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Abstract 
Background. Psilocin, the neuroactive metabolite of psilocybin, is a serotonergic psychedelic that 

induces an acute altered state of consciousness, evokes lasting changes in mood and personality in 

healthy individuals, and has potential as an antidepressant treatment. Examining the acute effects of 

psilocin on resting-state dynamic functional connectivity implicates network-level connectivity motifs 

that may underlie acute and lasting behavioral and clinical effects.  

Aim. Evaluate the association between resting-state dynamic functional connectivity (dFC) 

characteristics and plasma psilocin level (PPL) and subjective drug intensity (SDI) before and right after 

intake of a psychedelic dose of psilocybin in healthy humans. 

Methods. Fifteen healthy individuals completed the study. Before and at multiple time points after 

psilocybin intake, we acquired 10-minute resting-state blood-oxygen-level-dependent functional 

magnetic resonance imaging scans. Leading Eigenvector Dynamics Analysis (LEiDA) and diametrical 

clustering were applied to estimate discrete, sequentially active brain states. We evaluated 

associations between the fractional occurrence of brain states during a scan session and PPL and SDI 

using linear mixed-effects models. We examined associations between brain state dwell time and PPL 

and SDI using frailty Cox proportional hazards survival analysis.  

Results. Fractional occurrences for two brain states characterized by lateral frontoparietal and medial 

fronto-parietal-cingulate coherence were statistically significantly negatively associated with PPL and 

SDI. Dwell time for these brain states was negatively associated with SDI and, to a lesser extent, PPL. 

Conversely, fractional occurrence and dwell time of a fully connected brain state was positively 

associated with PPL and SDI.  

Conclusion. Our findings suggest that the acute perceptual psychedelic effects induced by psilocybin 

may stem from drug-level associated decreases in the occurrence and duration of lateral and medial 

frontoparietal connectivity motifs in exchange for increases in a uniform connectivity structure. We 

apply and argue for a modified approach to modeling eigenvectors produced by LEiDA that more fully 

acknowledges their underlying structure. Together these findings contribute to a more comprehensive 

neurobiological framework underlying acute effects of serotonergic psychedelics.  

Keywords: psychedelics, psilocybin, fmri, connectivity, dynamics, dfc 

Highlights: 

• We examined psilocybin effects on resting-state fMRI dynamic functional connectivity 

• Diametrical clustering described as improved strategy for LEiDA-defined brain states 

• Individual brain state dynamics defined by fractional occurrence and dwell time 
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• Two frontoparietal states and a fully connected brain state affected by psilocybin 

• Brain state dynamics associated with psilocin level and subjective experience 

 

1 Introduction 
Psilocybin is a psychedelic compound that has gained significant interest over the last decade with 

promising evidence for therapeutic efficacy in treating several neurological and neuropsychiatric 

disorders, including depression (Carhart-Harris et al., 2021, 2018; Davis et al., 2021), anxiety (Vargas 

et al., 2020), substance abuse (Bogenschutz et al., 2015; Garcia-Romeu et al., 2019), migraine 

(Schindler et al., 2021), and cluster headache (Sewell et al., 2006). Through stimulation of the 

serotonin 2A receptor (5-HT2AR), psilocin, the neuroactive metabolite of psilocybin, potently and 

acutely induces an altered state of consciousness (Griffiths et al., 2006; Hasler et al., 2004; Madsen et 

al., 2019; Stenbæk et al., 2021). Psilocybin also induces rapid and lasting positive effects on mood, 

well-being, and personality (Carhart-Harris et al., 2018; Erritzoe et al., 2018; MacLean et al., 2011; 

Madsen et al., 2020). These intriguing effects precipitate the need to resolve associated and perhaps 

mediating neurobiological mechanisms. Such information can potentially inform future drug 

development programs and identify patient subgroups that may benefit from psychedelic therapy or 

predict potential adverse drug effects.  

Previous studies have characterized distributed functional brain connectivity and macroscale cerebral 

networks acutely affected by a single administration of a serotonin psychedelic compound such as 

psilocybin with resting-state functional magnetic resonance imaging (rs-fMRI) (McCulloch et al., 

2021a; Vollenweider and Preller, 2020). Studies suggest modulation of distributed connectivity 

patterns include alterations in thalamic connectivity (Preller et al., 2019), whole-brain connectivity 

(Madsen et al., 2021; Preller et al., 2020), decreased segregation and integration of canonical resting-

state networks (Madsen et al., 2021; Mason et al., 2020), and macroscopic measures such as entropy 

(Roseman et al., 2014). However, most studies have focused on “static” functional connectivity, 

estimated as the correlation between pairs or across sets of areas over the duration of the scan 

session. This approach assumes signal stationarity for the entirety of the 5-10-minute rs-fMRI scan 

session, which may neglect relevant and observable neural dynamics arising from, e.g., mind-

wandering or ephemeral experiences.  

Dynamic functional connectivity (dFC) has emerged as a method for extracting informative, time-

varying brain connectivity patterns (Preti et al., 2017). Unsupervised machine learning methods are 

employed to cluster instantaneous or small time-window connectivity metrics into discrete groups of 

distinct coactivation (Allen et al., 2014; Calhoun et al., 2014; Deco and Kringelbach, 2016). Such 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 10, 2022. ; https://doi.org/10.1101/2021.12.17.21267992doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.17.21267992
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

metrics are usually model-based and include lagged and zero-lag correlation coefficients and various 

estimates of interregional functional synchrony (Bastos and Schoffelen, 2016; Glerean et al., 2012). 

An appealing aspect of dFC strategies is that they attempt to model dynamics of connectivity 

processes that occur within a resting-state scan session, which is particularly relevant to the evaluation 

of psychedelics, which induce a dynamically evolving psychological experience.  

Acute psychedelic effects on dynamic functional brain connectivity have been previously examined in 

only two separate datasets (Lord et al., 2019; Luppi et al., 2021; Tagliazucchi et al., 2014). Lord and 

colleagues applied Leading Eigenvector Dynamics Analysis (LEiDA) (Cabral et al., 2017) to rs-fMRI data 

acquired before and after a single intravenous dose of psilocybin in nine subjects. The authors 

reported that the probability of occurrence (“fractional occurrence”) of a discrete brain state 

comprising frontoparietal network elements was significantly lower after psilocybin infusion (Lord et 

al., 2019). Notably, plasma psilocin levels were not measured, which we have shown is tightly coupled 

to 5-HT2AR drug occupancy (Madsen et al., 2019) at the time of functional brain imaging. Moreover, 

there was only partial agreement between the discrete brain states identified and canonical resting-

state networks, suggesting that acute psilocin effects may be informatively characterized by 

approaches that group sets of regions in a data-driven manner (e.g., clustering) as opposed to a priori 

defined network structures. It is critical to evaluate whether similar findings are observed in an 

independent sample and to evaluate this effect following oral psilocybin administration, as this is how 

it is administered clinically. During oral administration, the psychedelic effects are protracted over 

approximately six hours. Examining psilocybin effects on functional connectivity in alignment with an 

assessment of plasma psilocin levels and subjective effects throughout this period provides a novel 

perspective on its dynamic effects on the brain. 

