Efficacy and safety of nitazoxanide combined with ritonavir-boosted atazanavir for the treatment

of mild to moderate COVID-19

Adeola Fowotade^a; Folasade Bamidele^a; Boluwatife Egbetola^b; Adeniyi Francis Fagbamigbe^c;

Babatunde Ayodeji Adeagbo^d; Bolanle Olufunlola Adefuye^b; Ajibola Olagunoye^e; Temitope Olumuyiwa

Ojo^f; Akindele Olupelumi Adebiyi^g; Omobolanle Ibitayo Olagunju^h; Olabode Taiwo Ladipoⁱ; Abdulafeez

Akinloye^d; Adedeji Onayade^f, Oluseye Oladotun Bolaji^d; Steve Rannard^j; Christian Happi^k; Andrew

Owen^I; Adeniyi Olagunju^{I*}

^aDepartment of Medical Microbiology and Parasitology, University of Ibadan, Ibadan, Nigeria;

^bOlabisi Onabanjo University Teaching Hospital, Sagamu, Nigeria;

^cDepartment of Epidemiology and Medical Statistics, University of Ibadan, Ibadan, Nigeria;

^dDepartment of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria;

^eState Specialist Hospital, Osogbo, Nigeria;

Department of Community Health, Obafemi Awolowo University Teaching Hospital, Ile-Ife, Nigeria;

^gDepartment of Community Medicine, University of Ibadan, Ibadan, Nigeria;

^hDepartment of Surveillance and Epidemiology, Nigeria Centre for Disease Control, Abuja, Nigeria;

ⁱOyo State Ministry of Health, Ibadan, Nigeria;

^jDepartment of Chemistry, University of Liverpool, United Kingdom;

^kAfrican Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria;

Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom.

*Corresponding author: Adeniyi Olagunju, PhD, Department of Pharmacology and Therapeutics,

University of Liverpool, United Kingdom. Tel: +44 (0)151 795 7129. Email: olagunju@liverpool.ac.uk.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

Summary

Background Finding effective therapeutics for COVID-19 continues to be an urgent need, especially

considering use context limitations and high cost of currently approved agents. The NACOVID trial

investigated the efficacy and safety of repurposed antiprotozoal and antiretroviral drugs, nitazoxanide

and atazanavir/ritonavir, used in combination for COVID-19.

Methods In this pilot, randomized, open-label trial conducted in Nigeria, patients diagnosed with mild

to moderate COVID-19 were randomly assigned to receive standard of care (SoC) or SoC plus a 14-day

course of nitazoxanide (1000 mg b.i.d.) and atazanavir/ritonavir (300/100 mg od) and followed

through day 28. Study endpoints included time to clinical improvement, SARS-CoV-2 viral load change,

and time to complete symptom resolution. Safety and pharmacokinetics of nitazoxanide active

metabolite, tizoxanide, were also evaluated. This trial was registered with ClinicalTrials.gov

(NCT04459286).

Findings There was no difference in time to clinical improvement between the SoC (n = 26) and SoC

plus intervention arms (n = 31; Cox proportional hazards regression analysis adjusted hazard ratio,

aHR = 0.898, 95% CI: 0.492-1.638, p = 0.725). No difference was observed in the pattern of saliva SARS-

CoV-2 viral load changes from days 2 to 28 in the 35% of patients with detectable virus at baseline

(20/57) between the two arms (aHR = 0.948, 95% CI: 0.341-2.636, p = 0.919). There was no significant

difference in time from enrolment to complete symptom resolution (aHR = 0.535, 95% CI: 0.251 -

1.140, p = 0.105). Atazanavir/ritonavir increased tizoxanide plasma exposure by 68% and median

trough plasma concentration was 1546 ng/ml (95% CI: 797-2557), above its putative EC90 in 54% of

patients. Tizoxanide was not detectable in saliva.

Interpretation These findings should be interpreted in the context of incomplete enrolment (64%) and

the limited number of patients with detectable SARS-CoV-2 in saliva at baseline in this trial.

Funding The University of Liverpool.

