baseline). Repeated analysis on 

this symmetric BSI data resulted in the same statistically significant outcomes as described in 

this work (results not shown). The only exception to this is that the correlation between 

baseline WMH and WBV atrophy in the HC group was no longer replicated. We are also 

cautious about over-interpreting our results: while the BSI does measure changes at the 

border of the brain, it does not mean that the change has actually occurred there. Tissue may 

have been lost from the middle of the white matter with this change being measured at the 

edge of the brain.   

 

Given that both whole brain atrophy and whole brain atrophy acceleration are both shown to 

be correlated with polygenic scores it may be that utilising such genetic summary information 

(perhaps alongside other routinely collected health measures) can one day be used at birth (or 

middle age) as a predictor late-life cognitive problems54. If so, and if such risk is driven in 

part by cardiac health, it may be that this risk can be reduced through wellness and behaviour 
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changes in, early to mid-life55. Of course, this does depend on whether healthy individuals 

with such brain changes go on to develop dementia, something only larger longitudinal 

studies over many years can answer.  
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5. Conclusions 

The link between CAD and AD is gaining more attention with one recent study identifying 

23 brain regions associated with both cardiovascular disease and Alzheimer’s dementia56. 

WMH loads have been linked to hypertension, hypercholesterolemia and BMI in middle-

aged subjects, all of which also contribute to cardiac health57. While our work offers some 

support for the importance of genetic variants known to effect coronary heart disease also 

being involved in cognitive decline in the elderly, more data is needed to validate these 

findings. Similarly, the usefulness of WMHs and atrophy accelerations need to be 

investigated further. In particular serial WMH measures alongside WBV changes would be a 

more realistic guide to cerebral changes. Further understanding of this pathway from gene to 

brain will come from cardiac imaging of the heart linked to CAD genetics alongside routinely 

measured biomarkers over the life-course of many individuals such as those found in large 

scale, data-rich, longitudinal cohort studies. 

 

 
 
  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 13, 2022. ; https://doi.org/10.1101/2022.02.11.22270852doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.11.22270852


 25

Acknowledgements 

This research was supported by the National Institute for Health Research University College 

London Hospitals Biomedical Research Centre. Andre Altmann holds an MRC eMedLab 

Medical Bioinformatics Career Development Fellowship. This work was supported by the 

Medical Research Council [grant number MR/L016311/1].  

Data collection and sharing for this project was funded by the Alzheimer's Disease 

Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and 

DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded 

by the National Institute on Aging, the National Institute of Biomedical Imaging and 

Bioengineering, and through generous contributions from the following: AbbVie, 

Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; 

BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai 

Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La 

Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; 

Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson 

Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; 

Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis 

Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical 

Company; and Transition Therapeutics. The Canadian Institutes of Health Research is 

providing funds to support ADNI clinical sites in Canada. Private sector contributions are 

facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The 

grantee organization is the Northern California Institute for Research and Education, and the 

study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of 

Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the 

University of Southern California.  

We thank the International Genomics of Alzheimer's Project (IGAP) for providing summary 

results data for these analyses. The investigators within IGAP contributed to the design and 

implementation of IGAP and/or provided data but did not participate in analysis or writing of 

this report. IGAP was made possible by the generous participation of the control subjects, the 

patients, and their families. The i–Select chips was funded by the French National Foundation 

on Alzheimer's disease and related disorders. EADI was supported by the LABEX 

(laboratory of excellence program investment for the future) DISTALZ grant, Inserm, Institut 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 13, 2022. ; https://doi.org/10.1101/2022.02.11.22270852doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.11.22270852


 26

Pasteur de Lille, Université de Lille 2 and the Lille University Hospital. GERAD/PERADES 

was supported by the Medical Research Council (Grant n° 503480), Alzheimer's Research 

UK (Grant n° 503176), the Wellcome Trust (Grant n° 082604/2/07/Z) and German Federal 

Ministry of Education and Research (BMBF): Competence Network Dementia (CND) grant 

n° 01GI0102, 01GI0711, 01GI0420. CHARGE was partly supported by the NIH/NIA grant 

R01 AG033193 and the NIA AG081220 and AGES contract N01–AG–12100, the NHLBI 

grant R01 HL105756, the Icelandic Heart Association, and the Erasmus Medical Center and 

Erasmus University. ADGC was supported by the NIH/NIA grants: U01 AG032984, U24 

AG021886, U01 AG016976, and the Alzheimer's Association grant ADGC–10–196728. 