Furthermore, we see an opportunity to improve LEiDA and associated statistical evaluations. Typically, 

LEiDA clusters leading eigenvectors of instantaneous phase coherence maps using Euclidean k-means. 

Prior to clustering, eigenvectors are flipped so that the majority of elements are negative. However, 

eigenvectors are, in practice, normalized to have unit length and have arbitrary sign. Thus, 

eigenvectors are distributed on the antipodally symmetric unit hypersphere, attributes not 

acknowledged by Euclidean k-means nor preserved by the aforementioned flip procedure (see 

Supplementary Figure S1). This leads to sub-optimal clustering. Directional statistics is a branch of 

statistics that deals with data where the direction holds more information than the amplitude, 

typically represented as normalized vectors distributed on some geometric manifold (Mardia and 

Jupp, 1999). Specifically, the Watson distribution (Watson, 1965) is optimal for modeling data 

distributed on the antipodally symmetric unit hypersphere. Diametrical clustering (Dhillon et al., 2003; 

Sra and Karp, 2013) is the k-means equivalent of Watson mixture models and may offer more suitable 
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clustering of eigenvectors in LEiDA. In addition to fractional occurrence, the average duration of brain 

state occurrences (“dwell time”) can complementarily inform the nature of connectivity dynamics. We 

suggest modeling dwell time using survival analysis, which more appropriately captures the 

conditional dependence of state probability on the previous length of active time (Cox, 1972).  

Here we evaluated acute psilocybin effects on dFC with blood-oxygen-level-dependent (BOLD) rs-fMRI 

in 15 healthy participants, each of whom completed one 10-min rs-fMRI scan session before intake of 

a psychedelic dose of psilocybin and multiple 10-min rs-fMRI scan sessions after psilocybin intake 

(approximately 40, 80, 140 and 300-min post-administration). We applied LEiDA with diametrical 

clustering to account for the intrinsic spherical geometry and antipodal symmetry in the distribution 

of eigenvectors. To establish the association between dFC characteristics and the 

psychopharmacological effects of psilocybin, we determined the association between the fractional 

occurrence of discrete brain states, defined by clustering, and both plasma psilocin level (PPL) and 

subjective drug intensity (SDI), which we have shown are coupled to 5-HT2AR occupancy and baseline 

5-HT2AR (Madsen et al., 2021, 2019; Stenbæk et al., 2021). We determined associations between PPL 

and SDI and discrete brain state dwell time using Cox regression frailty models.  

 

2 Methods 
A brief description of experimental procedures is provided here; a full description can be found 

elsewhere (Madsen et al., 2021).  

2.1 Experimental procedures 
Fifteen healthy participants (age 34.3 ± 9.8 years, six females) with no or limited prior experience with 

psychedelics were recruited for a brain imaging study, including a single psilocybin intervention. All 

participants provided written informed consent and were healthy, including screening for 

neurological, psychiatric, or somatic illnesses. Two psychologists prepared participants and supported 

them at all stages of the intervention.  

Psilocybin was taken orally in multiples of 3 mg psilocybin capsules, dosed according to body weight 

(total dose: 0.24 ± 0.04 mg/kg) in a single-blind cross-over study design. Within each cross-over, 

participants received either psilocybin or a non-psychedelic drug (ketanserin); only the psilocybin data 

are reported here. Functional neuroimaging data were acquired once before and at regular intervals 

(approximately 40, 80, 130, and 300 minutes) after administration. Immediately after each rs-fMRI 

acquisition, participants were asked to rate their perceived SDI on a Likert scale from 0 to 10 (0 = “not 

at all intense”, 10 = “very intense”). Following each subjective rating, a blood sample was drawn from 
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an intravenous catheter to determine the concentration of unconjugated psilocin in plasma 

(Kolaczynska et al., 2021; Madsen et al., 2021). The study was approved by the ethics committee for 

the capital region of Copenhagen (journal identifier: H-16,028,698, amendments: 56,023, 56,967, 

57,974, 59,673, 60,437, 62,255) and the Danish Medicines Agency (EudraCT identifier: 2016–004,000–

61, amendments: 2,017,014,166, 2,017,082,837, 2,018,023,295).  

2.2 Neuroimaging data acquisition 
MRI data were acquired on a 3T Siemens Prisma scanner (Siemens, Erlangen, Germany) with a 64-

channel head coil. A structural T1-weighted 3D image was acquired at the pre-drug imaging session 

(inversion time = 900 ms, TE/TR = 2.58/1900 ms, flip angle = 9o, matrix 256x256x224, resolution 0.9 

mm isotropic, no gap). BOLD fMRI data were acquired using a T2*-weighted gradient echo-planar 

imaging sequence (TE/TR = 30/2000 ms, flip angle = 90o, in-plane matrix = 64x64 mm, in-plane 

resolution = 3.6x3.6 mm, 32 slices, slice thickness = 3.0 mm, gap = 0.75 mm). 300 volumes (10 minutes) 

were acquired in each imaging session. Participants were instructed to close their eyes and let the 

mind wander freely without falling asleep. In total, 74 scan sessions were acquired across the 15 

participants. 

2.3 fMRI data preprocessing 
fMRI data preprocessing was performed separately for each of the 10-minute rs-fMRI scan sessions. 

The data were preprocessed in SPM12 (http://www.fil.ion.ucl.ac.uk/spm). Steps included 1) slice-

timing correction, 2) spatial realignment and field unwarping, 3) co-registration of the T1-weighted 

structural image to the first functional volume, 4) segmentation of the T1-weighted image into gray 

matter, white matter, and cerebrospinal fluid (CSF) maps, 5) normalization of the Anatomical 

Automatic Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) to the co-registered structural images, 

and 6) smoothing of functional images (4mm FWHM Gaussian kernel). Motion and signal variance 

artifacts were identified using Artifact detection Tool (ART, 

https://www.nitrc.org/projects/artifact_detect). Individual scan sessions where more than 50% of 

volumes exceeded the ART threshold were excluded from the analysis. Based on this criterion, two 

scan sessions from a single participant were excluded, resulting in 21,600 rs-fMRI volumes included in 

subsequent analyses. fMRI time-series were denoised using CONN (Whitfield-Gabrieli and Nieto-

Castanon, 2012) by voxel-wise nuisance regression of 1) three translation and three rotation 

parameters from realignment and their first-order derivatives, and 2) anatomical component 

correction using the first five principal components and their first-order derivatives from white-matter 

and CSF time-series (Behzadi et al., 2007). Time-series data were bandpass filtered between 0.008 and 

