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Abstract 

Multiple sclerosis (MS) is a leading cause of neurological disability in adults. Heterogeneity in MS 

clinical presentation has posed a major challenge for identifying genetic variants associated with 

disease outcomes.  To overcome this challenge, we used prospectively ascertained clinical outcomes 

data from the largest international MS Registry, MSBase. We assembled a cohort of deeply 

phenotyped individuals with relapse-onset MS. We used unbiased genome-wide association study 

and machine learning approaches to assess the genetic contribution to longitudinally defined MS 

severity phenotypes in 1,813 individuals.  Our results did not identify any variants of moderate to 

large effect sizes that met genome-wide significance thresholds. However, we demonstrate that 

clinical outcomes in relapse-onset MS are associated with multiple genetic loci of small effect sizes. 

Using a machine learning approach incorporating over 62,000 variants and demographic variables 

available at MS disease onset, we could predict severity with an area under the receiver operator 

curve (AUROC) of 0.87 (95% CI 0.83 – 0.91). This approach, if externally validated, could quickly 

prove useful for clinical stratification at MS onset. Further, we find evidence to support central 

nervous system and mitochondrial involvement  in determining MS severity. 
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Multiple sclerosis (MS), a complex trait disease, is a leading cause of non-traumatic neurological 

disability in adults. It affects approximately 2.8 million people worldwide, predominantly females.1 

Rates of disability progression and long-term outcomes are highly heterogeneous amongst people 

with relapse-onset MS (RMS).2 At present, the ability to predict a person’s likely long-term disease 

outcome at onset is very limited, but highly desirable, in order to stratify individuals for initiation with 

the most appropriate disease-modifying therapy.  

 

To-date, over 230 common variants have been linked to MS risk.3 The only replicated genetic modifier 

of MS phenotype is carriage of the principal risk allele, the human leukocyte antigen (HLA) 

DRB1*15:01. In European populations, carriage of the HLA-DRB1*15:01 allele confers younger age of 

onset.4 However, large studies have shown that this allele has no effect on MS progression after 

onset.5, 6 Further, there is strong evidence to suggest that currently known risk variants, aside from 

HLA-DRB1*15:01, play no major role in determining MS severity.7-9  

 

A genetic influence on MS outcome is, however, plausible, in particular relating to the severity of 

secondary inflammation (e.g. development of slowly expanding, or chronic rim-active lesions), 

resilience to neuroaxonal injury, or remyelination capacity. Indeed, preliminary genome-wide 

association study (GWAS) evidence suggests that susceptibility and severity likely involve distinct 

biological processes and pathways.10-12 

 

The best evidence to-date for a genetic contribution to disease outcomes comes from a small number 

of cross-sectional GWAS dedicated to a search for severity signals associated with the MS severity 

scale (MSSS) score13, or age at onset.9, 10, 14-17  However, these signals failed to reach significance at the 

genome-wide level, possibly due to inclusion of populations with both relapse-onset and progressive-

onset clinical courses. As the genetic architecture underlying worsening in relapse-onset MS and 

progressive-onset MS is possibly distinct,18 it could be important to study these populations 

separately. Further, use of limited cross-sectional phenotypic MSSS data to assess disease severity 

limits accurate severity phenotyping due to both major ceiling effects and instability in RMS.13  

 

The heterogeneity in MS severity, both between individuals, and within individuals over time, is large. 

Therefore, analysis of longitudinally acquired clinical trajectories over many years is likely to be more 

reliable for accurate severity assignation. Given that preliminary evidence suggests that genetic 

variation influences severity outcomes, we used both unbiased genome-wide association, and  
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machine learning approaches to examine 1) whether prospectively ascertained, longitudinally-defined 

RMS phenotypes could reveal novel genetic variants associated with disease severity, 2) whether a 

machine learning model with multi-single nucleotide variant (SNV) inclusion has sufficient positive 

predictive value to potentially be used at the time of MS diagnosis to guide clinical and treatment 

decisions. Our secondary analyses further interrogated SNV signals derived from our primary analyses, 

and also aimed to replicate previously reported suggestive markers of MS severity using a targeted 

approach. 

 

Results 

 

Cohort characteristics 

The cohort comprised of 5,851 people with relapse-onset MS from Australia, the Czech Republic, and 

Spain (Figure S1). Those who met study minimum inclusion criteria (Figure S2), represented 63,072 

patient-years of follow-up. Of these, 1,984 (33.9%) people were genotyped, of whom 1,813 (91.4%), 

representing 22,884 patient-years of follow-up, passed additional filtering and genotyping quality 

control (QC; Table S1). The clinical and demographic characteristics of the cohort based on 

longitudinal age-related MS severity scale19 (l-ARMSS) scores (Table 1), and longitudinal MSSS (l-MSSS; 

Table S2) are shown. Per-country cohort characteristics are provided in Table S3. Individual 

phenotypes based on continuous l-ARMSS and l-MSSS, binary l-ARMSS and l-MSSS, Age at Onset 

(AAO), and MS susceptibility weighted genetic risk scores (wGRS) are available in Table S4. The 

correlation between l-ARMSS and l-MSSS was strong (r=0.90, p<0.0001, Table S4).  l-ARMSS and l-

MSSS scores in individual disease trajectories are shown in Figure 1. 

 

Primary analyses 

Genome-wide association search for SNVs associated with longitudinal severity measures 

We first performed a genome-wide association analysis to identify novel variants associated with l-

ARMSS continuous (Table S5) or binary (Table S6) phenotypes. Cohort characteristics described in 

Table 1 demonstrated that those in the severe l-ARMSS cohort had longer follow up (12.5 years v 11.2 

years, Cohen’s d = 0.32), longer symptom duration (22.2 years v 16.2 years, Cohen’s d=0.61), a younger 

age at onset (27.2 years vs 32.3 years, Cohen’s d =0.58), a higher annualised relapse rate (0.14 v 0.10, 

Cohen’s d=0.43), a lower cumulative proportion of time exposed to disease-modifying therapy (60.6% 

vs 79.9%, Cohen’s d=0.22), and a higher wGRS (2.90 vs 2.71, Cohen’s d=0.23) relative to the mild 

cohort. Therefore, all regression analyses of l-ARMSS phenotypes were a priori adjusted for the first 5 
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principal components (PCs), the number of HLA-DRB1*15:01 alleles carried, percentage of time 

exposed to disease-modifying therapy and imbalanced variables as above. Fixed-effects meta-analysis 

results from six groups (two from each country) did not identify any single nucleotide variants (SNVs) 

that surpassed genome-wide significance (p<5x10-8) for any of the above phenotypic outcomes (Table 

S5; Figure S3). Similarly, adjusted I-MSSS analyses (Table S2) did not identify any significant 

associations, related to continuous (Table S7; Figure S4), or binary (Table S8) phenotypes. Assessment 

of the genomic locations of SNVs with p<1x10-5 for the l-ARMSS phenotype demonstrated that 55.1% 

(p=6.63x10-3 for enrichment) of the signals were in intergenic regions and 34.7% were intronic (Figure 

S5a). This was numerically different to the I-MSSS endpoint analysis, where 47.9% of SNVs were 

intronic (p=5.41x10-3 for enrichment) and 36.8% were intergenic (p=0.0193; Figure S5b). 