Research in context

Evidence before this study

The potential efficacy of nitazoxanide as a repurposed drug for COVID-19 is being investigated in a

number of studies due to confirmed in vitro activity against SARS-CoV-2. Available data from

completed randomised controlled trials in which clinical improvement, effect on viral load, and

symptom resolution were evaluated as outcomes do not offer conclusive evidence.

Added value of this study

In the NACOVID trial, we sought to take advantage of a model-informed strategy and known

interaction between nitazoxanide and atazanavir/ritonavir to achieve optimal concentration of

tizoxanide in plasma, and possibly in respiratory tracts of patients with mild to moderate COVID-19.

While this strategy significantly enhanced tizoxanide exposure in the plasma of patients, our data

indicated poor penetration into the respiratory tracts. Specifically, there were no differences in time

to clinical improvement, viral load changes, and symptom resolutions between patients who were

given standard of care alone and those who combined it with study intervention.

Implications of all the available evidence

The clinical benefit of nitazoxanide remains uncertain. The present study highlights the need for

early insight into target site biodistribution of potential COVID-19 therapeutics to better inform

candidate selection for clinical trials.

Introduction

With over 350 million cases and more than 5.6 million deaths at the end of January 2022, 1 just over

24 months since the first case was reported in mainland China, the coronavirus disease 2019 (COVID-

Page 3 of 26

19) is by far the most devastating pandemic known to anyone alive.³ More than 2900 vaccine or therapeutic clinical trials have been registered and hundreds are either completed or ongoing.⁴ Remdesivir, an intravenous nucleotide prodrug originally developed for Ebola virus disease,⁵ was the first drug approved by the FDA in October 2020. Emergency use authorisations were issued in December 2021 for paxlovid⁶ and molnupiravir,⁷ both orally administered antiviral agents. Though non-pharmaceutical interventions have helped to break the chain of transmission and global deployment of effective vaccines has reduced disease severity, there is an urgent need for additional effective therapeutics for treatment and/or prevention of COVID-19.

In a report of in vitro studies on the anti-coronavirus activity of 727 compounds in the National Institutes of Health Clinical Collection small molecule library, 84 drugs with significant anti-coronavirus activity were identified, including 51 entry blockers and 19 inhibitors of viral replication in cell culture using a luciferase reporter-expressing recombinant murine coronavirus.8 Nitazoxanide was among the top three inhibitors, resulting in a reduction of 6 \log_{10} in virus titre with an IC₅₀ of 1.0 μ M. The major circulating metabolite of nitazoxanide is tizoxanide and recent work by the NIH National Centre for Advancing Translational Sciences confirmed its in vitro activity against SARS-CoV-2 in Vero E6 host cells via suppression of viral cytopathic effect. We previously identified nitazoxanide among the only 14 drugs able to achieve plasma and lung concentration above the EC₉₀ for SARS-CoV-2 at approved doses out of 56 drugs with reported in vitro activity. 10 In a follow-up study, we explored optimal nitazoxanide dosing schedules for maintaining effective tizoxanide plasma and lung concentrations.¹¹ The susceptibility of 210 seasonal influenza viruses to nitazoxanide and its metabolite tizoxanide has been reported¹² and nitazoxanide reduced symptom duration in acute uncomplicated influenza¹³. SARS-CoV-2 shares almost 80% of the genome with SARS-CoV¹⁴ and almost all encoded proteins of SARS-CoV-2 are homologous to SARS-CoV proteins. 15 Hence, nitazoxanide and its metabolite tizoxanide with demonstrated in vitro activity against SARS-CoV are considered potential candidates for COVID-19. The HIV protease inhibitor, atazanavir (boosted with ritonavir), has been shown to inhibit the major protease enzyme required for viral polyprotein processing during coronavirus replication. 16,17 It also

blocks pro-inflammatory cytokine production. Additionally, tizoxanide is inactivated by glucuronidation and atazanavir is a well-known inhibitor. 18 Hence, atazanavir is expected to enhance tizoxanide exposure when used in combination with nitazoxanide. Drug repurposing often requires consideration of target concentrations and dosing regimens that may not be identical to previously defined labels where optimization was conducted for a different disease. Importantly, widespread deployment of antiviral monotherapies for pulmonary viruses (e.g. influenza virus) often leads to the emergence of resistance and we previously called for caution in this regard.¹⁹ Therefore, to take advantage of the anticipated favourable drug-drug interaction, a combination of nitazoxanide and atazanavir/ritonavir was selected for this trial.