 
 
Funding 
E.deS. acknowledges support from the National Institute for Health Research (NIHR) 
University College London Hospitals Biomedical Research Centre (UCLH BRC). A.A. holds 
a Medical Research Council eMedLab Medical Bioinformatics Career Development 
Fellowship. This work was supported by the Medical Research Council [grant number 
MR/L016311/1]. C.H.S. is supported by an Alzheimer’s Society Junior Fellowship (AS-JF-
17-011). J.B. was supported by an Alzheimer’s Research United Kingdom Senior Research 
Fellowship. M.A.S. acknowledges financial support the Engineering and Physical Sciences 
Research Council (EPSRC)-funded UCL Centre for Doctoral Training in Medical Imaging 
(EP/L016478/1).  
 
 
 
Competing Interests 
The authors declare no competing interests. 
  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 13, 2022. ; https://doi.org/10.1101/2022.02.11.22270852doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.11.22270852


 27

References 

1. Eggink E, Moll van Charante EP, van Gool WA, Richard E. A Population Perspective on 

Prevention of Dementia. Journal of clinical medicine. 2019;8(6):834. 

doi:10.3390/jcm8060834 

2. Gaugler J, James B, Johnson T, Marin A, Weuve J, Assoc As. 2019 Alzheimer's disease 

facts and figures. Alzheimers & Dementia. Mar 2019;15(3):321-387. 

doi:10.1016/j.jalz.2019.01.010 

3. Villemagne VL, Dore V, Burnham SC, Masters CL, Rowe CC. Imaging tau and amyloid-

beta proteinopathies in Alzheimer disease and other conditions. Nat Rev Neurol. Apr 

2018;14(4):225-236. doi:10.1038/nrneurol.2018.9 

4. Edwards FA. A Unifying Hypothesis for Alzheimer's Disease: From Plaques to 

Neurodegeneration. Trends in Neurosciences. May 2019;42(5):310-322. 

doi:10.1016/j.tins.2019.03.003 

5. Abeysinghe A, Deshapriya R, Udawatte C. Alzheimer's disease; a review of the 

pathophysiological basis and therapeutic interventions. Life Sci. Sep 1 2020;256:117996. 

doi:10.1016/j.lfs.2020.117996 

6. Francis PT, Ramirez MJ, Lai MK. Neurochemical basis for symptomatic treatment of 

Alzheimer's disease. Neuropharmacology. Sep-Oct 2010;59(4-5):221-9. 

doi:10.1016/j.neuropharm.2010.02.010 

7. Fierini F. Mixed dementia: Neglected clinical entity or nosographic artifice? J Neurol 

Sci. Mar 15 2020;410:116662. doi:10.1016/j.jns.2019.116662 

8. Ylikoski A, Erkinjuntti T, Raininko R, Sarna S, Sulkava R, Tilvis R. White matter 

hyperintensities on MRI in the neurologically nondiseased elderly. Analysis of cohorts of 

consecutive subjects aged 55 to 85 years living at home. Stroke. Jul 1995;26(7):1171-7. 

doi:10.1161/01.str.26.7.1171 

9. Garde E, Mortensen EL, Krabbe K, Rostrup E, Larsson HBW. Relation between age-

related decline in intelligence and cerebral white-matter hyperintensities in healthy 

octogenarians: a longitudinal study. Lancet. Aug 19 2000;356(9230):628-634. doi:Doi 

10.1016/S0140-6736(00)02604-0 

10. Snyder HM, Corriveau RA, Craft S, et al. Vascular contributions to cognitive 

impairment and dementia including Alzheimer's disease. Alzheimers Dement. Jun 

2015;11(6):710-7. doi:10.1016/j.jalz.2014.10.008 

11. Frey BM, Petersen M, Mayer C, Schulz M, Cheng B, Thomalla G. Characterization of 

White Matter Hyperintensities in Large-Scale MRI-Studies. Front Neurol. 2019;10:238. 

doi:10.3389/fneur.2019.00238 

12. Khera AV, Kathiresan S. Genetics of coronary artery disease: discovery, biology and 

clinical translation. Nat Rev Genet. Jun 2017;18(6):331-344. doi:10.1038/nrg.2016.160 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 13, 2022. ; https://doi.org/10.1101/2022.02.11.22270852doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.11.22270852


 28

13. Van Giau V, Bagyinszky E, Yang YS, Youn YC, An SSA, Kim SY. Genetic analyses of 

early-onset Alzheimer's disease using next generation sequencing. Scientific Reports. Jun 10 

