

Supplementary Figure 1. Anti-spike 1 plasma, IgA depleted plasma, IgA and IgG depleted plasma and purified IgG and IgA antibody isotype and ACE2 binding inhibition data

Convalescent (n-41) (blue) and uninfected control (n=26) (grey) plasma (final dilution 1:100) was assessed for IgM (a), IgG (b) and IgA (c) antibody binding to SARS-CoV-2 spike-1 (S1) via multiplex. A positive threshold (grey dotted line) was defined as the 75th percentile of antibody binding (MFI) for uninfected control plasma to respective antigens. (d) S1-ACE2 binding inhibition (%) of convalescent (blue) and uninfected control (grey) plasma (diluted 1:100). Statistical analyses between two groups were performed with the Mann-Whitney test. A positive threshold (grey dotted line) was defined as >20% ACE2 binding inhibition. (e) Pie chart outlining the percentage of subjects seropositive for anti-S1 antibody isotypes (IgM-IgG+IgA+ (green), IgM+IgG+IgA+ (blue), IgM+IgG+IgA- (yellow)) in the inner ring and the percentage of each seropositive subset with ACE2 binding inhibition in the outer red ring. SARS-CoV-2 S1 ACE2 binding inhibition (%) of (f) convalescent plasma (diluted 1:200; blue) and matched dilutions of IgA depleted (IgA-; yellow) and IgA plus IgG depleted (IgA-/IgG-; purple) (n=30) plasma fractions. Comparisons between plasma and depleted fractions was conducted using Friedman with Dunn's multiple comparison test. (sup. Fig. 3 describes inclusion/exclusion criteria for successful antibody depletion). (g) Samples where IgA depletion resulted in an increase in RBDwt ACE2 binding inhibition (n=3).

Supplementary Figure 2. Individual correlations of convalescent RBDWT plasma IgM (a), IgG (b), IgA1 (c) and IgA2 (d) antibody binding with RBDWT-ACE2 binding inhibition

Supplementary Figure 3. Workflow of sample processing and confirmation of IgG and IgA depletion

Supplementary Figure 3. Workflow of sample processing and confirmation of IgG and IgA depletion

(a) Depletion and purification of IgA and IgG from convalescent plasma and (b) sample exclusion process. (c-d) Significant loss of anti-RBDWT IgG and IgM from IgA- and IgA-/IgG- plasma respectively (1:100 dilution). For fair comparison, depleted plasma dilutions were matched to complete plasma (1:100 dilution). Using anti RBDWT IgG or IgM binding MFI of IgA- and IgA-/IgG- plasma respectively (e), a plasma dilution was selected to match the antibody MFI for complete plasma (yellow) at 1:100 dilution. Matching is indicated by the black dotted arrow. Anti-RBDWT IgA (f), IgG (g) and IgM (h) MFI for plasma, IgA- and IgA and IgA-/IgG- for matched dilutions. Anti-Spike 1 IgA (i), IgG (j) and IgM (k) MFI for plasma, IgA- and IgA and IgA-/IgG- for matched dilutions.

Supplementary Figure 4. Purified convalescent IgG and IgA spike 1 and RBDWT supplementary data Purified IgA (a) (blue) and IgG (b) (green) anti-S1 antibody binding (MFI) for uninfected (n=6, grey) and convalescent (n=49) cohorts at 100ug/ml total antibody. (c) Purified IgA (blue) and IgG (green) S1-ACE2 binding inhibition (%) at 100ug/ml total antibody (n=49). Purified IgA (d) (blue) and IgG (e) (green) anti-RBDWT antibody binding (MFI) for uninfected (n=6, grey) and convalescent (n=49) subjects at 100ug/ml total antibody. Purified IgA (f) (blue) and IgG (g) (green) anti-RBDWT RBDWT-ACE2 binding inhibition for uninfected (n=6, grey) and convalescent (n=49) cohorts at 100ug/ml total antibody. (h) Purified IgA (blue) and IgG (green) RBDWT-ACE2 binding inhibition (%) at 100ug/ml total antibody (n=49). Lines connect IgG and IgA for a single individual. A positive threshold of 20% ACE2 binding inhibition was set (grey dotted line).

Supplementary Figure 5. Raw ACE2 binding inhibition and antibody binding data for depleted plasma and purified antibodies to single RBD mutations.

(a) ACE2 binding inhibition (%) to RBDWT and 18 other RBD single mutants for plasma (blue), IgA depleted (IgA, yellow) plasma and IgA and IgG depleted (IgA-IgG-, purple triangle) plasma. Raw purified IgG (green) and IgA (blue) Ec50's (b) and ACE2 binding inhibition (%) (c) for RBDWT and 23 other RBD single mutants. Lines depict the median response for each sample type to each RBD.

а

Supplementary Figure 6. Gating strategy of ADCP bead-based assay and THP-1 Ramos S-orange association assay.

(a) Antibody dependent bead-based phagocytosis assay gating strategy. First, THP-1 monocytes were gated, followed by single cells and bead positive cells. Finally, a phagocytic score was calculated. (b) THP-1 and Ramos S-orange cell association assay gating strategy. Cells were gated, followed by cell trace violet (CTV) stained THP-1 monocytes. Finally, CTV+ (THP-1) mOrange+ (Ramos S-orange) cells were gated for and the percentage of double positives was recorded as a measure of anti-spike antibody mediated cell association.

Example convalescent plasma (red), IgA- plasma (blue), IgA-/IgG- plasma (orange) and healthy control plasma (green) are shown.

		Healthy controls		COVID-19 Convalescent	
		Multiplex	Functional	Multiplex	Functional
		(n=26)	(n=12)*	(n=41)	(n=39)*
Sample collection data (month)		April-May 2020	April-May 2020	April-May 2020	April-May 2020
Date of PCR test (month)				March 2020	March 2020
Age, Median (IQR)		54 (24-60)	55 (24-63)	55 (49-61)	57 (52-69)
Gender, female (%)		12 (48)	5 (45.45)	11 (26.83)	11 (28.21)
PCR and/or serology		Negative**	Negative**	Positive	Positive
Disease Severity (self-report)	Mild (%)	-	-	27 (65.85)	26 (68.42)
	Moderate (%)	-	-	7 (17.07)	6 (15.79)
	Sever (%)	-	-	2 (4.88)	1 (2.63)
	No details (%)	-	-	5 (12.20)	5 (13.16)
Days post positive COVID test, median (IQR)		-	-	36 (30-44)	36 (30-38)
Days post symptom onset, median (IQR)		-	-	41 (36-47)	40 (38-42)

Supplementary table S1: Subject demographics

- Not applicable

*Individuals were randomly selected from original cohort

**Confirmed negative using serology

Supplementary Table 2. Matched depleted plasma dilution to completes plasma at 1:100

	Subject ID	Dilution IgA- (1/n)	Dilution IgA-/IgG- (1/n)
1	CP07	100	100
2	CP11	50	50
3	CP15	50	50
4	CP19	100	100
5	CP23	100	100
6	CP25	100	100
7	CP26	100	100
8	CP27	50	50
9	CP29	100	100
10	CP30	100	50
11	CP31	50	50
12	CP32	50	100
13	CP35	100	50
14	CP39	100	100
15	CP43	100	100
16	CP44	100	100
17	CP45	100	100
18	CP46	100	100
19	CP51	100	100
20	CP52	50	50
21	CP53	50	50
22	CP54	50	100
23	CP57	100	100
24	CP58	50	100
25	CP60	100	100
26	CP61	100	100
27	CP63	100	100
28	CP66	50	50
29	CP68	50	100
30	CP70	50	50