0.09 Hz. We used the AAL atlas to parcellate the denoised functional images into 90 cortical and 

subcortical regions. 
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2.4 Extraction of BOLD phase-series 
For each scan session, we estimated regional phase-series from the BOLD signals 𝑠𝑠(𝑡𝑡) by constructing 

the analytic signal 𝑧𝑧(𝑡𝑡) = 𝑠𝑠(𝑡𝑡) + 𝑖𝑖𝑠𝑠ℎ(𝑡𝑡), where 𝑖𝑖  is the imaginary unit and 𝑠𝑠ℎ(𝑡𝑡) = 𝑠𝑠(𝑡𝑡) ∗ 1
𝜋𝜋𝜋𝜋

 is the 

Hilbert transform, where ∗ represents the convolution operator (see Figure 1). The analytic signal is 

circularly evolving and can thus be described by instantaneous (i.e., per time point) amplitude 𝑎𝑎(𝑡𝑡) =

�𝑠𝑠(𝑡𝑡)2 + 𝑠𝑠ℎ(𝑡𝑡)2  and phase 𝜃𝜃(𝑡𝑡) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝑠𝑠ℎ(𝑡𝑡)
𝑠𝑠(𝑡𝑡)

� . The instantaneous phase is a sawtooth curve 

representing the locally linear temporal phase angle variation with a discontinuity at the jump from 

−𝜋𝜋 to 𝜋𝜋 (see Figure 1A, 2nd panel), and generally contains the oscillatory information in 𝑠𝑠(𝑡𝑡), while 

𝑎𝑎(𝑡𝑡)  encompasses (potentially spurious) amplitude information. Instantaneous phase coherence 

between brain region pairs (𝑗𝑗, 𝑘𝑘) ∈ {1, … ,90}2 was described using the symmetric phase coherence 

map 𝑨𝑨𝑡𝑡  for every time point 𝑡𝑡  with elements 𝐴𝐴𝑡𝑡,𝑗𝑗,𝑘𝑘 = 𝑐𝑐𝑐𝑐𝑐𝑐 �𝜃𝜃𝑡𝑡,𝑗𝑗 − 𝜃𝜃𝑛𝑛,𝑘𝑘� . Since 𝑨𝑨𝑡𝑡  has 𝑃𝑃
2−𝑃𝑃
2

 unique 

elements, we may be well served by describing its information in lower dimensions using the 

eigendecomposition. Due to the angle difference identity cos�𝜃𝜃𝑗𝑗 − 𝜃𝜃𝑘𝑘� = cos𝜃𝜃𝑗𝑗 cos𝜃𝜃𝑘𝑘 +

sin𝜃𝜃𝑗𝑗 sin𝜃𝜃𝑘𝑘 , for any two regions 𝑗𝑗  and 𝑘𝑘 , 𝑨𝑨𝑡𝑡  can be fully decomposed into two P-dimensional 

orthogonal eigenvectors, which are each a linear combination of the vectors 𝒄𝒄 = cos𝜽𝜽𝑡𝑡  and 𝒔𝒔 =

sin𝜽𝜽𝑡𝑡 . For each time point, we retained only the eigenvector 𝒗𝒗1,𝑡𝑡  corresponding to the largest 

eigenvalue, thereby capturing the dominant instantaneous connectivity pattern.  
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Figure 1: Methodological pipeline for leading eigenvector dynamics analysis (LEiDA) and diametrical clustering. (A): The LEiDA 
pipeline consists of extraction of session and region-wise instantaneous BOLD phases via the Hilbert transform (B), followed 
by an eigenvalue decomposition of the associated phase coherence map for every time-point, 𝑡𝑡 (C). The eigenvectors are 
constrained to unit norm. Diametrical clustering is applied to the set of leading eigenvectors across all scan sessions and 
subjects to derive discrete brain states (D). Every volume is hard-assigned to the closest brain state, generating the network 
activation sequence (A, lower panel), after which session-specific brain state descriptors such as fractional occurrence or dwell 
time may be calculated.  

2.5 Clustering 
Eigenvectors are usually normalized to unit length and have arbitrary sign, and are thus distributed on 

the surface of the antipodally symmetric unit hypersphere. The (Dimroth-Scheidegger)-Watson 

distribution models such data (Sra and Karp, 2013; Watson, 1965). If we assume that eigenvectors can 

be described by a mixture of independent Watson distributions, we can disentangle clusters by 

estimating a Watson mixture model. Diametrical clustering is derived from mixture modeling of 

multivariate Watson distributions where only the mean direction is modeled, disregarding cluster 

variance and covariance structures (Dhillon et al., 2003; Sra and Karp, 2013). Diametrical clustering 

can be regarded as the standard k-means algorithm where centroid locations are updated according 

to the squared Pearson correlation similarity measure: 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡,𝑐𝑐 = �𝒗𝒗1,𝑡𝑡
𝑇𝑇 𝝁𝝁𝑐𝑐�

2
, where 𝝁𝝁𝑐𝑐  is the centroid 

of cluster c, and 𝒗𝒗1,𝑡𝑡 the leading eigenvector of the phase coherence map for any time point t or scan 

session. Diametrical clustering may be described as the limit where all Watson distributions in the 

mixture have shared concentration parameter 𝜅𝜅 → ∞ . Importantly, this approach addresses two 
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limitations of previously applied clustering techniques, namely 1) the ability to group correlated and 

anticorrelated unit norm vectors into the same cluster and 2) by constraining the optimization to the 

surface of the associated hypersphere. The squared Pearson correlation is equivalent to the squared 

cosine similarity for normalized vectors, and thus equivalent to finding the squared cosine of the angle 

between the unit vectors. We initialized our algorithm using k-means++ rewritten for diametrical 

clustering (Arthur and Vassilvitskii, 2007). For each k, 5 replications of the clustering algorithm were 

run, where the best of the 5 replications (in terms of the sum of squared Pearson correlation to the 

nearest centroid) was chosen as the output.  

To retrieve recurrent interregional phase coherence patterns, we grouped the 21,600 leading 

eigenvectors into k clusters, which we denote “brain states” (see Figure 1D). The optimal number of 

brain states is not known or well-defined; therefore, we produced models for k ranging from 2 to 20, 

with higher k revealing more fine-grained patterns (Cabral et al., 2017; Figueroa et al., 2019; ML et al., 

2020)¶.  

2.6 Identification of recurrent brain states 
The diametrical clustering algorithm returns k unordered cluster directions and labels of volumes 

assigned to each model according to the squared Pearson correlation. To match brain states across k, 

the estimated centroids for k were assigned to the closest centroid for 𝑘𝑘 − 1, without replacement. 

To match specific centroids across different k, we selected a template k, and, for all other k, found the 

centroid that most closely matched the template centroid in terms of squared Pearson correlation. To 

analyze clustering stability, we ran diametrical clustering 1000 times with five replications each for all 

𝑘𝑘 ∈ {2, … ,20}, and identified, for each k, the state most closely matching the relevant template states. 

If the Pearson correlation coefficient between the identified states and the template was negative, 

the sign of the identified state was inverted. We also compared diametrical clustering output to that 

of Euclidean k-means, where the output centroids from the latter were normalized to unit length 

before matching.  