2019;9doi:ARTN 8368 

10.1038/s41598-019-44848-2 

14. Gatz M, Reynolds CA, Fratiglioni L, et al. Role of genes and environments for 

explaining Alzheimer disease. Arch Gen Psychiatry. Feb 2006;63(2):168-74. 

doi:10.1001/archpsyc.63.2.168 

15. Ridge PG, Hoyt KB, Boehme K, et al. Assessment of the genetic variance of late-onset 

Alzheimer's disease. Neurobiol Aging. May 2016;41:200 e13-200 e20. 

doi:10.1016/j.neurobiolaging.2016.02.024 

16. Purcell SM, Wray NR, Stone JL, et al. Common polygenic variation contributes to risk 

of schizophrenia and bipolar disorder. Nature. Aug 6 2009;460(7256):748-752. 

doi:10.1038/nature08185 

17. Escott-Price V, Sims R, Bannister C, et al. Common polygenic variation enhances risk 

prediction for Alzheimer's disease. Brain. Dec 2015;138(Pt 12):3673-84. 

doi:10.1093/brain/awv268 

18. Chaudhury S, Brookes KJ, Patel T, et al. Alzheimer's disease polygenic risk score as a 

predictor of conversion from mild-cognitive impairment. Transl Psychiatry. May 24 

2019;9(1):154. doi:10.1038/s41398-019-0485-7 

19. Morgan AR, Touchard S, O'Hagan C, et al. The Correlation between Inflammatory 

Biomarkers and Polygenic Risk Score in Alzheimer's Disease. Journal of Alzheimers Disease. 

2017;56(1):25-36. doi:10.3233/Jad-160889 

20. Martiskainen H, Helisalmi S, Viswanathan J, et al. Effects of Alzheimer's disease-

associated risk loci on cerebrospinal fluid biomarkers and disease progression: a polygenic 

risk score approach. J Alzheimers Dis. 2015;43(2):565-73. doi:10.3233/JAD-140777 

21. Altmann A, Scelsi MA, Shoai M, et al. A comprehensive analysis of methods for 

assessing polygenic burden on Alzheimer’s disease pathology and risk beyond APOE. Brain 

Communications. 2020;2(1)doi:10.1093/braincomms/fcz047 

22. Lupton MK, Strike L, Hansell NK, et al. The effect of increased genetic risk for 

Alzheimer's disease on hippocampal and amygdala volume. Neurobiol Aging. Apr 

2016;40:68-77. doi:10.1016/j.neurobiolaging.2015.12.023 

23. Sabuncu MR, Buckner RL, Smoller JW, et al. The Association between a Polygenic 

Alzheimer Score and Cortical Thickness in Clinically Normal Subjects. Cerebral Cortex. Nov 

2012;22(11):2653-2661. doi:10.1093/cercor/bhr348 

24. Cruchaga C, Del-Aguila JL, Saef B, et al. Polygenic risk score of sporadic late-onset 

Alzheimer's disease reveals a shared architecture with the familial and early-onset forms. 

Alzheimers Dement. Feb 2018;14(2):205-214. doi:10.1016/j.jalz.2017.08.013 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 13, 2022. ; https://doi.org/10.1101/2022.02.11.22270852doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.11.22270852


 29

25. Chasioti D, Yan JW, Nho K, Saykin AJ. Progress in Polygenic Composite Scores in 

Alzheimer's and Other Complex Diseases. Trends in Genetics. May 2019;35(5):371-382. 

doi:10.1016/j.tig.2019.02.005 

26. Sudre CH, Cardoso MJ, Bouvy WH, Biessels GJ, Barnes J, Ourselin S. Bayesian model 

selection for pathological neuroimaging data applied to white matter lesion segmentation. 

IEEE Trans Med Imaging. Oct 2015;34(10):2079-102. doi:10.1109/TMI.2015.2419072 

27. Walsh P, Sudre CH, Fiford CM, et al. CSF amyloid is a consistent predictor of white 

matter hyperintensities across the disease course from aging to Alzheimer's disease. 

Neurobiology of Aging. 2020/07/01/ 2020;91:5-14. 

doi:https://doi.org/10.1016/j.neurobiolaging.2020.03.008 

28. Cardoso MJ, Modat M, Wolz R, et al. Geodesic Information Flows: Spatially-Variant 

Graphs and Their Application to Segmentation and Fusion. IEEE Transactions on Medical 

Imaging. 2015;34(9):1976-1988. doi:10.1109/TMI.2015.2418298 

29. Freeborough PA, Fox NC. The boundary shift integral: an accurate and robust 

measure of cerebral volume changes from registered repeat MRI. IEEE Trans Med Imaging. 