A summary of the top variants associated with the continuous l-ARMSS and l-MSSS analyses are shown 

in Table 2.  The top signal in the continuous l-ARMSS analysis was rs7289446 (b=-0.4882, p=2.73x10-

7), intronic to SEZ6L, a gene associated with dendritic spine density and arborization.20 The top signal 

in the continuous l-MSSS analysis also implicated a variant intronic to SEZ6L, rs1207401 (b=-0.4841, 

p=2.88x10-7). These two SEZ6L associated SNVs are in perfect linkage disequilibrium (R2=1, D’=1; Table 

S9; Figure S6).  

 

Heritability analyses 

To estimate the extent to which the variability of l-ARMSS or l-MSSS-defined severity could be 

explained by genetic architecture, we calculated narrow-sense heritability estimates (h2g) for our 

cohort (n=1,813).  The overall heritability estimate for the l-ARMSS phenotype was h2g 0.19 (SE 0.15, 

p=0.02) using the GREML by GCTA method. Similar estimates were achieved using alternate 

heritability estimate tools (Table S10). The overall l-MSSS h2g heritability estimate was slightly greater 

than for l-ARMSS (h2g 0.29; SE 0.14, p=0.001). However, alternate heritability estimates for l-MSSS 

proved highly inconsistent (Table S10). 

 

Machine Learning  

Given that, as expected, our unbiased GWAS approach did not identify any SNVs that surpassed GWAS 

significance thresholds, we implemented a non-linear, xgboost21 machine learning (ML) algorithm to 

determine whether a non-linear ML model could find genetic associations with severity as compared 

to traditional GWAS approaches. We input all SNVs with an l-ARMSS GWAS p<0.01, accounting for 

62,351 variants. However, no single variant was given a weight of greater than 0.005, confirming that 

no genetic variant contributed appreciably to MS severity. 
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Prediction of clinical course using machine learning 

Recognising that our ML model did not further illuminate the underlying genetic architecture of MS 

severity, we further sought to determine whether it could be used to predict severity, based on l-

ARMSS outcome extremes (n=447 mild, n=464 severe). Our ML algorithm trained on 70% (n=638 l-

ARMSS) of the cohort, then tested the remaining 30% (n=273 l-ARMSS). Our ML classification 

algorithm had high predictive accuracy, with an area under the receiver operating characteristic curve 

(AUROC) 0.85 (95% CI 0.80 – 0.89). The addition of AAO together with MS susceptibility wGRS (Table 

S4) further boosted the ML AUROC to 0.87 (95% CI 0.83 – 0.91; Figure 2). Our classification algorithm 

had 86% sensitivity, and 88% specificity, with a positive predictive value (PPV) of 89% and negative 

predictive value (NPV) of 85%. Severity classification based on l-MSSS phenotype was weaker, with an 

AUROC of 0.85 (95% CI 0.80-0.89), 98% sensitivity, but only 68% specificity; with a PPV of 76% and 

NPV of 97% (Figure 2). 

Restricting the ML algorithm to just those SNVs with p<1x10-5 in the l-ARMSS GWAS (n=336) decreased 

predictive accuracy to AUROC =0.79 (95% CI 0.74 – 0.84) confirming the polygenic nature of the 

genetic architecture underlying MS severity. 

 

Secondary analyses 

Sex-stratified Genome-wide association search for SNVs associated with longitudinal severity 

measures 

Given our primary analyses did not identify signals of genome-wide significance, we performed sex-

stratified analyses to determine whether any variant effects were potentially sex-associated. Table 2 

summarises the SNVs nearest the top 5 gene regions for each sex. The top hit in the female l-ARMSS 

analysis, rs1219732 intronic to CPXM2 (bfemale =0.5693, p=6.48x10-08), approached genome-wide 

significance (Table S11). This variant also approached significance in association with l-MSSS (bfemale 

=0.5447, p=1.89x10-07, Table S12). We also found rs10967273, an intergenic variant, was associated 

with l-MSSS-defined severity in females (bfemale =0.8289, p=3.52x10-08, Table S12; Figure S7). However, 

this variant did not surpass significance thresholds (bfemale =0.7994, 1.17x10-07) in the l-ARMSS analysis. 

 

In males, the top hit in the l-ARMSS analysis was rs7315384, intronic to STAB2 (bmale= 1.04, p=1.29x10-

07), followed by rs7070182, intronic to TCF7L2 (bmale =-1.11, p=3.65x10-07; Table S13). The l-MSSS 

analysis in males identified rs698805 intronic to CAMKMT (bmale =-1.5395, p=4.35x10-08) as associated 

with severity (Table S14; Figure S8). This variant did not surpass GWAS thresholds in the l-ARMSS 
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analysis (bmale =-1.4199, p=5.64x10-06, Table S13). The variants identified in our sex stratified analyses 

were not associated with severity in the opposite sex (Table S15).  We did not identify any novel 

genetic associations with age at onset (Table S16; Figure S9). 

 

Pathway analyses 

To identify potential biological processes overrepresented in our analyses, we analysed the top 

suggestive SNVs (p< 1x10-5) using gene-set enrichment analyses. We used FUMA22 to assign SNVs to 

genes and tissues, and genes to functions. Tissue enrichment implemented in FUMA revealed an over 

representation of cerebellar cortex-expressed genes for both l-ARMSS (cerebellar hemisphere 

p=0.071; cerebellum p=0.077; Figure S10a) and l-MSSS (cerebellar hemisphere p=0.017; cerebellum 

p=0.023); Figure S10b). In contrast, whole blood-associated genes were not enriched in our analyses 

with either l-ARMSS (p=0.75) or l-MSSS (p=0.82) outcomes. Gene set enrichment analyses of the l-

ARMSS phenotype implicated endothelial cell development (b=0.43; p=8.25x10-05), pseudopodium 

assembly (b=0.84; p=2.37x10-04), response to progesterone (b=0.35; p=2.74x10-04) and NMDA 

receptor activity (b=1.10; p=2.79x10-04). The l-MSSS phenotype was additionally enriched for Wnt 

signalling pathways (b=0.24; p=2.02x10-04; Table S17). We also examined gene set enrichment using 

Panther. Here we corroborated an overrepresentation of heteromeric G-protein signalling pathways 

associated with l-ARMSS (p = 4.98x10-05, FDR = 8.23x-10-03) and l-MSSS (p = 1.00x10-04, FDR = 1.67x10-

02) phenotypes. The AAO phenotype was associated with endothelin (p = 2.51x10-04, FDR = 4.18x10-02), 

and cadherin signalling pathways (p = 2.90x10-04, FDR = 2.42x10-02).  

