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21 ABSTRACT

22 Prostate Cancer (PCa) is the third most commonly diagnosed cancer worldwide, and its 

23 diagnosis requires many medical examinations, including imaging. Ultrasound offers a 

24 practical and cost-effective method for prostate imaging due to its real-time availability at 

25 the bedside. Nowadays, various Artificial Intelligence (AI) models, including Machine 

26 learning (ML) with neural networks, have been developed to make an accurate diagnosis. 

27 In PCa diagnosis, there have been many developed models of ML and the model 

28 algorithm using ultrasound images shows good accuracy. This study aims to analyse the 

29 accuracy of neural network machine learning models in prostate cancer diagnosis using 

30 ultrasound images. The protocol was registered with PROSPERO registration number 

31 CRD42021277309. Three reviewers independently conduct a literature search in five 

32 online databases (MEDLINE, EBSCO, Proquest, Sciencedirect, and Scopus). We 

33 screened a total of 132 titles and abstracts that meet our inclusion and exclusion criteria. 

34 We included articles published in English, using human subjects, using neural networks 

35 machine learning models, and using prostate biopsy as a standard diagnosis. Non 

36 relevant studies and review articles were excluded. After screening, we found six articles 

37 relevant to our study. Risk of bias analysis was conducted using QUADAS-2 tool. Of the 

38 six articles, four articles used Artificial Neural Network (ANN), one article used Recurrent 

39 Neural Network (RNN), and one article used Deep Learning (DL). All articles suggest a 

40 positive result of ultrasound in the diagnosis of prostate cancer with a varied ROC curve 

41 of 0.76-0.98. Several factors affect AI accuracy, including the model of AI, mode and type 

42 of transrectal sonography, Gleason grading, and PSA level. Although there was only 

43 limited and low-moderate quality evidence, we managed to analyse the predominant 
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44 findings comprehensively. In conclusion, machine learning with neural network models is 

45 a potential technology in prostate cancer diagnosis that could provide instant information 

46 for further workup with relatively high accuracy above 70% of sensitivity/specificity and 

47 above 0.5 of ROC-AUC value. Image-based machine learning models would be helpful 

48 for doctors to decide whether or not to perform a prostate biopsy. 

49

50 Keywords: Machine learning, Artificial Intelligence, Neural Networks, Prostate Cancer, 

51 Ultrasonography

52

53 Introduction

54 Prostate cancer (PCa) is the third most common cancer globally and the second most 

55 common cancer in men. In 2020, there were an estimated 1,4 million new cases and 

56 375,000 new prostate cancer deaths worldwide.[1] There are several modalities to 

57 diagnose PCa, including digital rectal examination (DRE), prostate-specific antigen (PSA) 

58 levels, biomarkers, imaging, and histopathology. The current gold standard for PCa 

59 detection in core needle biopsy, performed under transrectal ultrasound (TRUS) 

60 guidance.[2-5] The role of ultrasound (US) in this procedure is not for targeting PCa but 

61 for anatomical navigation. Aside from the complications associated with the biopsy, high 

62 levels of underdiagnosed and overtreatment have been reported.[6-7]

63

64 Ultrasound is a potential candidate for PCa imaging because it is cost-effective, practical, 

65 and widely available. The problem of ultrasound images interpretation is that hypoechoic 

66 areas suspected of cancer can be normal or cancerous histologically. Most prostate 
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67 cancers are hypoechoic on TRUS, whereas 30%-40% of prostate cancer are isoechoic, 

68 and 1.5% are hyperechoic.[8] The sensitivity and specificity of TRUS are limited, ranging 

69 between 40% and 50% for detecting PCa.[8,9] Several studies depict that using grey 

70 mode US alone is inadequate for PCa screening.[10] However, there are several new 

71 modes of US in prostate gland imaging, such as contrast-enhanced ultrasound (CEUS), 

72 color Doppler and ultrasound elastography. CEUS is an ultrasound technique that uses 

73 intravenous injected gas-filled microbubbles as a contrast agent to provide microvascular 