Oct 1997;16(5):623-9. doi:10.1109/42.640753 

30. Leung KK, Clarkson MJ, Bartlett JW, et al. Robust atrophy rate measurement in 

Alzheimer's disease using multi-site serial MRI: Tissue-specific intensity normalization and 

parameter selection. Neuroimage. Apr 1 2010;50(2):516-523. 

doi:10.1016/j.neuroimage.2009.12.059 

31. Manning EN, Leung KK, Nicholas JM, et al. A Comparison of Accelerated and Non-

accelerated MRI Scans for Brain Volume and Boundary Shift Integral Measures of Volume 

Change: Evidence from the ADNI Dataset. Neuroinformatics. Apr 2017;15(2):215-226. 

doi:10.1007/s12021-017-9326-0 

32. Saykin AJ, Shen L, Foroud TM, et al. Alzheimer's Disease Neuroimaging Initiative 

biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans. Alzheimers 

Dement. May 2010;6(3):265-273. doi:10.1016/j.jalz.2010.03.013 

33. Scelsi MA, Khan RR, Lorenzi M, et al. Genetic study of multimodal imaging 

Alzheimer's disease progression score implicates novel loci. Brain. Jul 1 2018;141(7):2167-

2180. doi:10.1093/brain/awy141 

34. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation 

PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7. 

doi:10.1186/s13742-015-0047-8 

35. Kunkle BW, Grenier-Boley B, Sims R, et al. Genetic meta-analysis of diagnosed 

Alzheimer's disease identifies new risk loci and implicates A beta, tau, immunity and lipid 

processing. Nature Genetics. Mar 2019;51(3):414-+. doi:10.1038/s41588-019-0358-2 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 13, 2022. ; https://doi.org/10.1101/2022.02.11.22270852doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.11.22270852


 30

36. Nikpay M, Goel A, Won HH, et al. A comprehensive 1000 Genomes-based genome-

wide association meta-analysis of coronary artery disease. Nature Genetics. Oct 

2015;47(10):1121-+. doi:10.1038/ng.3396 

37. Choi SW, O'Reilly PF. PRSice-2: Polygenic Risk Score software for biobank-scale data. 

Gigascience. Jul 1 2019;8(7)doi:10.1093/gigascience/giz082 

38. Kerminen S, Martin AR, Koskela J, et al. Geographic Variation and Bias in the 

Polygenic Scores of Complex Diseases and Traits in Finland. American Journal of Human 

Genetics. Jun 6 2019;104(6):1169-1181. doi:10.1016/j.ajhg.2019.05.001 

39. d’Arbeloff T, Elliott ML, Knodt AR, et al. White matter hyperintensities are common 

in midlife and already associated with cognitive decline. Brain Communications. 

2019;1(1)doi:10.1093/braincomms/fcz041 

40. Baker E, Escott-Price V. Polygenic Risk Scores in Alzheimer's Disease: Current 

Applications and Future Directions. Mini Review. Frontiers in Digital Health. 2020-August-11 

2020;2(14)doi:10.3389/fdgth.2020.00014 

41. Brugulat-Serrat A, Salvadó G, Operto G, et al. White matter hyperintensities mediate 

gray matter volume and processing speed relationship in cognitively unimpaired 

participants. Human Brain Mapping. 2020;41(5):1309-1322. 

doi:https://doi.org/10.1002/hbm.24877 

42. Jiang J, Paradise M, Liu T, et al. The association of regional white matter lesions with 

cognition in a community-based cohort of older individuals. NeuroImage: Clinical. 