 

Survival Analyses 

Given our primary GWAS analyses did not reveal SNVs that surpassed the genome-wide level of 

statistical significance, we assessed whether 30 of the top signals (Table 2) might play a role in severity 

modulation using an alternative definition of severity, making use of our longitudinal dataset.  Here 

we assessed the time to reach the hard disability milestones of irreversible expanded disability status 

scale (EDSS) score 3 (irEDSS3) and irreversible EDSS 6 (irEDSS6) in both univariable and adjusted 

analyses (Table S18).  We identified four SNVs that were associated with time to reach irreversible 

EDSS 3 and 6 in both unadjusted and adjusted analyses including: rs7289446 (intronic to SEZ6L), 

rs295254 (intronic to RCL1), rs111399831 (nearest to SUCLA2), rs61578937 (nearest to NCOA2). These 

SNVs were then combined in multivariable analyses to determine whether they could independently 

predict time to disability milestones (Table S19). Three SNVs remained independently predictive of 

both time to irreversible EDSS 3 and 6 (Figure 3), including rs7289446 (SEZ6L: irEDSS3 adjusted HR 
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(aHR) 0.77, p=0.008, Figure 3a; irEDSS6 aHR 0.72, p=4.85x10-4, Figure 3b), rs295254 (RCL1: irEDSS3 

aHR 1.33, p=9.10x10-4, Figure 3c; irEDSS6 aHR 1.32, p=7.37x10-4, Figure 3d) and rs111399831 (irEDSS3 

aHR 0.77, p=0.036, Figure 3e; irEDSS6 aHR 0.62, p=2.82x10-4, Figure 3f).  

In the sex-stratified analyses, we identified rs9643199 (intronic to MTSS1) and rs2776741 (nearest to 

RCAN3AS) as consistently associated with time to irreversible EDSS 3 and 6 in females (Figure 4), but 

not males (Table S18, Figure S9). The independent hazards of time to reach irreversible EDSS 3 and 6 

for these variants were: rs9643199 (MTSS1: irEDSS3 aHR 1.35, p=0.006, Figure 4a; irEDSS6 aHR 1.46, 

p=7.09x10-4, Figure 4b) and rs2776741 (irEDSS3 aHR 0.77, p=0.010, Figure 4c; irEDSS6 aHR 0.74, 

p=0.005, Figure 4d; Table S19).  rs7070182 intronic to TCF7L2 (Figure 4) was the only variant 

consistently associated with time to irreversible EDSS 3 (aHR 0.59, p=0.013, Figure 4e) and 6 (aHR 

0.56, p=0.005, Figure 4f) in males, with no effect in females (Table S18; Figure S11). 

 

MS susceptibility allele association with severity phenotypes 

We sought to determine whether there was an association between known MS susceptibility 

variants (wGRS), and our severity phenotypes of interest. We found weak positive correlations 

between the MS susceptibility wGRS (Table S20) and l-ARMSS (r=0.07, p=0.003, Figure S12a); l-MSSS 

(r=0.03, p=0.19 Figure S12b); and a weak negative correlation with AAO (r=-0.08, p=0.0005) (Figure 

S12c). We did not find an association between l-AMRSS or l-MSSS and the known non-HLA 

autosomal risk variants3 that were directly genotyped (198/200), p>1x10-3 (Table S20). 

 

The distribution, per phenotype, of HLA MS susceptibility tagging SNVs including HLA-DRB1*15:01, 

HLA-DRB1*03:01, HLA-DRB1*130:01, HLA-DRB1*08:01, HLA-DQB1*03:02, and protective alleles: 

HLA-A*02:01, HLA-DQA1*01:01, HLA-B*44:02 and HLA-B*55:01 is described in Table S21. We 

confirmed that HLA-DRB1*15:01 homozygosity was associated with an earlier AAO (rs3135388, 29.2 

years v 30.4 years, p=0.005). However, homozygosity at HLA-DRB1*15:01 was not associated with 

disease severity as per l-ARMSS, nor l-MSSS, nor was any other SNV-genotyped HLA allele (Table 

S21). 

 

Validation assessment of previously published putative severity SNVs 

In addition to the main European DRB1*15:01 tagging SNV, rs3135388, we tested 116 putative non-

HLA SNV associations with cross-sectional MSSS measures, disease severity, and AAO. We were able 

to replicate the association between rs868824, intronic to IMMP2L on chromosome 7, with AAO (b = 

-1.0935 years; p=4.31x10-4), however, no other putative severity variant met or surpassed the 

Bonferroni-corrected replication threshold (p=4.31x10-4, Table S22). 
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Finally, we tested the association between a variant intronic to LRP2 (rs12988804), previously 

reported to be associated with relapse risk,23 and annualised relapse rate (ARR). However, we were 

unable to find an association between this variant and ARR in our targeted analysis (p = 0.925). 

 

Discussion 

Two of the fundamental, unanswered questions with respect to relapsing-remitting MS are first, what 

is the source of the marked clinical disease heterogeneity? That is, why do some people with RMS 

have a rapidly progressing, severely disabling disease course, whilst others do not? And second, can 

we utilise genetic and other information to predict MS outcomes? 

 

Here, through a series of analyses that took advantage of a unique, multicentre, prospectively 

ascertained, longitudinal, clinical dataset,24 we can shed some light on the genetic architecture that 

underpins MS clinical heterogeneity. Our primary, unbiased GWAS analyses demonstrate that there 

are no common variants with moderate to large effect sizes that contribute to MS severity. With time, 

and very large cohorts, we will likely confirm that MS severity is at least partially determined by 

polygenic mechanisms of small effect size. Alternatively, we may find that variants which influence 

severity may be time-variable, rather than having a constant effect.25 Importantly, our results suggest 

that disease outcomes are not under strong genetic control. Indeed our study results demonstrated 

that common genetic variants explained only 20% of severity heritability, with wide error margins. 

Therefore, suggesting that, as clinical experience shows, outcomes are, to an extent, modifiable with 

appropriate and early disease-modifying therapy (DMT) intervention.26-28 This is further underscored 

in the modern era where, with the introduction of DMT, rates of disability accumulation have slowed, 

and fewer disabling cases are being seen, relative to historical cohorts.29-33  Future pharmacogenomic 

studies34 may prove to be invaluable to guide precise prescription practices to further slow 

progression or modify disease outcomes. 