74 and tissue perfusion information.[11] Color Doppler mode has capability to detect motion 

75 or blood flow using a color map to show the speed and direction of blood flow through 

76 vessel.[12] Ultrasound elastography is a non-invasive imaging technique to measure 

77 changes in soft tissue elasticity.[13] Those new modes increase overall accuracy in 

78 detecting PCa in comparison to grey mode.[10-17] However, the diagnostic performance 

79 of those modes is still not quite satisfactory with a wide range of sensitivity (67% to 93%) 

80 and specificity (59% to 93%).[12-13,16-17]

81

82 Artificial Intelligence (AI) is defined as an ability of a computer to perceive the surrounding 

83 environment and make the same decisions as a human intellect on an action to reach a 

84 particular goal.[18] AI is now a revolutionising technology in the healthcare field and is 

85 gaining interest. Machine learning (ML) is a branch of AI that focuses on using data and 

86 algorithms to improve accuracy. To train machine learning, it is enough to acquire 

87 structured datasets consisting of input variables and outcomes. AI has a vital role in 

88 interpreting large amounts of data. Neural networks (such as artificial neural networks – 

89 ANN, convolutional neural networks – CNN, recurrent neural networks – RNN) are 
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90 machine learning models which work like human biological neuron. They have ability to 

91 learn and model non-linear and complex relationships that enable them to generate 

92 relationships between inputs and outputs in a complex pattern. The developed algorithm 

93 of machine learning may help urologists to reduce the number of unnecessary prostate 

94 biopsies without missing the diagnosis of aggressive PCa.[19]

95

96 In PCa, AI has been shown to aid in a standardised pathological grading to assess cancer 

97 stratification and treatment. Numerous studies have evaluated the utility of prostate 

98 specific antigen (PSA) and/or magnetic resonance imaging (MRI) in the setting of AI in 

99 detecting prostate cancer. Nitta et al.[20] and Djavan et al.[21] applied machine learning 

100 models to predict prostate cancer based on PSA levels. Machine learning tends to be 

101 superior to the conventional methods with ROC-AUC ranging from 0.63-0.91 based on 

102 the machine learning models and PSA categories. Aldoj et al.[22] utilized AI using MRI 

103 with 3D combinations (apparent diffusing coefficient (ADC), diffusion weighted imaging 

104 (DWI), and T2 weighted images) which generated sensitivity at 81.2% and specificity at 

105 90.5%. The high diagnostic performance is also found in a study by Yoo et al.[23] using 

106 deep CNN analysis of DWI sequence with ROC-AUC of 0.84-0.87. However, the 

107 accuracy of machine learning using ultrasound data as the primary modality remains 

108 debatable. This review aims to analyse the accuracy of neural networks ML models using 

109 ultrasound images in prostate cancer diagnosis. 

110

111 Methods

112 Protocol Registration
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113 The protocol for this systematic review was registered with PROSPERO registration 

114 number CRD42021277309.

115

116 Search Strategy

117 Three reviewers independently (RC, CA, FH) conducted a literature search in five online 

118 databases (MEDLINE, EBSCO, Proquest, ScienceDirect, and Scopus) on November 

119 19th, 2021. The keywords used were “Prostate Cancer” AND “Machine Learning” AND 

120 “Diagnosis” AND “Ultrasonography with various combinations as written in Table 1. The 

121 researcher also reviewed the reference list of chosen articles from the literature search 

122 to identify relevant studies. 