Methods

Study design

The nitazoxanide plus atazanavir/ritonavir for COVID-19 (NACOVID) trial is a pilot open-label randomised phase 2, multicentre, two-arm controlled trial conducted in Nigeria. Patients who recently tested positive for SARS-CoV-2 by means of reverse transcription-polymerase chain reaction (RT-PCR) assay and were symptomatic were eligible. Patients were considered to have a mild disease if they were ambulatory, need little or no assistance. Those with moderate disease were non-ambulatory but had no need for oxygen therapy, or required oxygen by mask or nasal prongs. Severely ill patients that required high-flow nasal cannula oxygen or mechanical ventilation at screening, or had sepsis with end-organ involvement were not eligible. The national guideline for COVID-19 at the time required that all symptomatic cases be managed in isolation and treatment centres established within tertiary hospitals or purpose-built facilities. Hence, the NACOVID trial was conducted in an inpatient setting with participants enrolled after diagnosis and within 48 h of admission.

The National Health Research Ethics Committee, Nigeria (approval number: NHREC/01/01/2007-26/08/2020) and the Central University Research Ethics Committee, University of Liverpool (reference number: 8074) approved the protocol. The National Agency for Food and Drug Administration and

Control in Nigeria authorised the trial and independent oversight was provided by a Data and Safety

Monitoring Board (DSMB) that included five members with expertise in infectious diseases, clinical

trials, pharmacology, and public health. A medical monitor conducted independent monitoring visits

to trial sites in line with the Clinical Trial Monitoring Plan to ensure the safety of participants and

compliance with approved protocol. All patients provided written informed consent as per the ethics

committee's approved process. Further details about the trial design, inclusion and exclusion criteria

are provided in the published protocol.²⁰ The trial is registered on ClinicalTrials.gov (NCT04459286)

and Pan African Clinical Trials Registry (PACTR202008855701534).

Randomisation

Patients were randomly assigned in a 1:1 ratio to receive either standard of care alone or standard of

care combined with 1000 mg nitazoxanide tablets twice daily and 300/100 mg atazanavir/ritonavir

tablets once daily. Randomisation was implemented using a Research Electronic Data Capture

(REDCap)²¹ module that centrally stratified patients by study site, diagnosis CT value, gender, existence

of comorbidities and disease severity at enrolment. Standard of care was according to the national

interim guidelines for clinical management of COVID-19, including antipyretics for fever, cough

medicine, antimalaria in cases with malaria co-infection, multivitamins and mineral supplement, and

ongoing treatment of pre-existing comorbidities. Participation in other interventional studies or off-

label use of other medications intended as specific treatment for COVID-19 outside the standard of

care was not allowed throughout the 28-day study period.

Procedures

On study day 0 (baseline), patients provided informed consent and were assessed for eligibility. Site

clinical investigators documented demographic and anthropometric information, recent and current

medical history including confirmation of COVID-19 diagnosis and disease severity, pregnancy test for

reproductive age women, concomitant medications, physical examination, vital signs, and safety

Page 6 of 26

it is made available under a GO BT NO ND 4.0 international license.

blood for haematology and biochemistry. Those who met the eligibility criteria were enrolled and

randomised to either continue the standard of care alone (started before study entry in all

participants) or trial intervention in addition. The intervention consisted of 1000 mg nitazoxanide

twice daily and 300/100 mg atazanavir/ritonavir administered orally once daily in the night, both

administered orally after a meal and directly observed by study staff on days 1 to 14.