The complex interplay between genes and the environment likely additionally plays a significant role 

in outcome modulation. It has been shown that disability accumulation may be modified by additional 

lifestyle factors such as pregnancy27 and smoking cessation.35 Epigenetic studies may therefore shed 

further light on relevant, modifiable mechanisms that regulate MS outcomes. 

 

The application of machine learning to GWAS data is considered by some36 to be the “last hope” to 

gain meaningful insights for complex diseases where no variants meet significance thresholds. 

Our machine learning algorithm was unable to provide additional biological insights into the 

underlying genetic architecture of MS severity, instead reinforcing that common SNVs independently 
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contribute miniscule weights towards determining MS severity.  Regardless, machine learning was 

able to predict non-linear effects and large SNV clusters that can accurately classify MS outcomes, and 

may prove to be of prognostic utility. Whilst we retained the MS susceptibility wGRS in our algorithm, 

it was not a major contributor to our predictive model, again consistent with our above findings, and 

past reports demonstrating that MS risk variants have little influence on severity outcomes.7 The 

classification accuracy of our machine learning algorithm increased with the addition of age at onset. 

In fact, age at onset was one of the strongest predictors of outcome in our machine learning models, 

consistent with past reports.27 Our machine learning algorithm was designed with internal checks to 

prevent data over fitting. We used a slow learning rate, with a 70/30 training/testing set and internal 

bootstrapping over 20,000 learning iterations. We achieved positive predictive values for outcome 

assignation of between 0.889 – 0.844 and negative predictive values in the range of 0.851 – 0.853. To 

our knowledge, this is a world first for MS genetic studies. Whilst a previous ML study successfully 

predicted MS severity,37 this was predicated on health records, and data that take years to decades to 

obtain e.g. change in clinical parameters between years ‘x’ and ‘y’ to predict ‘z’. The variables included 

in our classification algorithm are readily available at disease onset. With the rapid decrease in the 

cost of beadchip genotyping, and high PPV and NPV we achieved, our machine learning algorithm 

could readily translate into clinical practice upon validation in an independent cohort. 

 

In our secondary analyses, we replicated the association between the main MS risk allele HLA-

DRB1*15:01 and age at onset.4, 6 Further, ours is the first study to replicate rs868824, intronic to 

IMMP2L,10 as being associated with age at onset in a targeted analysis. IMMP2L, an inner 

mitochondrial membrane protease, has been associated with cellular senescence,38 ovarian aging via 

oxidative stress and estrogen-mediated pathways,39 together with neurological disorders.40-43 Recent 

evidence points to accelerated cellular senescence and biological aging in people MS,44-46 and suggests 

that these factors may reduce remyelination capacity.45  The validation of the association of rs868824 

with age at onset, is a first step towards understanding the potential biological mechanisms underlying 

accelerated cellular senescence in MS. 

 

The integration of the top SNVs identified in our de novo GWAS analyses into hard EDSS disability 

milestone survival analyses, again identified variants intronic to or near genes implicated in 

mitochondrial function: rs111399831, nearest to SUCLA2, and rs9643199 intronic to MTSS1; as well 

as variants intronic to genes implicated in CNS function: rs7289446 intronic to SEZ6L, rs295254 

intronic to RCL1, rs9643199 intronic to MTSS1, rs2776741 nearest to RCAN3AS, and rs7070182 

Intronic to TCF7L2. The latter three having sex-specific effects. The hazard ratios associated with 
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reaching irreversible EDSS 3 or 6, conferred by carriage of the minor allele at each SNV, were 

consistent with the effect sizes of these variants in our GWAS analyses: that is, effect sizes were small, 

but significant in survival analyses. Most importantly, these variants identify highly biologically and 

clinically plausible leads for potential replication of clinical heterogeneity in similar or larger cohorts.  

 

SUCLA2 is expressed in the brain and muscle, and encodes the beta-subunit of succinate-CoA ligase, 

an enzyme required for the maintenance of mitochondrial DNA.47 Variations in MTSS1 have been 

reported to associate with mitochondrial complex 1 deficiency in ClinVar (SCV001137705.1, 

SCV001137706.1). The variants we describe here are intronic to, or near to these genes,  and are likely 

to be tagging rather than causal. However, together with IMMP2L, we describe three variants 

associated with mitochondrial function, where mitochondrial dysfunction is a recognised 

pathophysiological hallmark of CNS injury in MS.48, 49  

 

Whilst MTSS1 has been reported to associate with mitochondrial function, it has primarily been 

described in the context of B-cell mediated immunity,50 and various CNS pathologies.51,52 Most 

relevant perhaps to MS outcomes, is the association between MTSS1, cortical volume, and Purkinje 

cell dendritic arborization.53, 54 SEZ6L, the top signal in both l-ARMSS and l-MSSS analyses, is 

implicated in dendritic spine density variation, and arborization in the hippocampus and 

somatosensory cortex.20  Disruptions in SEZ6L cause neurodevelopmental, psychiatric, and 

neurodegenerative conditions, as well as having a role in motor function.20, 55, 56 Copy number 

variation in RCL1, has also been associated with severe psychiatric disease,57 and depression.58 

Progressive synaptic loss, or synaptopathy, is a hallmark of MS pathology;59, 60 evident in both 

acutely active demyelinating lesions,61 as well as chronic inactive lesions.62 It has been shown that 

loss of synaptic density is associated with network dysfunction,60 implicating a failure of synaptic 

plasticity to compensate for immune-mediated neural damage. It is therefore plausible that the 

variants identified in this study implicate a genetic susceptibility to impaired compensatory 

mechanisms, or impaired neural survival in those with severe MS. This of course requires 

independent validation but raises an intriguing new line of enquiry. 

 

Interestingly, we identified a variant intronic to TCF7L2 as associated with severity in males. TCF7L2 

is a transcription factor involved in Wnt signalling pathways, and associated with 

neurodevelopmental disorders.63 Critically in the context of our study, TCF7L2 has been shown to 

maintain oligodendrocyte progenitor cells in the progenitor state, acting as a molecular switch that 

can inhibit Wnt signalling to promote oligodendroglial differentiation.64  Why this variant was 
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associated with severity only in males in our study is unclear. However, the role of TCF7L2 in MS 

severity requires further investigation. Interestingly, gene set enrichment analyses revealed that 

both Wnt signalling pathway components together with progesterone response pathways were 

enriched in our analyses. Progesterone is a known regulator of myelin development, as well as 

having neuroprotective effects,65 lending support to the notion that genetic susceptibility to 

impaired remyelination predisposes to more severe MS. 

 

Our tissue enrichment analyses specifically pointed towards genes enriched in cerebellar function. 

The cerebellum plays a key role in motor coordination as well as cognition.66 It has long been held26 

and recently confirmed,67 that cerebellar signs and symptoms are a predictor of poor prognosis in 

MS. The results of our analyses therefore point to highly relevant and biologically plausible genetic 

explanations for clinically observed disease heterogeneity. 