123

124 Table 1. Literature search strategy

Database Keywords Result Date attempt

PubMed (((prostate cancer or prostate 

carcinoma) AND ((((imaging) OR 

(Ultrasonography)) OR 

(transrectal ultrasonography)) OR 

(TRUS))) AND ((diagnostic 

outcome) AND (diagnosis))) AND 

((((machine learning) OR (deep 

learning)) OR (artificial neural 

network)) OR (convolutional 

78 November 19th, 

2021
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neural network))

EBSCO machine learning or artificial 

intelligence or deep learning or 

neural network AND prostate 

cancer AND ultrasound or 

sonography or ultrasonography 

[Title]

7 November 19th, 

2021

Proquest ab(prostate cancer) AND 

ab(ultrasound) AND ab(artificial 

neural network OR machine 

learning) AND ab(diagnosis)

4 November 19th, 

2021

Sciencedirect Title, abstract, keywords: (prostate 

cancer) AND (ultrasound) AND 

(machine learning OR neural 

network) AND (diagnosis) 

[research articles]

13 November 19th, 

2021 

Scopus TITLE-ABS-

KEY ( machine  AND learning  AN

D  ultrasound  AND  prostate  AN

D cancer  AND diagnosis ) 

43 November 19th, 

2021

125
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126 Study Selection and Data Extraction

127 We included all available articles about machine learning use in prostate cancer diagnosis 

128 that used ultrasound images. We restricted our search to articles published in English 

129 without a publication date limit. A study was considered relevant if it fulfilled our inclusion 

130 criteria: using human subjects, using neural networks machine learning models, and 

131 using prostate biopsy as a standard diagnosis. We included cohort, case-control, and 

132 cross-sectional studies. An article was excluded from the selection if it was a 

133 conference/review article, combination examination with MRI, or no diagnostic parameter 

134 in the article. All reviewers screened the title and abstract of the selected papers 

135 independently. Discrepancies between the reviewers were solved through discussion 

136 with the senior reviewers (DP, ARAH, and FR) until the consensus was reached. All 

137 authors agreed on the final list of selected papers for extraction. The PRISMA flow 

138 diagram is used to guide the article selection process.

139

140 Risk of Bias Assessment 

141 Three reviewers independently evaluated the methodological quality of the studies using 

142 the QUADAS-2 Tool in Review Manager software 5.4 version. The reviewers were not 

143 blinded for the author, journal, or publication identities of each article. The risk of bias 

144 assessment consists of three categories: high, unclear, or low risk of bias based on the 

145 pre-listed questions in the QUADAS-2 Tools. 

146

147

148

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 5, 2022. ; https://doi.org/10.1101/2022.02.03.22270377doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.03.22270377
http://creativecommons.org/licenses/by/4.0/


9

149 Results

150 Our electronic search identified 145 articles and only 6 that met our inclusion and 

151 exclusion criteria (Fig 1). Four articles use the artificial neural networks (ANN) method, 

152 one article uses the recurrent neural network (RNN) method, and one article uses the 

153 deep learning (DL) method. The characteristics of each study are described in Table 2. 

154 The six included studies used a cross-sectional study design. All articles studied adult 

155 male human subjects with an unknown age range due to the unclear data. The sample 

156 size ranges from 61 to 1077 patients; however, a study from Ronco et al.[24] only 

157 provided the number of cases. 

158

159 Figure 1. Prisma Flow Diagram

160

161 The quality assessment of the six included articles is shown in Fig 2 using the QUADAS-2 

162 Tool. Several articles have an unclear and high risk of bias. However, we still included 

163 the articles in our analysis. The unclear risk of bias is most commonly found in Index Test 

164 parameters because of the unclear threshold of the Index test. The high risk of bias is 

165 also most commonly found in Index Test parameters due to the results were interpreted 

166 with the knowledge of reference standard results in several articles.[24-26]

167

168 Figure 2. Risk of Bias Assessment using QUADAS-2 Tool

169

170 Three articles used TRUS data only for the input parameter and the rest three articles 

171 used combination input data from clinical findings. The included studies showed various 
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172 parameters of accuracy analysis, including ROC-area  the curve (AUC), positive 

173 predictive value (PPV), negative predictive value (NPV), sensitivity, and specificity (Table 

174 2).  However, a study from Loch et al.25 used percentage only. The performance results 

175 can be seen in Table 2. Due to the varied parameters, a quantitative analysis could not 

176 be performed. Most of the articles used ROC-AUC as the accuracy parameters. 
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177 Table 2. Characteristics and Performance Result of Included Studies 