2.7 Brain network state occurrence  
To identify associations between brain state dynamics and PPL and SDI, we calculated the fractional 

occurrence for each brain state, as defined by the fraction of time points in a scan session assigned to 

that brain state. For each state, this produced 72 FO estimates, one for each scan session. We modeled 

the association between FO and PPL (or SDI) with a random intercept linear mixed-effects model to 

account for inter-subject variability. The models were fitted using maximum likelihood, and we used 

the likelihood ratio to test for significance of the fixed effect and generate confidence intervals 

unadjusted for multiple comparisons (CIunadj). To account for multiple testing across a set of k states, 

we performed permutation testing with max-T adjustment and 100,000 permutations by scrambling 
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the normalized residuals of the linear mixed-effects model (Lee and Braun, 2012; Westfall and Young, 

1993). The initially observed statistical estimates (likelihood ratios) were then compared to the 

distribution of maximum statistics across the k models for every permutation, and a corresponding p-

value was calculated as the number of permutations where the initial likelihood ratio exceeded the 

maximum statistic. Permutation testing and Max-T correction were performed within-k and separately 

for the models with PPL and SDI as fixed effects, respectively.  

2.8 Brain network state dwell time 
We employed survival analysis to model state dwell time, i.e., the time spent in a brain state before 

switching. Whenever the brain state changed within a scan session, we noted the number of preceding 

samples t and the corresponding subject, PPL, and SDI. The first active state from a scan session was 

excluded since we cannot estimate the true dwell time in this case. We performed right censoring for 

the last active state in a scan session. We modeled the dwell time of a brain state using a Cox 

proportional hazards model, including a frailty element z to account for inter-subject variability: 

𝜆𝜆(𝑡𝑡|𝑥𝑥𝑛𝑛𝑛𝑛 , 𝑧𝑧𝑛𝑛) = 𝑧𝑧𝑛𝑛𝜆𝜆0(𝑡𝑡) exp�𝑥𝑥𝑛𝑛𝑛𝑛𝛽𝛽� , where 𝑛𝑛 = 1, … ,𝑁𝑁  denotes subjects 𝑙𝑙 = 1, … ,𝑁𝑁𝑛𝑛  denotes 

sessions for subject n, and 𝑥𝑥𝑛𝑛𝑛𝑛  the corresponding PPL or SDI (Cox, 1972; Vaupel et al., 1979).  We 

report the estimated hazard ratio 𝐻𝐻𝐻𝐻 = 𝑒𝑒𝛽𝛽� = 𝜆𝜆�𝑡𝑡�𝑥𝑥 = 1�
𝜆𝜆�𝑡𝑡�𝑥𝑥 = 0�, which is proportional in the covariate level 

(PPL or SDI). The associated confidence interval is defined as 𝑒𝑒𝛽𝛽±1.96 𝑠𝑠𝑠𝑠(𝛽𝛽) , where 𝑠𝑠𝑠𝑠(𝛽𝛽)  is the 

estimated standard error of the coefficient estimate. 𝜆𝜆0(𝑡𝑡) represents the common baseline hazard 

irrespective of subject or covariate level. We could not find any existing permutation test specifically 

for frailty Cox proportional hazards models. Therefore, we controlled the FWER using Bonferroni-Holm 

correction (Holm, 1979) applied within-k.  

2.9 Visualizations, code, and data availability 
We have published the MATLAB (The MathWorks, inc.) and R code used to generate the results 

presented in this study at (https://github.com/anders-s-olsen/psilocybin_dynamic_FC). We used 

BrainNet Viewer(Xia et al., 2013) (https://www.nitrc.org/projects/bnv/) to generate connectivity 

visualizations. The datasets generated and/or analyzed during the current study can be made available 

upon completion of a formal data sharing agreement. 

 

3 Results 
21,600 leading eigenvectors defined by LEiDA were clusteres into k discrete brain states defined by 

centroids determined with diametrical clustering (see Figure 1). We explored a range of 𝑘𝑘 ∈ {2, … ,20} 

centroids, aligned with previous studies (Cabral et al., 2017; Figueroa et al., 2019; Kringelbach et al., 
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2020). Generally, specific centroid locations were stable across contiguous values of k; 90-dimensional 

projections of all centroids for all values of k can be found in Supplementary Video S2. See Figure 2 for 

a visualization of estimated brain states for k = 7.  

 

Figure 2: Brain states estimated using LEiDA and diametrical clustering with k=7 with spatial connectivity representation (A) 
and coherence maps defined as the outer product of the cluster centroid (B). Only edges above the 75th percentile of absolute 
edge strengths are shown. In (A), all positive edges are shown in red and negative edges in blue, while nodes are colored 
according to the sign of their element in the respective cluster centroid.  

For all values of 𝑘𝑘 ≥ 4, we observed a “global” brain state characterized by all centroid elements 

having the same sign (e.g., see state 1 in Figure 2). All other brain states were characterized by 

coherence loadings in both directions. For example, for k = 7, brain state 2 showed strong coherence 

between areas related to visual processing (red nodes) and regions related to the salience network 

(blue nodes). Brain state 4 showed coherence between regions related to the frontoparietal, or central 

executive network, including the dorsolateral prefrontal cortex and posterior parietal cortex. Anti-

coherent elements were observed in cingulate and parietal regions.  

3.1 Psilocybin effects on brain state fractional occurrence and dwell time  
Figures 3a and 3c summarize FWER-controlled p-values of linear mixed-effects models estimates of 

the association between fractional occurrence (FO) of individual brain states and PPL or SDI, 

respectively. Across multiple values of 𝑘𝑘 ≥ 4, we observed one brain state (“frontoparietal state 1”, 

green triangle symbols in Figure 3, see also Figure 4) for which the FO was statistically significantly 

negatively associated with both PPL (k = 7: slope = -0.0066, 95% CIunadj = [-0.0094;-0.0038]; pFWER-maxT < 

0.001; units: FO per μg/ml PPL; Figure 4; Supplementary Table S3) and SDI (k = 7: slope = -0.014, 95% 

CIunadj = [-0.017;-0.010]; pFWER-maxT < 0.001; units: FO per SDI rating; Figure 4; Supplementary Table S3). 

Specifically, the association between brain state FO and PPL was significant for the interval 𝑘𝑘 ∈

{4, … ,9}, whereas for SDI, this association was significant for all 𝑘𝑘 ≥ 4. Put another way, the average 

total time the brain occupies this frontoparietal state during the course of a 10-min rs-fMRI scan was 

negatively related to PPL and SDI. For 𝑘𝑘 ≥ 8, we observed a second brain state (“frontoparietal state 

2”, red star symbols in Figure 3, see also Supplementary Figure S4) for which the FO was also 
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statistically significantly negatively associated with both PPL (k = 11: slope = -0.0039, 95% CIunadj = [-

0.0058;-0.0021]; pFWER-maxT = 0.001; units: FO per μg/ml PPL; Supplementary Figure S4; Supplementary 

Table S3) and SDI (k = 11: slope = -0.0076, 95% CIunadj = [-0.0101;-0.0050]; pFWER-maxT < 0.001; units: FO 

per SDI rating; Supplementary Figure S4; Supplementary Table S3). For 𝑘𝑘 ≥ 4, we observed a third 

brain state (“fully connected state”, blue diamond symbols in Figure 3, see also Supplementary Figure 

S5) for which the FO was statistically significantly positively associated with SDI (k = 7: slope = 0.0076, 

95% CIunadj = [0.0024;0.0127]; pFWER-maxT = 0.035; units: FO per SDI rating; Supplementary Figure S5; 

Supplementary Table S3). We did not observe any statistically significant associations between the 

fully connected state and PPL. 