 

Our multicentre study was conducted using rigorously defined and prospectively collected 

longitudinal clinical and treatment data from the MSBase Registry, making our cohort globally 

unique. Due to the nature of this cohort, we were unable to validate our results in an equivalent 

dataset, therefore, the data presented herein require independent validation. We did try to 

overcome this limitation by testing top SNV signals using alternate definitions of disease severity, 

namely survival analyses of time to irreversible disability milestones. Similarly, our ML analyses were 

performed using a conservative 70/30 training/testing split relative to the traditional 80/20 split, 

accompanied with internal bootstrapping. Our efforts to expand our cohort for future analyses are 

ongoing. 

 

Here we report an important milestone in our progress towards understanding the clinical 

heterogeneity of MS outcomes, implicating functionally distinct mechanisms to MS risk. We 

demonstrate that common genetic variants of moderate to large effect sizes do not contribute to MS 

severity. In secondary sex-stratified analyses, we identified two genetic loci that surpassed GWAS 

significance thresholds, providing evidence of sex dimorphism in MS severity.  We identified a further 

six variants with strong evidence for regulating clinical outcomes. We observed an overrepresentation 

of genes expressed in CNS compartments generally, and specifically in the cerebellum. These involved 

mitochondrial function, synaptic plasticity, cellular senescence, calcium and g-protein receptor 

signalling pathways. Importantly, we demonstrate that machine learning using common SNV clusters, 

together with clinical variables readily available at diagnosis can improve prognostic capabilities at 
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diagnosis, that which goes beyond T2 MRI lesion load,68 and with further validation has the potential 

to translate to meaningful clinical practice change. 
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Methods 

 

Study population: 

Participants were recruited from eight tertiary-referral MS-specialist centres, from 3 countries 

(Australia, Spain, and Czech Republic), participating in the MSBase Registry. MSBase is an 

international, prospective, observational, MS clinical outcomes registry, registered with the World 

Health Organization International Clinical Trials Registry Platform, ID ACTRN12605000455662.24 Data 

are entered by neurologists in, or near real-time including: participant demographics, disease 

phenotype, expanded disability status scale (EDSS) scores, relapse information, and disease modifying 

therapy use. Clinical assessments occur on average every 6 months. 

 

Ethics approvals: 

This study was approved by the Melbourne Health Human Research Ethics Committee, and by 

institutional review boards at all participating centres. All participants gave written informed consent 

for participation in the MSBase Registry, together with additional informed consent to participate in 

genetic research (HREC/13/MH/189 and per local approvals elsewhere). 

 

Study Inclusion Criteria: 

People with MS (pwMS) of European ancestry with clinically definite, relapse-onset MS, based on 

McDonald criteria69-71 and participating in MSBase. Further, minimum inclusion criteria comprised: 

sex, birthdate, age at onset, ³5 years of symptom duration; ³5 years prospective follow-up in MSBase; 

³3 EDSS scores recorded in the absence of a relapse (defined as EDSS scores recorded within 30 days 

of relapse onset date); availability of relapse and treatment history. Symptom duration was calculated 

based on the most recently recorded EDSS visit. 

 

Phenotyping, severity assignation and recruitment: 

Data used for phenotyping pwMS were extracted from the registry on 4 September 2019. EDSS scores 

recorded in the absence of a relapse were used to calculate an age-related MS severity (ARMSS)19 

score and MS Severity Scale13 (MSSS) score. It has been demonstrated that at the individual level, that 

cross-sectional MSSS cannot be used for prognostication,13 but that longitudinal MSSS scores may be 

less noisy in individual prognostics.72 Therefore, for each participant, we calculated the median 

longitudinal ARMSS (l-ARMSS) and median longitudinal MSSS (l-MSSS) using each available ARMSS or 
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MSSS score (minimum 3 scores, Tables 1 & S2). Median relapse-independent l-ARMSS and l-MSSS 

scores were then divided into quintiles to stratify the cohort for severity. The top and bottom quintiles 

were defined as outcome extremes. Our definitions of mild and severe disease were based on all 

individuals meeting minimum inclusion criteria (n=5,851; Figure S1). Participant recruitment was then 

enriched for those at outcome extremes. Lists of study participants in the top and bottom decile of 

severity were sent to centre PIs to ensure accurate diagnosis. In cases of diagnostic uncertainty, or re-

classification (e.g. ADEM, primary progressive MS), these pwMS were excluded from our study. A 

further age at onset (AAO) phenotype was defined as age at first symptom onset. 

Symptom duration was defined as the number of years between first symptom onset and the most 

recently recorded clinical visit reported by a neurologist in MSBase. Follow-up was defined as the 

number of years between first neurologist recorded visit in MSBase, and the most recent clinical visit. 

Percentage of time exposed to disease-modifying therapy (DMT) was defined as the total time 

exposed to any approved MS DMT as a percentage of symptom duration, as recorded in MSBase. 

 

Statistical analyses: 

Data processing and statistical analyses were performed in Stata v17 (Stata Corp, College Station, TX) 

or R (http://R-project.org). Monash high performance computing infrastructure through MASSIVE was 

used for big data manipulation and computationally extensive analyses.73  Continuous variables were 

assessed for normality using the Shapiro-Wilk normality test, and described as mean and standard 

deviation (SD) or median with interquartile range (IQR), as appropriate. Categorical variables were 

described using frequencies. Standardised differences between key demographic and clinical variables 

were assessed using the Cohen’s d statistic. Correlations between l-ARMSS and AAO and the weighted 

genetic risk score (wGRS) were assessed using Pearson’s correlation coefficients. All analyses were 2-

tailed. 

 

Genotyping, imputation and quality control: 

Detailed methodology can be found in supplementary materials and methods. Briefly, whole blood 

gDNA was genotyped using the Illumina MegaEx BeadChip array. This array was customized with an 

additional 3,000 single nucleotide variants (SNVs) of interest including: known MS risk SNVs, a suite of 

tag SNVs to classical HLA alleles,11 previously published putative severity SNVs,10, 14, 15, 17 and others of 

interest, including SNVs previously associated with neurodegeneration in other diseases (see 

supplementary materials). Samples were genotyped in two tranches. Each tranche containing DNA 

from Australia, the Czech Republic and Spain. Genome-wide data was therefore organised into six 
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data sets. Following rigorous per-data-set quality control (supplementary methods, Table S1), we 

imputed all samples using the Haplotype Reference Consortium panel (r1.1)74 on the Michigan 

imputation server, resulting in 22,469,259 SNVs. After further per-SNP QC, this resulted in 5,985,626 

(final) SNVs with a minor allele frequency of at least 5%. 