No
Author, 

year
Country Samples Imaging 

ML 

Method

Input Data Outcome Performance 

Results

1
Ronco, 

1999[24]
Uruguay

442 cancer and 

benign cases

Transrectal 

ultrasonograph

y

ANN

Ultrasonographic 

variables:

 Transverse 

axis 

 Anteroposterior 

axis 

 Longitudinal 

axis 

 Prostatic 

volume

 Central zone

 Echoic level

Accuracy 

of 

detecting 

prostate 

cancer

PPV 81.82% 

NPV 96.95%

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 5, 2022. ; https://doi.org/10.1101/2022.02.03.22270377doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.03.22270377
http://creativecommons.org/licenses/by/4.0/


12

 Volume of the 

pathological 

area 

 Major diameter 

of the 

pathological 

area

 Minor diameter 

of the 

pathological 

area

 Presence/abse

nce of 

calcifications 
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 Degree of 

bladder 

impression 

 PSA density 

(PSA/volume) 

 Ultrasonograph

ic diagnosis 

Non-

ultrasonographic 

variables:

 Age

 Previous 

clinical 

diagnosis 
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 Prostatic 

specific 

antigen level 

Number of 

biopsies 

2
Loch, 

1999[25]
Nevada

553 specimens 

from 61 patient 

with confirmed 

prostate cancer

Transrectal 

ultrasonograph

y

ANN

TRUS Findings Accuracy 

of 

detecting 

prostate 

cancer

Benign 

pathology: 

99% 

classified 

correctly; 

Cancer: 71% 

classified 

correctly

3
Lee, 

2006[26]
Korea

684 patients 

who had 

Transrectal 

ultrasonograph
ANN

Model 1: 

 Age

Diagnostic 

performanc

Model 2 

showed 
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undergone 

TRUS-guided 

prostate biopsy

y and Doppler 

ultrasonograph

y

 DRE findings

 PSA level

 PSA density

 Transitional 

zone volume

 PSA density in 

the transitional 

zone

Model 2:

 Age

 DRE findings

 PSA level

 PSA density

 Transitional 

zone volume

e of 2 ANN 

models

 

better 

accuracy than 

Model 1.

Accuracy M1

 AUC PSA 

0-4: 0.738 

 PSA 4-10: 

0.753 

 PSA>10:0.

774

Accuracy M2

 AUC PSA 

0-4: 0.859

 PSA 4-10: 
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 PSA density in 

the transitional 

zone

 TRUS findings 

(positive, 

suspicious, 

negative)

0.797

PSA>10:0.89

4

4
Lee,2009

[27]
Korea

1077 patients 

who had 

undergone 

TRUS guided 

prostate biopsy

Transrectal 

ultrasonograph

y and Doppler 

ultrasonograph

y

MLRA, 

ANN, 

SVM

 Age

 DRE findings

 PSA level

 PSA density

 Transitional 

zone volume

 PSA density in 

Accuracy 

of each 

model

ROC MLRA 

0.768

ROC ANN 

0.778 

ROC SVM 

0.847
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the transitional 

zone

 TRUS findings 

(Class I-V 

based on 

lesion location, 

outline, shape, 

and 

vascularity)

5
Azizi,201

8[28]
Canada

157 subjects 

who had 

undergone 

prostate biopsy

Temporal 

enhanced 

ultrasound

RNN 

comparin

g LTSM, 

GRU, 

Vanilla 

RNN, and 

TeUS findings Accuracy 

of 

detecting 

prostate 

cancer

LTSM

 Specificity 

0.98

 Sensitivity  

0.76

 Accuracy 
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Spectral 0.93

 AUC 0.96

GRU

 Specificity 

0.95

 Sensitivity  

0.70

 Accuracy 

0.86

 AUC 0.92

Vanilla RNN

 Specificity 

0.72

 Sensitivity  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 5, 2022. ; https://doi.org/10.1101/2022.02.03.22270377doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.03.22270377
http://creativecommons.org/licenses/by/4.0/