2018/01/01/ 2018;19:14-21. doi:https://doi.org/10.1016/j.nicl.2018.03.035 

43. Saddiki H, Fayosse A, Cognat E, et al. Age and the association between 

apolipoprotein E genotype and Alzheimer disease: A cerebrospinal fluid biomarker–based 

case–control study. PLOS Medicine. 2020;17(8):e1003289. 

doi:10.1371/journal.pmed.1003289 

44. Wang Y, Yang Y, Wang T, Nie S, Yin H, Liu J. Correlation between White Matter 

Hyperintensities Related Gray Matter Volume and Cognition in Cerebral Small Vessel 

Disease. Journal of Stroke and Cerebrovascular Diseases. 2020/12/01/ 2020;29(12):105275. 

doi:https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105275 

45. Barnes J, Carmichael OT, Leung KK, et al. Vascular and Alzheimer's disease markers 

independently predict brain atrophy rate in Alzheimer's Disease Neuroimaging Initiative 

controls. Neurobiology of Aging. 2013/08/01/ 2013;34(8):1996-2002. 

doi:https://doi.org/10.1016/j.neurobiolaging.2013.02.003 

46. Fiford CM, Manning EN, Bartlett JW, et al. White matter hyperintensities are 

associated with disproportionate progressive hippocampal atrophy. Hippocampus. Mar 

2017;27(3):249-262. doi:10.1002/hipo.22690 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 13, 2022. ; https://doi.org/10.1101/2022.02.11.22270852doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.11.22270852


 31

47. Harrison TM, Mahmood Z, Lau EP, et al. An Alzheimer’s Disease Genetic Risk Score 

Predicts Longitudinal Thinning of Hippocampal Complex Subregions in Healthy Older Adults. 

eneuro. 2016;3(3):ENEURO.0098-16.2016. doi:10.1523/eneuro.0098-16.2016 

48. Zhang Q, Sidorenko J, Couvy-Duchesne B, et al. Risk prediction of late-onset 

Alzheimer’s disease implies an oligogenic architecture. Nature Communications. 2020/09/23 

2020;11(1):4799. doi:10.1038/s41467-020-18534-1 

49. Elman JA, Panizzon MS, Logue MW, et al. Genetic risk for coronary heart disease 

alters the influence of Alzheimer's genetic risk on mild cognitive impairment. Neurobiology 

of Aging. 2019/12/01/ 2019;84:237.e5-237.e12. 

doi:https://doi.org/10.1016/j.neurobiolaging.2019.06.001 

50. Ganna L, Emily B, Josua S-H, et al. Identifying individuals with high risk of Alzheimer’s 

disease using polygenic risk scores is most accurate when using all genetic information. 

Nature Portfolio. 2021/06/16 2021;doi:10.21203/rs.3.rs-137252/v1 

51. Leonenko G, Baker, Emily, et al. Identifying individuals with high risk of Alzheimer’s 

disease using polygenic risk scores is most accurate when using all genetic information. 

Nature Portfolio. 2021/06/16 2021;doi:10.21203/rs.3.rs-137252/v1 

52. Bellou E, Baker E, Leonenko G, et al. Age-dependent effect of APOE and polygenic 

component on Alzheimer's disease. Neurobiology of Aging. 2020/09/01/ 2020;93:69-77. 

doi:https://doi.org/10.1016/j.neurobiolaging.2020.04.024 

53. Leung KK, Ridgway GR, Ourselin S, Fox NC. Consistent multi-time-point brain atrophy 

estimation from the boundary shift integral. Neuroimage. Feb 15 2012;59(4):3995-4005. 

doi:10.1016/j.neuroimage.2011.10.068 

54. Khera AV, Chaffin M, Aragam KG, et al. Genome-wide polygenic scores for common 

diseases identify individuals with risk equivalent to monogenic mutations. Nature Genetics. 

Sep 2018;50(9):1219-+. doi:10.1038/s41588-018-0183-z 

55. Abell JG, Kivimäki M, Dugravot A, et al. Association between systolic blood pressure 

and dementia in the Whitehall II cohort study: role of age, duration, and threshold used to 

define hypertension. European Heart Journal. 2018;39(33):3119-3125. 

doi:10.1093/eurheartj/ehy288 

56. Lamar M, Boots EA, Arfanakis K, Barnes LL, Schneider JA. Common Brain Structural 

Alterations Associated with Cardiovascular Disease Risk Factors and Alzheimer's Dementia: 

Future Directions and Implications. Neuropsychol Rev. Oct 3 2020;doi:10.1007/s11065-020-

09460-6 

57. Salvadó G, Brugulat-Serrat A, Sudre CH, et al. Spatial patterns of white matter 

hyperintensities associated with Alzheimer’s disease risk factors in a cognitively healthy 

middle-aged cohort. Alzheimer's Research & Therapy. 2019/01/24 2019;11(1):12. 

doi:10.1186/s13195-018-0460-1 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 13, 2022. ; https://doi.org/10.1101/2022.02.11.22270852doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.11.22270852