Daily assessment of vitals including SpO₂, symptom monitoring using the Flu-PRO questionnaire and

clinical improvement as well as adverse event monitoring was conducted by designated staff at each

study site for all patients on days 1 to day 14, and on days 21 and 28. Saliva for SARS-CoV-2 viral load

was collected on days 0, 2, 4, 6, 7, 14, and 28. Saliva and dried blood spots for quantification of

tizoxanide, the active metabolite of nitazoxanide, were collected on days 2, 4, 6, 7, and 14 about the

same time as viral load samples. Patients who were discharged from the isolation and treatment

centre after 14 days in line with the national guideline for clinical management of COVID-19 returned

to site for days 21 and 28 follow-up. All samples were stored on-site at -20°C, or lower, and shipped

to the testing laboratories: SARS-CoV-2 viral load at the African Centre of Excellence in Genomics of

Infectious Diseases (ACEGID), Redeemers University, Ede and pharmacokinetic analysis at the

Bioanalytical Laboratory, Obafemi Awolowo University, Ile-Ife, Nigeria. Study data were collected and

managed with a 26-form electronic case report form using REDCap, ²¹ a secure, web-based software

platform designed to support data capture for research studies hosted at Obafemi Awolowo

University.

Outcomes

The main outcomes were time to SARS-CoV-2 RT-PCR negativity, time to clinical improvement, and

temporal patterns of saliva SARS-CoV-2 viral load quantified by RT-PCR. Clinical improvement was

defined as the time from randomisation to either an improvement of two points on a 10-category

ordinal scale or discharge from the hospital, whichever came first. The ordinal scale was developed by

the WHO Working Group on the Clinical Characterisation and Management of COVID-19 infection²²

with the following categories: 0, uninfected with no viral RNA detected; 1, asymptomatic with viral RNA detected; 2, symptomatic but independent; 3, symptomatic and in need of assistance; 4, hospitalized but not requiring oxygen therapy; 5, hospitalised and requires oxygen by mask or nasal prongs; 6, hospitalized and requires oxygen by NIV or high flow; 7, intubated and on mechanical ventilation with PaO2/FiO2 ≥150 or SpO2/FiO2 ≥200; 8, on mechanical ventilation with PaO2/FiO2 <150 (SpO2/FiO2 <200) or vasopressors; 9, on mechanical ventilation with PaO2/FiO2 <150 and vasopressors, dialysis, or extracorporeal membrane oxygenation; 10, dead. Secondary outcomes included time to symptom resolution, clinical status on days 7 and 14 based on the 10-category ordinal scale, day 28 mortality, time from treatment initiation to death and proportion of participants with viral RNA detection over time.

For the assessment of pharmacokinetic endpoints, sparse dried blood spots samples were collected on Whatman 903 protein saver cards (VWR International Ltd, Leicestershire, UK) at steady state to determine the mid-dose concentration of tizoxanide, the active metabolite of nitazoxanide. Saliva samples for tizoxanide quantification were collected at the same time as saliva samples for SARS-CoV-2 viral load on days 2, 4, 6, 7 and 14. The drug-drug interaction potential of nitazoxanide and atazanavir/ritonavir was investigated in a separate healthy volunteer, two-period cross-over study. In brief, drug-free healthy volunteers (18-35 years old, male and female) were recruited. Each volunteer received 1000 mg nitazoxanide 12 hourly after a standard meal for 5 days in the first period, followed by a 21-day washout period. In the second stage, they received 1000 mg nitazoxanide 12 hourly combined with 300/100 mg atazanavir/ritonavir once daily for 5 days. Plasma samples were collected at 0.25, 0.5, 1, 2, 4, 6, and 12 hours after dose on days 1 and 5 during both stages. Tizoxanide quantification was by validated LC-MS/MS methods on TSQ Vantage (Thermo Electron Corporation, Hemel Hempstead, Hertfordshire, UK) with 50 ng/ml lowest limit of quantification. Data from the first seven participants who completed day 1 of both periods are included in this paper to show the outcome of single-dose interaction. The full study, including an embedded clinical cross validation of the plasma and dried blood spot bioanalytical methods, will be published separately.