19

0.69

 Accuracy 

0.75

 AUC 0.76

Spectral

 Specificity 

0.73

 Sensitivity  

0.63

 Accuracy 

0.78

 AUC 0.76
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6

Wildeboe

r, 

2020[29]

Netherlan

d

48 men with 

confirmed 

prostate cancer

B-mode US, 

SWE, and 

DCE- US

DL

TRUS findings Accuracy 

of 

multiparam

etric 

ultrasound

ROC-AUC for 

Prostate 

Cancer 0.75

ROC-AUC for 

Gleason > 3+ 

4 0.90

178 (ANN: Artificial Neural Network; AUC: Area under the Curve; DCE-U: Dynamic contrast-enhanced ultrasound; DL: Deep 

179 Learning; DRE: Digital Rectal Examination; GRU: Gated Recurrent Units; LTSM: Long Short-Term Memory; MLRA: Multiple 

180 Logistic Regression Analysis; NPV: Negative Predictive Value; PPV: Positive Predictive Value; PSA: Prostate Specific 

181 Antigen; RNN: Recurrent Neural Network; ROC: Receiver Operating Characteristic; SVM: Support Vector Machine; SWE: 

182 Shear-wave Elastograpgy; TRUS: Transrectal sonography)
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183 Discussion

184 Ultrasound in Prostate Cancer

185 PCa may be suspected when the PSA level increases above normal or if the digital rectal 

186 examination (DRE) is abnormal.[2,3] After that, further examinations are carried out to 

187 make the diagnosis, including imaging and biopsy as a standard diagnosis. Ultrasound 

188 and MRI have been assessed for their ability to reliably detect PCa in men suspected with 

189 PCa. MRI allows better visualization of prostate anatomical zones and location of tumor 

190 with the extension within the gland. It is useful to allow lesion detection and enable 

191 functional imaging of the prostate.[30] The use of MRI as a single modality to detect PCa 

192 has been evaluated. Several studies revealed MRI carries a relatively high sensitivity, but 

193 poor specificity. Multiparametric MRI has been used widely and shows good sensitivity in 

194 larger tumors. However, it is less sensitive to detect lower grade PCa (ISUP Grade 1) 

195 with pooled sensitivity of 0.70 and pooled specificity of 0.27.[31] From the current 

196 recommendation, multiparametric MRI become the clinical routine examination for 

197 patients with suspected PCa and PCa staging.[32-34]

198

199 Ultrasound is a cost-effective and widely available imaging modality. However, standard 

200 TRUS is not a reliable imaging method due to the low sensitivity and specificity in 

201 detecting prostate cancer.[5,9,35] TRUS was initially developed with the aim to guide 

202 transperineal biopsies. After being evaluated for years, it became evident that cancers of 

203 the prostate were most often anechoic or hypoechoic. However, prostatitis and focal 

204 infarct also have been reported to have the appearance of hypoechoic lesions on 

205 ultrasound, which cause false positive results.[36]

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 5, 2022. ; https://doi.org/10.1101/2022.02.03.22270377doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.03.22270377
http://creativecommons.org/licenses/by/4.0/


22

206

207 TRUS has several limitations in basic modes, such as similar backscatter signals of 

208 cancerous and normal prostate parenchyma and heterogeneity of the transitional 

209 zone.[37] Other modes of TRUS such as color Doppler, CEUS, TeUS, and elastography 

210 revealed better performance than B-mode.[29,38-39] Recently, innovations have been 

211 made to improve accuracy in detecting prostate cancer. Foster et al. developed 

212 ultrasound biomicroscopy, performed at frequencies ranging between 14 and 29 MHz, 

213 with theoretical spatial resolution at this frequency being between 50 and 70um. This 

214 innovation allowed the visualisation of prostate anatomy details that usually could not be 

215 seen in conventional US examinations.[40,41] Despite the limitations, TRUS guided 

216 biopsy is still the gold standard for the diagnosis pf prostate cancer.

