SUPPLEMENTARY MATERIAL

Logistic regression model for hospitalization risk factors

We investigated whether known risk factors for severe COVID-19 were significant predictors of hospitalization risk in our cohort. We used odds ratios derived from penalized maximum likelihood (PLM) logistic regression (R package *logistf*) to estimate the association between potential risk factors and probability of hospitalization. We chose this approach since the outcome is binary, has relatively low prevalence (n=34, 6.0%) and cell counts in some categories are low. Regression results for the base model are shown in Table S1.

Variable	Odds ratio of hospitalization	95% CI	<i>p</i> -value
Sex	1.42	0.59 - 3.15	0.420
Age over 55 years	2.39	0.99 - 5.47	0.054
Ethnicity	1.26	0.53 - 2.78	0.584
Obesity	2.68	1.11 – 6.72	0.029
Overweight	1.20	0.46 - 3.07	0.707
Underweight	1.57	0.012 - 14.8	0.757
Comorbidity	1.18	0.44 - 2.90	0.724
Smoking/vaping	0.16	0.001 - 1.20	0.085

Table S1 : Multivariate logistic regression model for the odds of hospitalization as function ofknown severe COVID-19 risk factors.

Model results did not vary significantly when changing the age cutoff defining the older age category. The baseline model with cutoff at 55 years of age has the lowest AIC value and has thus been retained as the best fit model. Obesity was the only covariate significantly associated with higher odds of hospitalization.

Cox regression model for serology time series data

We built exploratory Cox regression models to investigate which individual factors act as predictors of persistence of IgG seropositivity after primary infection. The event of interest for this analysis was a negative serology. Regression models were built sequentially with the *coxph*() function to identify candidate predictors and potential confounders. Results for the coefficients of the final model are shown in Table S2 below. The proportional hazard hypothesis was tested with the *cox.zph*() function. The p-value for the global hypothesis test was 0.065; the p-values for individual covariates were all above the 0.05 threshold. The serology data is thus compatible with proportional hazards at the 95% confidence level.

Further adjustment for smoking/vaping, vitamin D intake, workplace, profession, and household size did not significantly change model results.

Variable	Hazard ratio	95% CI	<i>p</i> -value
Asymptomatic primary infection	2.25	1.30 - 3.91	0.004
Polysymptomatic primary infection	0.65	0.46 - 0.91	0.012
Hospitalization	0.37	0.12 - 1.19	0.095
Sex	1.02	0.65 - 1.60	0.916
Age over 55 years	0.52	0.30 - 0.92	0.025
Any comorbidity	1.13	0.65 - 1.98	0.664
Non-Caucasian	0.48	0.31 - 0.75	0.001
Obesity	0.44	0.27 - 0.72	0.001
Overweight	0.82	0.58 - 1.17	0.270
Underweight	1.24	0.39 - 4.00	0.716

 Table S2 : Multivariate Cox regression model for the hazard of testing seronegative