Figure 3b and 3d summarize Bonferroni-Holm corrected p-values of Cox proportional hazards models 

of the effect of PPL and SDI on dwell time, respectively. Frontoparietal state 1 dwell time was 

negatively associated with PPL across several values of k (k = 7; Hazard ratio (HR) = 1.017, 95% CIunadj 

= [1.006;1.028]; pFWER-BH = 0.018; Figure 4; Supplementary Table S3) and SDI (k = 7; HR = 1.037, 95% 

CIunadj = [1.018;1.055]; pFWER-BH < 0.001; Figure 4; Supplementary Table S3). Specifically, the association 

between brain state dwell time and PPL was statistically significant for 𝑘𝑘 ∈ {4, … ,7}, whereas for SDI, 

this association was statistically significant for 𝑘𝑘 ∈ {4, … ,17,20}. In other words, the higher the PPL 

and SDI, the larger the hazard ratio, i.e., the less average continuous time spent in frontoparietal state 

1. For 𝑘𝑘 ≥ 8, frontoparietal state 2 also showed a negative association with both PPL (k = 11; HR = 

1.027, 95% CIunadj = [1.013;1.040]; pFWER-BH = 0.001; Supplementary Figure S4; Supplementary Table S3) 

and SDI (k = 11; HR = 1.057, 95% CIunadj = [1.036;1.079]; pFWER-BH < 0.001; Supplementary Figure S4; 

Supplementary Table S3). Overall, frontoparietal state 2 was significantly inversely associated to PPL 

for 𝑘𝑘 = {9,11,12,15} and to SDI for 𝑘𝑘 ∈ {8, … ,18}. For 𝑘𝑘 ≥ 4 we observed that dwell time of the fully 

connected state was positively associated with both PPL (k = 7; HR = 0.983, 95% CIunadj = [0.972;0.996]; 

pFWER-BH = 0.045; Supplementary Figure S5; Supplementary Table S3) for 𝑘𝑘 = {4,6,7,8,12} and SDI (k = 

7; HR = 0.970, 95% CIunadj = [0.952;0.987]; pFWER-BH = 0.005; Supplementary Figure S5; Supplementary 

Table S3) for 𝑘𝑘 ∈ {4, … ,10,12,13,14,16}. 

All centroids across all values of k showing a statistically significant association between either PPL or 

SDI and either FO or dwell time are listed in Supplementary Table S3. 
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Figure 3: Summary statistics linking brain state fractional occurrence and dwell time with plasma psilocin level (PPL) and 

subjective drug intensity (SDI). (A): Linear mixed-effects models of the association between PPL and brain state fractional 

occurrence. (B): Cox proportional hazards frailty models of the association between PPL and brain state dwell time. (C): Linear 

mixed-effects models of the association between SDI and brain state fractional occurrence. (D): Cox proportional hazards 

frailty models of the association between SDI and brain state dwell time. Horizontal red line denotes family-wise error rate 

(FWER) threshold for statistical significance. Fractional occurrence p-values were corrected using 100,000 permutations and 

max-T correction applied within-k (see Methods). Where an observed statistic exceeded all permuted values, the p-value was 

set to 10−5 (i.e., − 𝑙𝑙𝑙𝑙𝑙𝑙10(𝑝𝑝) = 5). Dwell time p-values were corrected using Bonferroni-Holm applied within-k. For every k, 

points were identified as one of the three brain states by matching all the corresponding centroids to the templates (k=7 for 

frontoparietal state 1 and the fully connected state, k=11 for frontoparietal state 2).  
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Figure 4: Frontoparietal state 1 and statistical associations for k=7. (A): 90-dimensional centroid, where region pairs with the 
same sign are said to be coherent. Many frontal regions, superior and inferior parietal regions, and inferior temporal lobe 
showed coherence with each other (red). Likewise, areas around the parieto-occipital sulcus, cingulum, and medial orbital 
frontal cortex were coherent (blue). (B): Functional coherence map and connectivity representation of the brain state. Edges 
are shown if their strength exceeds the 75th percentile of absolute edge strengths. In the connectivity visualizations, negative 
edges are blue and positive edges are red, while nodes are colored according to the sign of their centroid element in (A). (C): 
Associations between the expression of frontoparietal state 1 and plasma psilocin level and subjective drug intensity using 
linear mixed-effects models for fractional occurrence (left, each point is a scan session) and frailty Cox proportional hazards 
models for dwell time (right). For dwell time, the marginal survival curves for pre-specified covariate levels are shown. Colors 
in plots of fractional occurrence (C, left) denote individual participants. 

3.2 Stability of highlighted states  
To identify the three brain states across k, we defined template centroids (k = 7 for frontoparietal 

state 1 and the fully connected state, k = 11 for frontoparietal state 2, see Supplementary Figures S6-

8). For every k, the brain state most closely matching each of these three templates were marked. In 
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Supplementary Figure S9, between-k correlation coefficients indicate that the three states had very 

similar centroids across the range of k. The between-k similarity can also be confirmed visually in 

Supplementary Figures S6-S8. Frontoparietal state 2 appeared initially at k = 8 and qualitatively 

became more associated with PPL and SDI than frontoparietal state 1 (see Figure 3). Likewise, 

estimated fractional occurrence slopes for the association between frontoparietal state 1 and PPL and 

SDI approximately halved at the transition from k = 7 to k = 8 (Supplementary Table S3), suggesting 

that frontoparietal state 2 was incorporated within frontoparietal state 1 for k < 8.  

3.3 Diametrical clustering stability and comparison to k-means 
Like most clustering algorithms, diametrical clustering is initialized randomly. To quantify the variation 

in brain state centroid location between initializations, we ran diametrical clustering 1000 times with 

five replications and extracted the two frontoparietal states and the fully connected state. 

Supplementary Figure S10 shows the histogram of Fisher’s r-to-z scores of the Pearson correlation 

coefficients across all initialization pairs, including a fitted Gaussian curve. Generally, we see high 

clustering stability regardless of initialization. The average correlation coefficient between 

initializations is numerically higher for the fully connected state, followed by frontoparietal states 1 

and 2. As expected, stability decreases with increasing 𝑘𝑘.  

We compared brain state-specific differences in centroid locations between those obtained using the 

diametrical clustering method presented here and Euclidean k-means used in previous LEiDA-studies. 