Statistical analysis

A sample size of 98 was estimated to provide more than 80% power to show or exclude 60%

improvement in time to SARS-CoV-2 RT-PCR negativity in the intervention group compared with the

control group at a two-sided type 1 error rate of 5%. Between-group (SOC vs Intervention)

comparisons of demographic, anthropometric, clinical and laboratory data of the participants were

conducted using independent sample t-test and Chi-square test of association for continuous and

categorical variables respectively. Analysis of clinical improvement based on the 10-category ordinal

scale was performed using the analysis of time-to-event data. Multivariable Cox proportional hazard

regression analysis was conducted to assess the differentials in time to improvement. Analysis of

cumulative (probability of survival) improvement rate was carried out using Kaplan-Meier survival

curves. Primary and secondary outcomes analyses were adjusted for the baseline value of the

outcome and randomization stratification factors. SARS-CoV-2 viral load was calculated from the RT-

PCR cycle-threshold value. Daily symptom data were aggregated per category (nose and throat, eyes,

chest and respiratory, gastrointestinal, and body and systemic) and complete resolution was defined

as the disappearance of all abnormalities. Covariates with p value < 0.25 in the univariable Cox

regression analysis were included in the multivariable model. These analyses were conducted using

Stata ® Version 17.

Role of funding source

There was no external funding source for this study.

Results

The first patient was enrolled on November 25, 2020 and the last patient was enrolled on April 20,

2021. To take advantage of the increasing cases during the second wave of the pandemic in Nigeria,

two under-recruiting sites (Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife and State

Specialist Hospital, Osogbo) were withdrawn on February 1, 2021 and a new site (ThisDay Dome

Page 9 of 26

COVID-19 Isolation and Treatment Centre, Abuja) was added. However, no patient was enrolled from

the new site as the second wave entered the decline phase before ethics and regulatory approvals of

the amendments were secured. Hence, only 57 patients were successfully enrolled and randomised

from the Infectious Diseases Hospital, Olodo, Ibadan (n = 45) and Olabisi Onabanjo University Teaching

Hospital, Sagamu (n = 12). A total of 26 patients were randomised to the standard of care alone arm

and 31 were randomised to the standard of care plus intervention arm (Figure 1). Four patients who

complained about the size of the intervention tablets and requested to stop (two on day 2 and two

on day 4) were retained in the standard of care alone arm of the trial. A fifth patient in the intervention

arm who requested transfer to the standard of care alone arm after 4 days for no clear reason was

withdrawn by site investigators. All available data were used in the analysis; excluding patients who

switched arms or were either withdrawn gave similar results. Hence, withdrawn participant data were

censored as of the withdrawal date, while those who switched arms were censored as of the day of

switching.

Baseline characteristics

The mean age of patients in the standard of care alone arm was 40 years (standard deviation: 18) and

37 years (13) in the standard of care plus intervention arm. Most participants were male with mean

body weights of 67 kg and 70 kg, respectively. In both arms, about 50% of patients were enrolled

within 1-4 days of receiving their diagnosis. All baseline characteristics were similar between both

groups (Table 1).

Primary outcomes

At the time of enrolment, 19 of the 26 patients randomised to the standard of care alone arm were

graded 5 (required oxygen by mask or nasal prongs), 3 were graded 4 (non-ambulatory but did not

require oxygen therapy), 1 was graded 2 (symptomatic but ambulatory and independent), and 3 were

graded 1 (asymptomatic and ambulatory). Of the 31 patients randomised to the standard of care plus

intervention, 23 were graded 5, 3 were graded 4, 2 were graded 3 (ambulatory, but symptomatic and

need assistance), 1 was graded 2, and 2 were graded 1. The time to achieve protocol-defined clinical improvement (a drop of 2 levels on the 1-10 ordinal scale) in the entire cohort was 7 days and no difference was observed between the two arms (7 days in the standard of care arm alone versus 8 days in the standard of care plus intervention arm). The hazard ratio (HR) was 1.027 (95% CI: 0.592-1.783), p = 0.924 and no difference was observed after adjusting for potential co-founders in Cox proportional hazards regression analysis, including randomisation stratification variables (aHR = 0.898, 95% CI: 0.492-1.638, p = 0.725; Figure 2). In a separate analysis, we further explored time to clinical improvement in various subgroups using logrank tests but found no significant differences between