217

218 Although MRI has excellent ability to identify clinically significant PCa, MRI is quite 

219 expensive, not portable, and not readily available in healthcare centers. In addition, MRI 

220 could not provide real time imaging compared to ultrasound. With such disadvantages, 

221 TRUS still has a potential role as imaging modality in prostate cancer diagnosis.[30] A 

222 comparative study by Zhang et al showed multiparametric TRUS (grayscale, color 

223 Doppler, shear wave elastography, and contrast enhanced ultrasound) had higher 

224 sensitivity, negative predictive value, and accuracy than multiparametric MRI (T2-

225 weighted, diffusion-weighted, and dynamic contrast-enhanced MRI) in detecting localized 

226 PCa.[42] From evidences, TRUS has some advantages in detecting localized PCa from 

227 MRI with lower cost, real time, and higher availability. 

228
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229 Machine Learning increasing the Role of TRUS in Prostate 

230 Cancer Diagnosis

231 Ultrasound imaging is limited by operator dependence and poor reproducibility. To read 

232 ultrasound images, it requires years of experience and training. To overcome the 

233 limitations, machine learning have been developed in medical imaging to accelerate 

234 ultrasound image analysis and generate an objective disease classification.[43] In recent 

235 years, applications of ML to US is developing and rapidly progressing. ML can help by 

236 decreasing the time of reader that interprets the amount of data to make a conclusion.[44] 

237 ML is a subdiscipline of AI where computer programs learn associations of predictive 

238 power from examples of data.[45] Several methods such as classification, regression, 

239 registration, and segmentation applied to analyse ultrasound images. However, neural 

240 networks algorithms have been shown to significantly improve performance when 

241 compared to other classifiers.[43] Neural networks, which work like human brain, gives 

242 capability to solve problems based on the available data. This model can incorporate 

243 many variables and produce results in more complex situations.[45] In PCa diagnosis, 

244 ML can generate input data from various variables to classify whether the patient is 

245 suspected of having prostate cancer or not (Fig 3). 

246

247 Figure 3. Schematic Machine Learning Model in Prostate Cancer Diagnosis

248 Input data includes all available variables that could be beneficial to generate a 

249 conclusion. Machine learning modeling consists of complex hidden layers which take an 

250 essential role in data processing. The result part is a conclusion of the machine learning 

251 build-up algorithm based on the input data.
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252

253 Based on our included studies, the overall accuracy of machine learning shows promising 

254 results. ROC-AUC values of five studies showed a number greater than 0.5 with a range 

255 of 0.75 to 0.98. Wildeboer et al.[29] assessed the potential DL model based on TRUS's 

256 B-mode, SWE, and DCE-US. The multiparametric classifier reached ROC-AUC of 0.90 

257 compared to 0.75 of the best performing individual parameter for PCa and Gleason >3 + 

258 4 significant PCa. The study revealed that combinations of the available modes were 

259 favoured compared to single-mode.  Lee et al.[26] evaluated the accuracy of the multiple 

260 logistic regression model, ANN model, and support vector machine model to predict 

261 prostate biopsy outcomes. The models were constructed from the input data of age, DRE 

262 findings, PSA parameters, and TRUS findings. This study showed that image-based 

263 clinical decision support systems (ANN and SVM) have better accuracy than the multiple 

264 logistic regression model. However, SVM was superior to the performance of both ANN 

265 and the multiple logistic regression model.  Lee et al.[27] evaluated the diagnostic 

266 performance of the ANN model with and without TRUS data. This study included 684 

267 patients who underwent prostate biopsy, with 214 confirmed to have prostate cancer. 