 

Association testing: 

PLINK (v 1.9 and v 2.0)75 were used to conduct association testing and meta-analyses. For continuous 

traits, we used linear regression to analyse each of the 6 data sets, adjusted for the first 5 principal 

components (PCs), weighted genetic risk scores76, disease-modifying therapy use, together with 

variables identified to have a standardised difference greater than 15% between severity extremes. 

Combined data set results of all 6 groups were then analysed using fixed-effects meta-analyses to 

identify statistically independent SNVs.  

For binary traits, all 6 groups were analysed jointly, due to lower sample numbers. We used logistic 

regression, adjusting for group ID, the first 5 PCs together with covariates with Cohen’s d >0.15. 

For replication analyses, the Bonferroni-deflated p-value to meet replication threshold was set to p £ 

4.31x10-4 (0.05/116 replication SNVs). The de novo genome-wide association study (GWAS) p-value 

threshold was set to p<5x10-8. SNVs meeting 1x10-8< p <5x10-5 were considered to have nominal 

evidence of association with the trait of interest. Weighted genetic risk scores (wGRS)76 were 

calculated based on directly genotyped SNVs described by the IMSGC (supplementary material).3 

Calculations estimated a sample size of 915 individuals per group was required to achieve 80% power 

to detect an SNV with MAF 0.2 and an odds ratio of 1.3, based on binary severity outcomes.  

 

Survival analyses: 

We assessed time to reach the hard disability milestones of irreversible EDSS 3 and 6 for those 

individuals who had not yet reached these at first MSBase-recorded clinic entry. Where disability 

milestones were not met during study observation, data were censored at the most recent clinic visit. 

Survival analyses were based on carriage of the minor allele for SNVs at the top 10 nearest genes 

identified in our l-ARMSS and l-MSSS de novo association analyses; and top 5 nearest genes identified 

in our sex-stratified l-ARMSS and l-MSSS analyses.  Cox proportional hazards regression (implemented 

in Stata v17) was used to calculate hazard ratios (HRs) with 95% confidence intervals (CI). Multivariable 

models were adjusted for AAO, MS susceptibility wGRS, percentage of follow-up exposed to DMT and 

sex. The Schoenfeld residuals global test was used to detect a violation of the Cox proportional hazards 
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assumption. Where the proportionality assumption was violated, a Weibull regression approach was 

applied. Survival data were visualised using Kaplan-Meier curves. 

 

Heritability analysis: 

Narrow sense heritability (hsnp) was estimated from individual-level GWAS data using a genome-based 

restricted maximum likelihood (GREML) approach implemented using GCTA software,77 and BOLT-

LMM.78 BOLT-LMM was additionally used to estimate per-chromosome heritability estimates. We 

further employed a summary statistic approach using a linkage disequilibrium (LD) score regression 

(LDSC) implemented in LDSC software.79   

 

Enrichment analyses:  

We used FUMA22 to assign SNVs (p <1x10-5) to Genes, Tissues and functions using as per online 

instructions. The Panther database80 was used to further confirm gene pathways/ontologies that were 

over-represented and enriched in the variants with top association hits (p <1x10-5). Tissue expression 

of variants with p<1x10-05 was further validated using both the TissueEnrich package81 and 

Geneanalytics database82. 

 

Machine Learning: 

We chose to implement non-linear machine learning (ML) models for severity classification as linear 

ML models, that do not account for interaction between genetic variants, have been found to perform 

no better than simple linear regression in the context of common variant-based disorders.83 All SNVs 

that had a p-value of 0.01 or less in the de novo meta-analyses were used to generate datasets 

compatible with gradient boosting algorithms (xgboost21). A total of 62,351 SNVs were included, with 

binary l-ARMSS score severity as the outcome. A training set of 70% of the pwMS was randomly 

selected, ensuring a balanced representation of severe and mild MS outcomes. After training with 

internal bootstrapping of 0.7 for 10k iterations, the model was tested on the 30% of the remaining 

cohort, i.e. those datasets never encountered by the algorithm. We were cautious to avoid overfitting 

our models by using 70%-30% cut off for the train/test data sets; a more conservative approach than 

others that tend to use a 80%-20% cut off.84  Further, a slow learning rate (eta = 0.01) was 

implemented to avoid overfitting.85, 86 The algorithm calculated a prediction score for each new 

individual regarding their severity group membership. Accuracy of prediction was compared to the 

clinically-informed grouping of each individual.  

Using the prediction values generated on the test set for each model, as well as the true membership 

values of each sample, a confusion matrix was generated along with accuracy, sensitivity, specificity, 
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and Kappa statistics using the confusion matrix function of Caret package. Furthermore, to evaluate 

the prediction accuracy and performance of the models, the Receiver Operator Characteristic (ROC) 

curve was plotted to explore the relationship between false positives and negatives, and the Area 

Under the Curve (AUC) for each model was calculated. 
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Figures 

 

Figure 1a: EDSS-age trajectories for included participants classified into mild (brown; n=1,180), 

intermediate (green; n=3,559) or severe (purple; n=1,112) groups based on median longitudinal 

ARMSS scores. 1b: EDSS-symptom duration trajectories for included participants classified into mild 

(brown; n=1,232), intermediate (green; n=3,512), or severe (purple; n=1,107) groups based on median 

longitudinal MSSS scores. 

  

Figure 1a: EDSS-age trajectories for included participants classified into mild 
(brown; n=1,180), intermediate (green; n=3,559) or severe (purple; n=1,112) 
groups based on median longitudinal ARMSS scores. 1b: EDSS-symptom duration 
trajectories for included participants classified into mild (brown; n=1,232), 
intermediate (green; n=3,512), or severe (purple; n=1,107) groups based on 
median longitudinal MSSS scores.
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Figure 2: Machine learning algorithm classification of mild and severe cases. a: l-ARMSS +wGRS + AAO 

ML (n=447 mild, n=464 severe); AUROC 0.87 (95% CI 0.83-0.91)  b: l-MSSS +wGRS + AAO ML (n=585 

mild, n=466 severe); AUROC 0.85 (95% CI 0.80-0.89) c: Feature importance for l-ARMSS +wGRS + AAO 

ML model d: Feature importance for l-MSSS +wGRS + AAO ML model e: l-ARMSS +wGRS + AAO ML 

confusion matrix (30% cohort) f: l-ARMSS +wGRS + AAO ML confusion matrix (30% cohort). 
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Figure 2: Machine learning algorithm classification of mild and severe cases. a: l-ARMSS 
+wGRS + AAO ML AUROC 0.87  b: l-MSSS +wGRS + AAO ML AUROC 0.85 c: Feature importance 
for l-ARMSS +wGRS + AAO ML model d: Feature importance for l-MSSS +wGRS + AAO ML 
model e: l-ARMSS +wGRS + AAO ML confusion matrix f: l-ARMSS +wGRS + AAO ML confusion 
matrix
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Prediction Mild Severe
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Severe 20 115
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Figure 3: Kaplan-Meier survival curves showing time to irreversible EDSS milestones based on the 

presence (1,2) or absence (0) of the minor allele at each locus a: rs7289446 intronic to SEZ6L time to 

irreversible EDSS 3 (aHR 0.77, p=0.008) b: rs7289446 intronic to SEZ6L time to irreversible EDSS 6 (aHR 

