Supplementary materials

Epigenetic clock acceleration is linked to age-at-onset of idiopathic and *LRRK2*-related Parkinson's disease

Xuelin Tang ^{1*}, Paulina Gonzalez-Latapi ^{2, 3*}, Connie Marras ^{2, 4}, Naomi P. Visanji ^{2, 5-7}, Wanli Yang ¹, Christine Sato ⁵, Anthony E. Lang ^{2, 4, 7}, Ekaterina Rogaeva ^{4, 5#}, Ming Zhang ^{1, 8, 9#}

¹ The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, 200090, Shanghai, China

² Edmond J. Safra Program in Parkinson's disease and Morton and Gloria Shulman

Movement Disorders Clinic, Toronto Western Hospital, Toronto, Canada

³Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.

⁴ Division of Neurology, University of Toronto, Toronto, Ontario, Canada

⁵ Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60

Leonard Ave., Toronto, ON, Canada, M5T 2S8

⁶ Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada

⁷ Krembil Brain Institute, Toronto, Ontario, Canada

⁸ Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China

⁹ Institute for Advanced Study, Tongji University, Shanghai, China

* These authors contributed equally

[#]Correspondence should be addressed to:

Ming Zhang (mingzhang@tongji.edu.cn)

The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, 200090, Shanghai, China Tel: +86 021 62933585

Or

Ekaterina Rogaeva (ekaterina.rogaeva@utoronto.ca) Tanz Centre for Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, ON, Canada, M5T 2S8 Tel: (416)507-6872; Fax: (416) 603-6435

Running title: Epigenetic clock in Parkinson's disease

	Continuous	Categorized ^a
LRRK2 cohort at baseline*		
p-value	7.44E-10	1.68E-6
HR	1.16	2.29
95%CI	1.11-1.21	1.62-3.20
<i>LRRK2</i> cohort at 3-year follow-up*		
p-value	1.24E-10	1.65E-6
HR	1.19	2.56
95%CI	1.13-1.26	1.74-3.75
Manifesting G2019S-carriers at baseline [△]		
p-value	2.19E-12	1.70E-10
HR	1.18	3.83
95%CI	1.13-1.24	2.53-5.78
Idiopathic Parkinson's Disease patients#		
p-value	3.76E-5	0.0145
HR	1.09	1.53
95%CI	1.05-1.14	1.09-2.16

Supplementary Table 1. Summary of the cox proportional hazards analysis when considering DNAm-age acceleration as continuous or categorized (into three groups) variants.

*Adjusted for sex, relatedness and blood cell count (CD8T, CD4T, B cells, and Gran cells).

^AAdjusted for sex, relatedness, interval between age at onset and age at sample collection and blood cell count (CD8T, CD4T, B cells, and Gran cells).

[#] Adjusted for sex, interval between age at onset and age at sample collection and blood cell count (CD8T, CD4T, B cells, and Gran cells).

^a we created different indicator number for each group (0 for slowing aging,1 for normal aging and 2 for fast aging).

Supplementary Table 2. Clinical characteristics of phenoconverter (G2019S-carriers

#54215).

	Baseline	1-year follow-up	2-year follow-up	3-year follow-up
MDS-UPDRS Part I	6	10	10	10
MDS-UPDRS Part II	4	3	4	6
MDS-UPDRS Part III	4	15	25	30
Hoehn & Yahr	Stage 0	Stage 1	Stage 0	Stage 3
MoCA	NA	25	25	20
DNAm-age acceleration values(years)	-6.65	-3.92	-1.22	-2.07

NA = not applicable.

Supplementary Fig 1. The distribution of DNAm-age acceleration in 96 idiopathic PD patients(A), 220 G2019S-carriers at baseline (B), including 91 manifesting (C) and 129 non-manifesting(D) G2019S-carriers.

Supplementary Fig 2. Bar/scatter charts of DNAm-age acceleration in G2019S-carriers at baseline and the 3-year time-point of sample collection. There is no significant difference between DNAm-age acceleration for manifesting and non-manifesting G2019S-carriers at **A.** baseline (p=0.73, Wilcoxon test) or **B.** the 3-year time-point (p=0.88, Wilcoxon test).

Supplementary Fig 3. Scatter plot of DNAm-age acceleration and age-at-onset in PD patients with or without an *LRRK2* mutation. The association between DNAm-age accelerationand age-at-onset in **A.** G2019S-carriers at baseline sample collection (p=2.25E-15, B=-1.15, $R^2=0.51$, n=91); **B.** G2019S-carriers at 3-year follow-up (p=1.89E-14, B=-1.17, $R^2=0.52$, n=86). **C.** idiopathic PD patients (p=5.39E-9, B=-1.19, $R^2=0.30$, n=96). Linear regression analyses were adjusted for sex and interval.

Supplementary Fig. 4. DNAm-age acceleration of the phenoconverter (patient #54215) at four time points, who was non-manifesting at up to 2-year follow-up (time-points 1-3), but was diagnosed with Parkinson's Disease by 3-year follow-up (time-point 4).

Supplementary Fig 5. Scatter plots of DNAm-age acceleration and UPDRS Part I-III at baseline (n=91) and the 3-year time point (n=85 for part I and part II, n=77 for part III) for *LRRK2* G2019S-carriers. DNAm-age acceleration is not significantly associated with UPDRS (p>0.05, adjusted for sex, family and interval).

Supplementary Fig 6. Scatter plots of DNAm-age acceleration and the Hoehn and Yahr scale for *LRRK2* G2019S-carriers at **(A)** baseline (n=91, p>0.05) and **(B)** 3-year follow-up (n=77, p>0.05). P-values are adjusted for sex, relatedness and interval. The blue line represents the linear regression trend.

Supplementary Fig 7. Scatter plot of DNAm-age acceleration and MoCA score in G2019S-carriers at 3-year follow-up (p=0.079, R²=0.019, B=0.13, adjusted for sex, n=78).

Supplementary Fig 8. Scatter plots of DNAm-age acceleration and DaTScan striatal binding ratio in the *LRRK2* G2019S-carriers (n=84) at baseline in (A) left caudate (p=0.35), (B) right caudate (p=0.63), (C) left putamen (p=0.081) and (D) right putamen (p=0.046, R^2 =0.02451, B=-0.016). P-values were adjusted for sex, family and interval).