268 ANN model was used with primary input data of age, PSA levels, and DRE findings. 

269 However, with additional TRUS data, the accuracy of the ANN model was found to be 

270 more accurate with a higher value of ROC-AUC. Azizi et al.[28]  proposed temporal 

271 modeling of TeUS using RNN to improve cancer detection accuracy. TeUS data were 

272 acquired from 157 subjects during fusion prostate biopsy. This model achieves a ROC-

273 AUC value of 0.96. 

274
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275 The various levels of accuracy are affected by several factors, including the model of AI, 

276 modes of TRUS, amount of input data, Gleason grading, and PSA levels. Modes of TRUS 

277 are significantly associated with accuracy, where the DCE-US/SWE/TeUS will improve 

278 the visualisation and differentiation of prostate tissues compared to the B-mode. The 

279 amount of input data is also an essential factor in making an accurate result in ANN 

280 models. More complex data will create a more precise diagnosis.[44] Studies by Lee et 

281 al.[27] and Wildeboer et al.[29] revealed that more data combinations would increase the 

282 ROC-AUC value, increasing accuracy. Wildeboer et al.[29] showed a significant 

283 relationship in Gleason score > 3+4, but no significant result in Gleason score 3+3 or 3+4. 

284 This might be due to a bias in patient selection; tumors in 3+3 are considered 

285 disproportionately large for clinicians, thus, not included in the study. Based on a study 

286 by Lee et al.[27], the ROC-AUC of ANN models is consistently higher in PSA levels above 

287 10. This might be associated with serum PSA levels which correlate with the extent of 

288 cancer and histological grade.[46] Thus, TRUS is not reliable to detect PCa as a single 

289 tool. However, with utilization of machine learning and combinations of relevant input 

290 data, TRUS has a potential role.

291

292 Future Development of Machine Learning-TRUS Model

293 The machine learning field is advancing rapidly and is supported by new hardware and 

294 software technology development. High-resolution and multiparametric imaging can be 

295 fused and integrated with other data sets to diagnose prostate cancer better.[47,48] The 

296 utilization of machine learning with TRUS data could have a potential role as a diagnostic 

297 modality, especially where MRI is not available. Based on the current guidelines, T2-
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298 weighted imaging remains the most useful imaging method for local imaging on MRI.[49] 

299 However, a meta-analysis by Rooij et al.[50] MRI has high specificity but poor sensitivity 

300 for local PCa staging with sensitivity and specificity for extracapsular extension (ECE), 

301 seminal vesicle invasion (SVI), and overall stage T3 detection of 0.57 (95% confidence 

302 interval [CI] 0.49-0.64) and 0.91 (95% CI 0.88-0.93), 0.58 (95% CI 0.47-0.68) and 0.96 

303 (95% CI 0.95-0.97), and 0.61 (95% CI 0.54-0.67) and 0.88 (95% CI 0.85-0.91), 

304 respectively. Our findings showed that machine learning with TRUS other relevant data 

305 could increase the diagnostic performance. Thus, it will become more affordable and 

306 easier to diagnose PCa by not performing MRI. Furthermore, the use of TRUS with 

307 machine learning can be implemented as a fused combination with MRI to do a prostate 

308 biopsy and intraoperative mapping to register preoperative MRI during robotic surgery. 

309 This feature  allows the surgeon to visualize the suspected lesions on the instrument 

310 display during the procedure.

311

312 Limitation of the Study

313 We provide all available evidence about machine learning models of human ultrasound 

314 images in prostate cancer diagnosis. However, none of the articles shows the same 

315 output parameters to generate a quantitative analysis. Our approach included a 

316 comprehensive search of multiple databases as well as other sources for relevant 

317 publications. Since we restricted our literature search in English, some articles in other 

318 languages may be missed out. The major weakness of this study is low to moderate 

319 quality of included studies and the limited number of studies. Although there was only 

320 limited evidence, we managed to analyse the predominant findings comprehensively. 
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321

322 Conclusions

323 Machine learning with neural network models is a potential technology in prostate cancer 

324 that could provide instant information for further workup with relatively high accuracy 

325 above 70% of sensitivity/specificity and above 0.5 of ROC-AUC value. Image-based 

326 machine learning models would be helpful for doctors to decide whether or not to perform 

327 a prostate biopsy. Future development of this technology will be further beneficial in 

328 making a diagnosis and treatment evaluation and patient prognosis. 
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