Notably, at k = 7, the “fully connected state” is not identified when using the Euclidean k-means 

approach for clustering (Supplementary Figure S11). Although there are clear similarities across the 

brain states paired between the two clustering methods, the magnitudes of these similarities are 

variable. To understand this variability more comprehensively, we ran both diametrical clustering and 

LEiDA Euclidean k-means without replications using 1000 initializations and computed the correlation 

coefficient for all 1000x1000 combinations between the two methods for each of the extracted 

centroids for frontoparietal state 1, frontoparietal state 2, and the fully connected state. The mean, 

𝜇𝜇𝜌𝜌, and standard deviation, 𝜎𝜎𝜌𝜌, of these correlation coefficients are described in Supplementary Table 

S12. Although often highly correlated, these results show variability in the correlation between these 

two clustering methods, suggesting they do not always produce convergent results. 

 

4 Discussion 
Here we evaluated acute psilocybin effects on dynamic functional brain connectivity in healthy 

individuals. Most prominently, the higher the subjective experience intensity and plasma psilocin 

level, the lower the fractional occurrence of two discrete frontoparietal-like brain states. Similarly, the 
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average dwell time of these brain states was inversely related to plasma psilocin level and subjective 

drug intensity. We observed an increase in the fractional occurrence and dwell time of a “fully-

connected” brain state where all elements have the same sign, although the statistical associations 

for this state were weaker. Together, these findings provide a novel mapping of drug availability and 

perceptual intensity of a clinically relevant psilocybin-induced psychedelic experience onto distributed 

whole-brain functional connectivity dynamics. We propose an alternative method for clustering 

LEiDA-dFC estimates that we believe more faithfully respects the spherical manifold and sign 

ambiguity of orthonormal eigenvectors (Dhillon et al., 2003; Sra and Karp, 2013). Taken together, 

these findings implicate dynamic neural processes underlying the acute psychedelic effects of 

psilocybin, an important contribution to understanding the effects of this rapidly emerging clinical 

therapeutic.  

The highlighted frontoparietal states 1 and 2 were both characterized by phase coherence between 

areas commonly assigned to a network described as, e.g., the “frontoparietal” network, “central 

executive”, “executive control”, or “dorsal attention” network (Witt et al., 2021). Similarly, these brain 

states expressed phase coherence between regions in the cingulum and some regions around the 

parieto-occipital fissure (see Figure 4 and Supplementary Figure S4). The regions with strong 

“negative” loadings were remarkably similar between the two states. The two states mostly differed 

in the centroid loadings for elements in the temporal lobe and the Rolandic operculum. A previous 

study applying LEiDA to model dynamic functional connectivity following psilocybin administration 

reported a similar brain state for models in the range 𝑘𝑘 ∈ {5, … ,10}  (Lord et al., 2019). Despite 

methodological differences between the studies, e.g., we administered psilocybin orally, measured 

PPL, scanned participants multiple times after administration, and applied diametrical clustering; it is 

encouraging that our findings offer convergent evidence that decreased frontoparietal connectivity is 

a critical neural characteristic of the psilocybin-induced drug experience. We show here, for the first 

time, that these changes are proportionally related to PPL and SDI across the duration of the 

psychedelic experience. Contributing to our mechanistic understanding of the neurobiological 

mechanisms that shape psilocybin effects, our findings implicate a systems-level neural correlate 

(frontoparietal state prevalence) to the relation between available psilocin, which we have previously 

shown to be associated with 5-HT2AR occupancy, and subjective intensity of the psychedelic 

experience (Madsen et al., 2019). 

Consistent with the observed effects on fractional occurrence, we observed some evidence that dwell 

time, i.e., average time spent in the state before switching, of the frontoparietal states were similarly 

negatively associated with PPL and SDI. However, this effect was statistically significant for only a 

subset of the evaluated number of brain states, k. Notably, the integral of the subject-specific survival 
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function for which hazard ratios were estimated is proportional to fractional occurrence. This means 

that dwell time models not merely the (instantaneous) probability of being in a given state but also 

the exponential decrease of that probability over consecutive time points. We infer that the 

numerically consistent associations with fractional occurrence and dwell time reflect a psilocybin-

induced “bias shift” away from the observed frontoparietal brain states.  Previous studies examining 

brain state switching mechanisms have typically evaluated transition probability matrices and specific 

state-to-state transition probabilities conditioned only on the current state. Although dwell time is 

related to the diagonal elements of the transition matrix, modeling it as a hazard ratio informs state 

survival across a broader time window, giving a more complete perspective on brain state dynamics. 

Modeling dwell time using survival analysis does not model all state-to-state transition probabilities 

individually. However, many of these transitions occur only rarely, and the set of statistical tests 

squares with the number of brain states, k, both of which constrain associated statistical estimates. In 

this way, we view the Cox proportional hazards model as a valuable trade-off for evaluating state dwell 

time and switching probability.  

Previous studies applying LEiDA have reported alterations in a “fully connected” brain state, 

characterized by all elements having the same sign (Cabral et al., 2017; Escrichs et al., 2021; Farinha 

et al., 2021; Figueroa et al., 2019; Larabi et al., 2020; Lord et al., 2019; Stark et al., 2021; Vohryzek et 

al., 2020). Here we also observed this fully connected state and report an increase in fractional 

occurrence significantly associated with SDI, but not PPL. Interestingly, however, Supplementary 

Figure S11 shows that we would not have identified this fully connected state if we applied LEiDA using 

the Euclidean k-means clustering method described previously. The observed slope estimates for the 

fully connected state are similar, and opposite to those for the two frontoparietal states for 𝑘𝑘 ≥ 8, 

and approximately half that of frontoparietal state 1 for 𝑘𝑘 < 8. Similarly, dwell time for the fully 

connected state was significantly positively associated with both PPL and SDI. Here, hazard ratio 

estimates were similar for all three highlighted brain states regardless of k. These results indicate that 

while psilocin induces a decrease in the fractional occurrence and dwell time of frontoparietal 

connectivity dynamics, only approximately half of the corresponding increase in brain activity can be 

explained by a shift toward the fully connected state. As fractional occurrences must sum to one across 

all states, these findings suggest additional increases are spread across other states below the 

statistical significance threshold, given the current data. 

Here we have presented the application of diametrical clustering, which we view as a fundamentally 

more appropriate clustering method than k-means based on Euclidean distance because eigenvectors 

are, in practice, normalized to unit length. As such, the 21,600 points to be clustered exist on a (𝑃𝑃 −

1)-dimensional spherical manifold, with P = 90 being the number of regions in the specified AAL atlas. 
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The cluster centroids should be estimated respecting this geometry, which is not the case with 

Euclidean k-means (Supplementary Figure S1). Additionally, diametrical clustering acknowledges the 

antipodal symmetry along both directions of a given eigenvector. The classical LEiDA approach 

seemingly addresses this axial symmetry by flipping the 90-dimensional leading eigenvector for every 

time point, 𝑡𝑡, if the number of positive elements exceeds the number of negative elements. Especially 

in the case of an eigenvector with similar numbers of positive and negative loadings, slight variations 

can result in sign flips that place otherwise similar eigenvectors in different areas of this region space, 

which can affect clustering results when antipodal symmetry is not considered (see Supplementary 

Figure S1). More recent approaches to address this include estimating the cosine distance metric and 

the use of “k-medoids”, which labels specific observed data points as centroids (Farinha et al., 2021). 

