Cov²MS: an automated matrix-independent assay for mass spectrometric detection and measurement of SARS-CoV-2 nucleocapsid protein in infectious patients

Bart Van Puyvelde ¹, Katleen Van Uytfanghe ², Laurence Van Oudenhove ³, Ralf Gabriels ^{4,5}, Tessa Van Royen ^{4,6}, Arne Matthys^{4,6}, Morteza Razavi ⁷, Richard Yip ⁷, Terry Pearson ⁷, Marijn van Hulle ³, Jan Claereboudt ³, Kevin Wyndham ⁸, Don Jones ^{9,10}, Xavier Saelens ^{4,6}, Geert A. Martens ¹¹, Christophe Stove ², Dieter Deforce ¹, Lennart Martens ^{4,5}, Johannes P.C. Vissers ⁸, N. Leigh Anderson ⁷, Maarten Dhaenens ^{1*}

¹ ProGenTomics, Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium

² Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium

³ Waters Corporation, 2600 Antwerp, Belgium

⁴ VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium

⁵ Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium

⁶ Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium

⁷ SISCAPA Assay Technologies, Inc., Box 53309, Washington, DC 20009, United States of America and Victoria, BC Canada

⁸ Waters Corporation, Wilmslow SK9 4AX, United Kingdom and Milford, MA 01757, United States of America

⁹ Leicester Cancer Research Centre, RKCSB, University of Leicester, UK and John and Lucille van Geest biomarker facility, Cardiovascular Research Centre, Glenfield Hospital, Leicester LE1 7RH, United Kingdom

¹⁰ The Department of Chemical Pathology and Metabolic Diseases, Level 4, Sandringham Building, Leicester Royal Infirmary, Leicester LE1 7RH, United Kingdom

¹¹ AZ Delta Medical Laboratories, AZ Delta General Hospital, 8800 Roeselare, Belgium

Keywords: SARS-CoV-2, Covid-19, Mass Spectrometry, Proteomics, Viral proteins, Peptides, Diagnostics

*Corresponding author: maarten.dhaenens@ugent.be

Supplemental Figures

Supplemental Figure 1. Screenshot of the protocol automation in the OneLab interface

Supplemental Figure 2. Response of six SISCAPA peptide targets in a PBS dilution series measured using three different gradients (Blue: 1 min, Orange: 2 min and Grey: 8 min). Here, the x- and y-axis represent the LogConcentration of Nucleoprotein and the corresponding summed peptide LogInt of the MS signal, respectively.

Supplementary Figure 3. Light/heavy ratio of six SISCAPA peptides in eight different matrices (i.e. eSwab, PBS, Copan UTM, Virocult, Bioer UTM, Plasma, 100 mM (NH₄)HCO₃ and Saliva Patient) using three different gradients.

Supplementary Figure 4: Gene and peptide selection

Supplemental Figure 4. Contribution of the different **A**) genes (qPCR) and **B**) peptides (MS) to diagnosis as expressed in Selected Frequency % (SF%). **C**) Linear correlation between summed MRM LogInt AYN and Cq for the different media (PBS, UTM and VIM) in the sample batch separately.

Peptide	MRM	Cone Voltage (V)	Collision Energy (V)	Retention time (1min)	Retention time (2min)	Retention time (8min)	Scan window (1min)	Scan window (2min)	Scan window (8min)
ADETQALPQR	564.8 > 712.4 (y6)	35	24		0.48	1.13		0.1-0.7	0.5-1.6
	564.8 > 584.4 (y5)	35	20		0.48	1.13		0.1-0.7	0.5-1.6
	564.8 > 400.2 (y3)	35	17		0.48	1.13		0.1-0.7	0.5-1.6
	572.3 > 407.2 (y3)	35	17		0.48	1.13		0.1-0.7	0.5-1.6
AYNVTQAFGR	563.8 > 892.5 (y8)	35	17	0.4	0.72	2.43	0.15-0.8	0.5-0.9	1.9-2.9
	563.8 > 778.4 (y7)	35	17	0.4	0.72	2.43	0.15-0.8	0.5-0.9	1.9-2.9
	563.8 > 679.4 (y6)	35	20	0.4	0.72	2.43	0.15-0.8	0.5-0.9	1.9-2.9
	563.8 > 349.2 (b3)	35	17	0.4	0.72	2.43	0.15-0.8	0.5-0.9	1.9-2.9
	571.3 > 689.3 (y6)	35	20	0.4	0.72	2.43	0.15-0.8	0.5-0.9	1.9-2.9
GQGVPINTNSSPDDQIGYYR	727.7 > 1126.5 (y9)	35	23		0.81	2.62		0.6-1	2.1-3.1
	727.7 > 558.3 (y4)	35	23		0.81	2.62		0.6-1	2.1-3.1
	727.7 > 563.8 (y9++)	35	23		0.81	2.62		0.6-1	2.1-3.1
	727.7 > 342.2 (b4)	35	23		0.81	2.62		0.6-1	2.1-3.1
	736.7 > 570.2 (y9++)	35	23		0.81	2.62		0.6-1	2.1-3.1
KQQTVTLLPAADLDDFSK	664.0 > 1078.5 (y10)	35	18	0.44	1.18	3.8	0.15-0.8	1-1.4	3.3-4.3
	664.0 > 539.8 (y10++)	35	14	0.44	1.18	3.8	0.15-0.8	1-1.4	3.3-4.3
	664.0 > 799.5 (b7)	35	22	0.44	1.18	3.8	0.15-0.8	1-1.4	3.3-4.3
	671.3 > 545.2 (y10++)	35	14	0.44	1.18	3.8	0.15-0.8	1-1.4	3.3-4.3
NPANNAAIVLQLPQGTTLPK	687.4 > 841.5 (y8)	35	17		1.19	3.9		1-1.4	3.4-4.4
	687.4 > 766.4 (b8)	35	23		1.19	3.9		1-1.4	3.4-4.4
	687.4 > 433.2 (b9)	35	20		1.19	3.9		1-1.4	3.4-4.4
	696.0 > 851.4 (y8)	35	17		1.19	3.9		1-1.4	3.4-4.4
DGIIWVATEGALNTPK	842.9 > 286.1 (b3)	35	30		1.24	4.15		1-1.7	3.7-5
	562.3 > 700.4 (y7)	35	10		1.24	4.15		1-1.7	3.7-5
	562.3 > 700.4 (y13++)	35	18		1.24	4.15		1-1.7	3.7-5
	852.4 > 289.1 (b3)	35	30		1.24	4.15		1-1.7	3.7-5

Supplemental Table 1. MRM parameters for the six SISCAPA target peptides. Transitions highlighted in orange are used as stable isotope labelled standard.