0.72, p=4.85x10-4) c: rs295254 intronic to RCL1 time to irreversible EDSS 3 (aHR 1.33, p=9.10x10-4) d: 

rs295254 intronic to RCL1 time to irreversible EDSS 6 (aHR 1.32, p=7.37x10-4) e: rs11399831 nearest 

to SUCLA2 time to irreversible EDSS 3 (aHR 0.77, p=0.036) f: rs11399831 nearest to SUCLA2 time to 

irreversible EDSS 6 (aHR 0.74, p=2.82x10-4).    
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Figure 3: Kaplan-Meier survival curves showing time to irreversible EDSS milestones based on 
the presence (1,2) or absence (0) of the minor allele at each locus a: rs7289446 intronic to 
SEZ6L time to irreversible EDSS 3 (aHR 0.77, p=0.008) b: rs7289446 intronic to SEZ6L time to 
irreversible EDSS 6 (aHR 0.72, p=4.85x10-4) c: rs295254 intronic to RCL1 time to irreversible 
EDSS 3 (aHR 1.33, p=9.10x10-4) d: rs295254 intronic to RCL1 time to irreversible EDSS 6 (aHR
1.32, p=7.37x10-4) e: rs11399831 nearest to SUCLA2 time to irreversible EDSS 3 (aHR 0.77, 
p=0.036) f: rs11399831 nearest to SUCLA2 time to irreversible EDSS 6 (aHR 0.74, p=2.82x10-4). 
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Figure 4: Kaplan-Meier survival curves showing time to irreversible EDSS milestones based on the 

presence (1,2) or absence (0) of the minor allele at each locus a: rs9643199 intronic to MTSS1 time to 

irreversible EDSS 3 in females (aHR 1.35, p=0.006) b: rs9643199 intronic to MTSS1 time to irreversible 

EDSS 6 in females (aHR 1.46, p=7.09x10-4) c: rs2776741 nearest to RCAN3AS time to irreversible EDSS 

3 in females (aHR 0.77, p=0.010) d: rs2776741 nearest to RCAN3AS time to irreversible EDSS 6 in 

females (aHR 0.74, p=0.005) e: rs7070182 intronic to TCF7L2 time to irreversible EDSS 3 in males (aHR 

0.59, p=0.013) f: rs7070182 intronic to TCF7L2 time to irreversible EDSS 6 in males (aHR 0.56, p=0.005). 
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Figure 3: Kaplan-Meier survival curves showing time to irreversible EDSS milestones based on 
the presence (1,2) or absence (0) of the minor allele at each locus a: rs9643199 intronic to 
MTSS1 time to irreversible EDSS 3 in females (aHR 1.35, p=0.006) b: rs9643199 intronic to 
MTSS1 time to irreversible EDSS 6 in females (aHR 1.46, p=7.09x10-4) c: rs2776741 nearest to 
RCAN3AS time to irreversible EDSS 3 in females (aHR 0.77, p=0.010) d: rs2776741 nearest to 
RCAN3AS time to irreversible EDSS 6 in females (aHR 0.74, p=0.005) e: rs7070182 intronic to 
TCF7L2 time to irreversible EDSS 3 in males (aHR 0.59, p=0.013) f: rs7070182 intronic to 
TCF7L2 time to irreversible EDSS 6 in males (aHR 0.56, p=0.005).
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Table 1:  Cohort Characteristics by longitudinal ARMSS (l-ARMSS) categorisation 

  Assessed Genotyped – Passed QC  

Characteristics  All 

n=5,851 

Mild 

n=1,180 

Severe 

n=1,167 

All 

n=1,813 

Mild 

n=447 

Severe n=464 Cohen’s d 

(mild vs 

severe 

genotyped) 

Population 

n(%) 

Australian 

Czech 

Spanish 

1993 (34.1) 

2664 (45.5) 

1194 (20.4) 

625 (53.0) 

346 (29.3) 

209 (17.7) 

375 (32.1) 

497 (42.6) 

295 (25.3) 

676 (37.3) 

716 (39.5) 

421 (23.2) 

209 (46.8) 

156 (34.9) 

82 (18.3) 

161 (34.7) 

164 (35.3) 

139 (30.0) 

 

l-ARMSS Score Median (IQR) 4.53 

(2.79, 6.55) 

1.49 

(0.93, 1.97) 

8.24 

(7.63, 8.91) 

4.13 

(2.43, 7.21) 

1.49  

(0.96, 2.03) 

8.55  

(7.92, 9.12) 

10.40 

Range 0.08 – 9.99 0.08 – 2.39 7.13 – 9.99 0.14 – 9.98 0.14 – 2.38 7.13 – 9.98  

Disease course 

n(%) 

RRMS 5075 (86.7) 1150 (97.5) 743 (63.7) 1471 (81.1) 438 (98.0) 226 (48.7)  

SPMS 776 (13.2) 30 (2.5) 424 (36.3) 342 (18.9) 9 (2.0) 238 (51.3) 

Sex n(%) Female 4,261 (72.8) 889 (75.3) 809 (69.3) 1,313 (72.4) 337 (75.4) 316 (68.1)  

Male 1,590 (27.2) 291 (24.7) 358 (30.7) 500 (27.6) 110 (24.6) 148 (31.9) 

Age at onset 

(AAO) 

Median (IQR) 29.2 

(23.4, 36.5) 

34.3 

(27.7, 41.9) 

26.0 

(20.9, 32.1) 

28.3 

(22.7, 35.7) 

32.3 

(26.4, 39.6) 

27.2 

(22.1, 33.1) 

0.58 

Age at most 

recent visit 

Median (IQR) 47.2  

(39.7, 56.4) 

50.5  

(42.8, 58.5) 

47.4  

(40.0, 56.1) 

48.1  

(40.9, 57.2) 

51.2  

(43.5, 58.6) 

51.1  

(43.6, 58.5) 

0.003 

Range 17.4 – 87.6 20.2 – 87.6 17.4 – 80.1 17.4 – 84.5 25.2 – 83.1 17.4 – 80.1  

Median (IQR) 10.1  9.2  10.9  11.7  11.2  12.5  0.32 
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Follow up in 

MSBase (years) 

(7.5, 13.3) (7.0, 12.1) (8.3, 15.0) (9.7, 15.2) (9.4, 14.1) (10.2, 16.2) 