However, this leaves unresolved the limitation of the sign-flip procedure. By acknowledging that the 

points are distributed on an antipodally symmetric unit hypersphere using diametrical clustering, we 

obviate the need for eigenvector sign flips. Supplementary Table S12 highlights that although these 

two strategies can and do produce convergent centroids in some circumstances, there are instances 

where the two methods diverge (e.g., see State 6 in Supplementary Figure S11). We view diametrical 

clustering as a technically more appropriate method for clustering eigenvectors since it explicitly 

models vectors with unit length and arbitrary sign. Therefore, we suggest it is used in future studies 

investigating dFC using LEiDA. 

In this study, we did not address the question of the optimal number of brain states (i.e., cluster 

centroids). Rather, we explored a range of k, 2 to 20, consistent with previous studies (Cabral et al., 

2017; Figueroa et al., 2019; Kringelbach et al., 2020). An encouraging sign of the robustness of our 

observations is that cluster centroids were robust to initialization (Supplementary Figure S10) and 

stable across k (Supplementary Figure S9). Opportunities remain for developing the methodology 

surrounding the clustering of dynamic BOLD time series. Like other k-means methods, diametrical 

clustering applies a hard class assignment. Probabilistic estimates of cluster assignment for points on 

a spherical manifold can be estimated using the Watson mixture model, and non-circular cluster 

outlines can be estimated using the Bingham distribution (Bingham, 1974; Sra and Karp, 2013; Watson, 

1965). These methods are not commonly used, and their development may assist in clustering 

dynamic functional connectivity data structures and more objectively estimating how many brain 

states to include. Finally, retaining only the first eigenvector from the eigenvalue decomposition of 

the phase coherence matrix may remove meaningful information. The rank of a matrix with cosine 

entries is always two since the angle difference identity allows us to construct two linearly 

independent vectors, cosine and sine of the input vector, respectively, that fully characterize all 

information in the input matrix. The instantaneous leading eigenvector constructed as part of the 
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LEiDA pipeline is thus some linear combination of those two trigonometric identities. We observed 

that, on average, 58% of the variance was explained by the first eigenvector. Future methodological 

studies should consider whether modeling a multivariate Hilbert phase series without explicitly 

computing coherence maps and their eigenvectors is possible.  

We have previously reported a negative association between static functional connectivity within a 

priori defined resting-state networks, as well as clusters of brain regions showing increased global 

functional connectivity as a function of PPL and SDI using rs-fMRI data evaluated here (Madsen et al., 

2021). Although the orientation of those and the current findings are conceptually convergent, there 

are differences. The brain states resolved here by our clustering method are not easily translated to 

canonical resting-state networks. The frontoparietal states observed here share some regional overlap 

with default mode network elements (blue nodes; precuneus, posterior cingulate cortex, and to some 

extent ventromedial prefrontal cortex) and executive control network (red nodes; lateral anterior 

prefrontal cortex, posterior parietal cortex), but notable regions are absent, such as the angular gyrus 

from the default mode network. Further, some areas related to visual processing are encompassed by 

the frontoparietal states (blue nodes; lingual gyrus, calcarine sulcus, cuneus). Together, our studies 

present complementary perspectives on the associations between resting-state connectivity and PPL 

and SDI.  

The current study examined only acute psilocybin effects on dynamic functional connectivity, while 

previous studies indicate that psilocybin induces lasting changes in clinical symptoms, mood, and core 

personality traits. To date, three studies have examined long-term psilocybin effects on functional 

brain imaging, both primarily examining static connectivity measures (Barrett et al., 2020; Doss et al., 

2021; McCulloch et al., 2021b). Two of these studies analyzed dynamic conditional correlation (Engle, 

2002) as a variance measure of edge-specific correlation coefficients (Barrett et al., 2020; Doss et al., 

2021). Further evaluation of lasting modulation of connectivity dynamics will provide complementary 

insight into the neurobiological mechanisms underlying lasting behavioral and clinical effects of 

psilocybin. 

Our model estimates that a plasma psilocin level of 20 µg/L, corresponding to 70% neocortex 5-HT2AR 

occupancy (Madsen et al., 2019), results in a more than 50% decrease in the fractional occurrence of 

frontoparietal state 1 (for k = 7). Although this indicates a pronounced change in this brain state, the 

fact that two participants showed lower fractional occurrence values at baseline indicates individual 

variability in these connectivity motifs that needs to be understood more thoroughly. The absence of 

a brain state identifiable only before or after drug administration suggests that even marginal changes 

in connectivity dynamics may encompass profound perceptual alterations induced by psychedelics. It 
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is likely that alternative methods for measuring or quantifying functional connectivity dynamics or 

brain function will provide complementary insights into the neural mechanisms underlying 

psychedelics. For example, a magnetoencephalography study reported pronounced alterations in 

resting-state network activity following psilocybin administration (Muthukumaraswamy et al., 2013). 

Findings across the field to date suggest that relevant acute neural effects of psychedelics remain to 

be fully explored. 

Our study is not without its limitations. Pulse and breathing rate data were not available, and 

therefore, we could not directly regress physiological noise from our data. To overcome this limitation, 

we attempted to model noise sources via the anatomical component correction algorithm (Behzadi et 

al., 2007). Head motion was more prevalent during brain scans following psilocybin administration 

(Madsen et al., 2021). This is an inherent challenge to scanning participants during peak periods of the 

psychedelic experience. We performed image realignment and regressed out motion parameters and 

their first derivatives. Additionally, we excluded two full scan sessions, where motion artifacts were 

pervasive. Nevertheless, we cannot preclude motion-related effects on our results. Furthermore, 

despite intriguing convergent evidence of psilocybin effects on connectivity dynamics, our sample size 

is small (𝑁𝑁 = 15) . Clustering in a high-dimensional space exposes risk to the “curse of 

dimensionality”, where most points in space are equally far away from each other, which can hinder 

the performance of clustering strategies. Here we modeled 21,600 points, approximately 12x as many 

points as used in a previous, related study (Lord et al., 2019). Our convergent findings and the stability 

of our centroids (Supplementary Figures S9-10) support the validity of our findings. Nevertheless, 

replication in this emergent field is critical, and thus, our results would greatly benefit from replication 

in other data sets (McCulloch et al., 2021a).  

