Supplementary materials

Epigenetic clock acceleration is linked to age-at-onset of idiopathic and *LRRK2* **related Parkinson's disease**

Xuelin Tang ^{1*}, Paulina Gonzalez-Latapi ^{2, 3*}, Connie Marras ^{2, 4}, Naomi P. Visanji ^{2, 5-7}, Wanli Yang¹, Christine Sato⁵, Anthony E. Lang^{2, 4, 7}, Ekaterina Rogaeva^{4, 5#}, Ming Zhang $1, 8, 9#$

¹ The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, 200090, Shanghai, China

² Edmond J. Safra Program in Parkinson's disease and Morton and Gloria Shulman

Movement Disorders Clinic, Toronto Western Hospital, Toronto, Canada

³ Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.

4 Division of Neurology, University of Toronto, Toronto, Ontario, Canada

⁵ Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60

Leonard Ave., Toronto, ON, Canada, M5T 2S8

6 Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada

7 Krembil Brain Institute, Toronto, Ontario, Canada

⁸ Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China ⁹ Institute for Advanced Study, Tongji University, Shanghai, China

* These authors contributed equally

Correspondence should be addressed to:

Ming Zhang (mingzhang@tongji.edu.cn)

The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, 200090, Shanghai, China Tel: +86 021 62933585

Or

Ekaterina Rogaeva (ekaterina.rogaeva@utoronto.ca) Tanz Centre for Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, ON, Canada, M5T 2S8 Tel: (416)507-6872; Fax: (416) 603-6435

Running title: Epigenetic clock in Parkinson's disease

Supplementary Table 1. Summary of the cox proportional hazards analysis when considering DNAm-age acceleration as continuous or categorized (into three groups) variants.

*Adjusted for sex, relatedness and blood cell count (CD8T, CD4T, B cells, and Gran cells).

△Adjusted for sex, relatedness, interval between age at onset and age at sample collection and blood cell count (CD8T, CD4T, B cells, and Gran cells).

Adjusted for sex, interval between age at onset and age at sample collection and blood cell count (CD8T, CD4T, B cells, and Gran cells).

^a we created different indicator number for each group (0 for slowing aging,1for normal aging and 2 for fast aging).

Supplementary Table 2. Clinical characteristics of phenoconverter (G2019S-carriers

#54215).

 $NA = not applicable.$

Supplementary Fig 1. The distribution of DNAm-age acceleration in 96 idiopathic PD patients **(A)**, 220 G2019S-carriers at baseline **(B)**, including 91 manifesting **(C)** and 129 non-manifesting **(D)** G2019S-carriers.

Supplementary Fig 2. Bar/scatter charts of DNAm-age acceleration in G2019S-carriers at baseline and the 3-year time-point of sample collection. There is no significant difference between DNAm-age acceleration for manifesting and non-manifesting G2019S-carriers at **A.** baseline (p=0.73, Wilcoxon test) or **B.** the 3-year time-point (p=0.88, Wilcoxon test).

Supplementary Fig 3. Scatter plot of DNAm-age acceleration and age-at-onset in PD patients with or without an *LRRK2* mutation. The association between DNAm-age accelerationand age-atonset in **A.** G2019S-carriers at baseline sample collection ($p=2.25E-15$, $B=-1.15$, $R^2=0.51$, $n=91$); **B.** G2019S-carriers at 3-year follow-up ($p=1.89E-14$, $B=-1.17$, $R^2=0.52$, $n=86$). **C.** idiopathic PD patients (p=5.39E-9, B=-1.19, R^2 =0.30, n=96). Linear regression analyses were adjusted for sex and interval.

Supplementary Fig. 4. DNAm-age acceleration of the phenoconverter (patient #54215) at four time points, who was non-manifesting at up to 2-year follow-up (time-points 1-3), but was diagnosed with Parkinson's Disease by 3-year follow-up (time-point 4).

Supplementary Fig 5. Scatter plots of DNAm-age acceleration and UPDRS Part I-III at baseline (n=91) and the 3-year time point (n=85 for part I and part II, n=77 for part III) for *LRRK2* G2019S-carriers. DNAm-age acceleration is not significantly associated with UPDRS (p>0.05, adjusted for sex, family and interval).

Supplementary Fig 6. Scatter plots of DNAm-age acceleration and the Hoehn and Yahr scale for *LRRK2* G2019S-carriers at **(A)** baseline (n=91, p>0.05) and **(B)** 3-year follow-up (n=77, p>0.05). P-values are adjusted for sex, relatedness and interval. The blue line represents the linear regression trend.

Supplementary Fig 7. Scatter plot of DNAm-age acceleration and MoCA score in G2019Scarriers at 3-year follow-up ($p=0.079$, $R^2=0.019$, $B=0.13$, adjusted for sex, $n=78$).

Supplementary Fig 8. Scatter plots of DNAm-age acceleration and DaTScan striatal binding ratio in the *LRRK2* G2019S-carriers (n=84) at baseline in **(A)** left caudate (p=0.35), **(B)** right caudate (p=0.63), (C) left putamen (p=0.081) and (D) right putamen (p=0.046, R²=0.02451, B=-0.016). P-values were adjusted for sex, family and interval).