Range 5.0 – 54.8 5.0 – 32.2  5.0 – 47.0  5.1 – 32.2 5.1 – 32.2 5.2 – 29.1 

Number of EDSS 

assessed 

Median (IQR) 18 (11, 31) 13 (9, 20) 18 (11, 31) 21 (14, 34) 17 (12, 26) 19 (12, 30)  0.10 

Range 3 – 91 3 – 91 3 – 85  3 – 91 3 – 91  3 – 85  

Symptom 

duration (years) 

Median (IQR) 16.0  

(10.7, 23.1) 

13.8  

(9.7, 20.2) 

20.6  

(14.3, 26.9) 

18.1  

(13.2, 24.4) 

16.2  

(11.9, 22.0) 

22.2  

(17.5, 28.0) 

0.61 

Range 5.1 – 66.6 5.1 – 58.5 5.3 – 57.1 5.6 – 55.4 5.9 – 55.4 6.7 – 50.4 

% time exposed 

to DMT 

Median (IQR) 82.9 

(36.1, 97.6) 

82.04 

(14.6, 97.3) 

67.4 

(18.3, 93.3) 

79.7  

(37.6, 96.6) 

79.9 

(29.8, 97.8) 

60.6 

(17.3, 91.2) 

0.22 

 Range 0-100 0-100 0-100 0-100 0-100 0-100  

ARR Median (IQR) 0.16 (0, 0.38) 0.10 (0, 0.19) 0.17 (0, 0.44) 0.17 (0.06, 

0.36) 

0.10 (0, 0.22) 0.17 (0.06, 

0.39) 

0.43 

 Range 0 – 2.45 0 – 1.28 0 – 2.45 0 – 1.62 0 – 1.01 0 – 1.54 

wGRS Mean (SD) - - - 2.85 (0.79) 2.71 (0.80) 2.90 (0.78) 0.23 
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Table 2: Results of fixed effects meta-analyses: top SNVs for the 10 nearest genes for l-ARMSS and l-MSSS phenotypes & top SNVs for the 5 nearest genes 

in sex-stratified analyses. 

rsID Chr 

ranked order 

SNV 

ranked order 

nearest gene Nearest gene Minor Allele MAF adj p# ^ β 

l-ARMSS#, n=1813 

rs7289446 22 1 1 SEZ6L G 0.27 2.73E-07 -0.488 

rs1207401 22 2 1 SEZ6L A 0.27 2.90E-07 -0.490 

rs7758683 6 6 2 EPHA7 T 0.23 1.88E-06 -0.477 

rs56089601 4 7 3 STK32B C 0.10 2.69E-06 0.655 

rs12953974 18 10 4 CTIF A 0.12 3.64E-06 -0.607 

rs56194930 9 11 5 ACO1 G 0.11 3.69E-06 0.648 

rs73091975 7 14 6 CCDC129 G 0.09 3.84E-06 -0.680 

rs2274333 1 16 7 CA6 G 0.29 4.60E-06 -0.429 

rs295254 9 20 8 RCL1 G 0.38 5.64E-06 0.388 

rs11057374 12 21 9 DNAH10 G 0.35 5.79E-06 -0.390 

rs111399831 13 29 10 SUCLA2 A 0.21 7.34E-06 -0.468 

l-MSSS^, n=1813 

rs1207401 22 1 1 SEZ6L A 0.27 2.88E-07 -0.484 

rs7289446 22 4 1 SEZ6L G 0.27 3.35E-07 -0.479 

rs9643199 8 6 2 MTSS1 A 0.26 1.90E-06 0.465 

rs2725556 15 22 3 UNC13C A 0.08 2.39E-06 0.709 
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rs61578937 8 23 4 NCOA2 G 0.13 2.86E-06 -0.562 

rs7758683 6 27 5 EPHA7 T 0.23 3.61E-06 -0.456 

rs56089601 4 32 6 STK32B C 0.10 4.65E-06 0.631 

rs4495680 1 33 7 RGS13 G 0.41 5.65E-06 -0.390 

rs56363129 10 42 8 SEPHS1 G 0.15 6.56E-06 0.516 

rs111399831 13 47 9 SUCLA2 A 0.15 7.07E-06 -0.534 

l-ARMSS Females only, n=1313 

rs1219732 10 1 1 CPXM2 T 0.35 6.48E-08 0.569 

rs10967273 9 3 2 LOC100506422 T 0.13 1.16E-07 0.799 

rs4572384 16 15 3 CRISPLD2 A 0.40 2.77E-06 0.487 

rs2776741 1 16 4 RCAN3AS A 0.31 2.98E-06 -0.516 

rs61873874 10 18 5 MKI67 A 0.05 3.39E-06 1.007 

l-ARMSS Males only, n=500 

rs7315384 12 1 1 STAB2 C 0.24 1.29E-07 1.041 

rs7070182 10 2 2 TCF7L2 C 0.18 3.65E-07 -1.112 

rs11845242 14 4 3 LINC00520 G 0.41 5.63E-07 -0.800 

rs3885012 12 5 4 PHLDA1 G 0.06 1.19E-06 -1.499 

rs11665069 18 7 5 FHOD3 C 0.41 1.34E-06 0.755 

l-MSSS Females only, n=1313 

rs10967273 9 1 1 LOC100506422 T 0.13 3.52E-08 0.830 

rs9643199 8 2 2 MTSS1 A 0.26 6.54E-08 0.631 
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rs17169210 5 4 3 SLC25A48 C 0.23 1.25E-07 -0.621 

rs1219732 10 7 4 CPXM2 T 0.35 1.70E-07 0.550 

rs61873874 10 50 5 MKI67 A 0.05 1.45E-06 1.051 

l-MSSS Males only, n=500 

rs698805 2 1 1 CAMKMT G 0.07 4.35E-08 -1.540 

rs7315384 12 2 2 STAB2 C 0.24 8.00E-08 1.020 

rs3885012 12 14 4% PHLDA1 G 0.06 3.69E-07 -1.312 

rs7070182 10 35 5 TCF7L2 C 0.18 3.86E-07 -1.054 

rs28442172 18 51 6 FHOD3 G 0.13 2.13E-06 -1.105 

Fixed-effects meta-analyses (n=6) adjusted for the first 5 principal components (PCs) 

# l-ARMSS analyses adjusted for: % time on therapy since disease onset, weighted genetic risk score (wGRS), number of DRB1*1501 alleles, and imbalanced 

variables: follow-up time in MSBase (years), symptom duration (years), Annualised Relapse Rate (ARR)  

^ l-MSSS analyses additionally adjusted for % time on therapy since disease onset, wGRS, number of DRB1*1501 alleles, and imbalanced variables including: 

age at most recent visit, number of EDSS assessments, symptom duration (years) 

% 3rd closest gene hit had >80% heterogeneity 
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