In conclusion, we report that acute psilocybin-induced modulation of brain connectivity dynamics is 

significantly associated with PPL and SDI. These findings implicate distributed functional motifs in the 

acute and possibly lasting effects of this drug. Methodologically, we propose an alternative method 

for clustering eigenvectors that more closely reflects their spherical manifold and sign ambiguity. We 

also highlight a number of important and relevant analyses of data-driven brain states, including 

survival analysis of dwell time and assessment of clustering stability.  
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Supplementary Figure S1: Three-dimensional illustration highlighting the distribution of eigenvectors on an antipodally 
symmetric unit (hyper)sphere (A), and the conceptual advantage of clustering with respect to this manifold (B) over 
Euclidean distance clustering (C), which is susceptible to locating centroids off the manifold, where observed points cannot 
exist. In LEiDA, a sign-flip procedure is applied before k-means clustering, which restricts observation space, potentially 
cutting through data clusters. The learned states for Euclidean k-means are inferior to diametrical clustering in this 
hypothetical example.  

Supplementary Video S2: Please find the video here: https://xtra.nru.dk/downloads/misc/AllCentroids_psilocybinDFC.avi. 
Estimated brain states using LEiDA and diametrical clustering for number of clusters, k, in the range 2 to 20. For 𝑘𝑘 ≥ 3, 
states were ordered by cycling through the estimated brain states for 𝑘𝑘 − 1 and, for each brain state in the previous k, 
selecting the brain state for the current k with the largest squared Pearson correlation coefficient. If this coefficient was 
negative, the new brain state was flipped for visualization purposes. We highlight three brain states: The fully connected 
(FC) state for all k, the frontoparietal state 1 (FP1) for 𝑘𝑘 ≥ 4, and FP2 for 𝑘𝑘 ≥ 8.  
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Supplementary Table S3: Summary of statistical associations between either fractional occurrence or dwell time and PPL or 
SDI. Statistical parameters are shown for all brain states for which at least one of the four statistical models was 
statistically significant after FWER-correction, i.e., either max-T permutation testing for fractional occurrence (pFWER-maxT) or 
Bonferroni-Holm (pFWER-BH) for dwell time. Assigned centroid have been ordered consistently with their first appearance (see 
Supplementary Video S1). As such, the fully connected state is number 1, frontoparietal state 1 is number 4 and 
frontoparietal state 2 is number 8. p, uncorrected p-value; HR, hazard ratio; CIunadj, unadjusted 95% confidence interval. 
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Supplementary Figure S4: Frontoparietal state 2 and statistical associations for k=11. (A): 90-dimensional centroid, where 
region pairs with the same sign are said to be coherent. Some frontal regions, superior and inferior parietal regions, and 
temporal lobe regions showed coherence with each other (red). Likewise, areas around the parieto-occipital sulcus, cingulum, 
and medial orbital frontal cortex were coherent (blue). (B): Functional coherence map and connectivity representation of the 
brain state. Edges are shown if their strength exceeded the 75th percentile of absolute edge strengths. In the connectivity 
visualizations, negative edges are blue and positive edges are red, while nodes are colored according to the sign of their 
centroid element in (A). (C): Associations between the expression of frontoparietal state 2 and plasma psilocin level and 
subjective drug intensity using linear mixed models for fractional occurrence (left, each point is a scan session) and frailty Cox 
proportional hazards models for the dwell time (right). For dwell time, the marginal survival curves for pre-specified covariate 
levels are shown. Colors in plots of fractional occurrence (C, left) denote individual participants. 
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Supplementary Figure S5: Fully connected state and statistical associations for k=7. (A): 90-dimensional centroid, where 
region pairs with the same sign are said to be coherent. All centroid loadings for the fully connected state have the same 
sign, and thus display coherence across all regions. (B): Functional coherence map and connectivity representation of the 
fully connected state. Edges (red) are shown if their strength exceeded the 75th percentile of absolute edge strengths. In the 
connectivity visualizations, negative edges are blue and positive edges are red, while nodes are colored according to the 
sign of their centroid element in (A). (C): Associations between the activity of the full connected state and plasma psilocin 
level and subjective drug intensity using linear mixed models for fractional occurrence (left, each point is a scan session) and 
frailty Cox proportional hazards models for the dwell time (right). For dwell time, the marginal survival curves for pre-
specified covariate levels are shown. Colors in plots of fractional occurrence (C, left) denote individual participants. 
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Supplementary Figure S6: Frontoparietal state 1 centroid across k. For each 𝑘𝑘 ≥ 4, the centroid most similar to the template (highlighted) was selected. P-values at the bottom indicate family-
wise error rate corrected statistical significance of the association between either fractional occurrence (FO) or dwell time (DT) and either plasma psilocin level (PPL) or subjective drug intensity 
(SDI). P-values below 0.05 highlighted in red text. 
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Supplementary Figure S7: Frontoparietal state 2 centroids across k. For each 𝑘𝑘 ≥ 8, the centroid most similar to the template (highlighted) was selected. P-values at the bottom indicate 
family-wise error rate corrected statistical significance of the association between either fractional occurrence (FO) or dwell time (DT) and either plasma psilocin level (PPL) or subjective drug 
intensity (SDI). P-values below 0.05 highlighted in red text. 
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Supplementary Figure S8: Fully connected state centroids across k. For each 𝑘𝑘 ≥ 4, the centroid most similar to the template (highlighted) was selected. P-values at the bottom indicate family-
wise error rate corrected statistical significance of the association between either fractional occurrence (FO) or dwell time (DT) and either plasma psilocin level (PPL) or subjective drug intensity 
(SDI). P-values below 0.05 highlighted in red text
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Supplementary Figure S9: Within-state similarity across k. Heat-map of Pearson correlation coefficients between all pairs of 
k for each of the three highlighted brain states. 
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Supplementary Figure S10: Stability histograms of brain state centroids across 1000 random initializations, each with 5 
replications. For every initialization, the relevant centroids were extracted by matching to the three template brain states 
(see Figures 4 and S4-5). If the identified centroid and template had negative Pearson correlation coefficient, the sign of the 
identified centroid was flipped. Pearson correlation coefficients between all 1000x1000 brain state pairs in each pool were 
computed and converted to z-scores using Fisher’s r-to-z transformation, and the corresponding histogram was fitted with a 
Gaussian curve.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 10, 2022. ; https://doi.org/10.1101/2021.12.17.21267992doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.17.21267992
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 
 

 

 

Supplementary Figure S11: Qualitative differences and correlation coefficients, 𝜌𝜌, between diametrical clustering and 
Euclidean k-means clustering output centroids at k=7. k-means centroids have been ordered to maximize correlation with 
diametrical clustering centroids. 
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Supplementary Table S12: Summary Pearson correlation coefficients, 𝜌𝜌, including mean, 𝜇𝜇𝜌𝜌, and standard deviation, 𝜎𝜎𝜌𝜌, 
between the highlighted brain states from diametrical clustering and Euclidean k-means clustering. For every k, 1000 
initializations of each of the two clustering methods were run, the centroids most closely matching the frontoparietal states 
1 and 2 and the fully connected states were extracted, and the Pearson correlation coefficient between all 1000x1000 
centroid comparisons computed.  
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