SARS-CoV-2 was detectable in saliva samples collected at enrolment only in 35% (20/57) of patients with a mean of $5.05 \log_{10}$ copies/ml in SoC alone arm, and $5.17 \log_{10}$ copies/ml in SoC plus intervention arm. In a very limited analysis of this outcome using days 2, 4, 6, 7, 14 and 28 follow up saliva viral load data from these patients, there was no trend towards a difference in the pattern of viral load changes between the two arms, Welch's t-test p value = 0.758 for comparison of means over the follow-up period (Figure 3). The aHR was 0.948 (0.341-2.636) with a p value of 0.919.

Secondary and safety outcomes

both arms (Table S1).

The median time from enrolment to complete symptom resolution was 8 days in the entire cohort, with a non-significant trend (Kaplan Meier HR = 0.617 (95% CI: 0.311-1.224, p = 0.167) towards a shorter time in the standard of care alone arm (6 days) compared with standard of care plus intervention arm (10 days) (Figure 4). Multivariable Cox proportional hazards regression analysis adjusting for randomisation variables showed a similar overall non-significant trend (aHR = 0.535, 95% CI: 0.251-1.140, p = 0.105), except for disease severity where moderately ill patients were 67% more likely to achieve complete symptom resolution if they received standard of care alone compared with standard of care plus intervention (aHR = 0.322 (95% CI: 0.122-0.848, p = 0.022). Further exploration

of median time to complete symptom resolution in various subgroups using logrank tests showed no

trend towards any benefit in combining the intervention with the standard of care (Table S2).

The DSMB at their meeting of 14 November 2021 recommended terminating the trial as no further

opportunities existed to recruit additional patients and accrued data did not indicate any trend of

benefit in adding the intervention to the standard of care.

Nitazoxanide (1000 mg b.i.d.) combined with the usual dose of atazanavir/ritonavir (300/100 mg od)

was well tolerated in this cohort. Laboratory values of haematology and blood chemistry parameters

on days 0, 7, and 14 were within normal ranges (Table S3) with no deviations qualifying as grade 1-4

adverse events. In the standard of care plus intervention arm, six patients reported transient known

side effects of study drugs (urine discoloration in four and mild abdominal pain in two). No other

clinical adverse event was reported.

Pharmacokinetics of nitazoxanide active metabolite in COVID-19 patients

We compared concentration-time data from day 1 of both periods of the drug-drug interaction study

from seven healthy volunteers: 4 females and 3 males aged 24.4 years (4.8) with 56.6 kg (7.5) body

weight. Co-administration of nitazoxanide (NTZ) with atazanavir/ritonavir (ATZ/r) increased plasma

tizoxanide $AUC_{0.12}$ by from 37.6 µg.h/ml to 63.3 µg.h/ml (68.3%) and its C_{max} from 7630 ng/ml to 8730

ng/ml (14.4%) (Figure 5A). A total of 110 concentration-time data were available from the 31 patients

in the standard of care plus intervention arm. Median tizoxanide trough plasma concentration was

1546 ng/ml (95% CI: 797-2557), above its putative EC_{90} in 54% of patients²³ (Figure 5B). An EC_{90} of

1430 ng/ml was reported for nitazoxanide in reversing SARS-CoV-2 induced cytopathic effect in Vero

E6 host cells, and tizoxanide is expected to have a similar in vitro potency.9 Tizoxanide was

undetectable in saliva samples collected in the drug-drug interaction study and from patients.

Discussion

Page 12 of 26

In this pilot randomised open-label trial, patients who received a 14-day course of nitazoxanide (1000 mg b.i.d.) and atazanavir/ritonavir (300/100 mg od) in addition to standard of care initiated within a few days of COVID-19 diagnosis did not experience a better outcome (clinical improvement, viral clearance, and symptom resolution) compared with those who received standard of care alone. Crucially, tizoxanide plasma exposure was significantly enhanced when combined with atazanavir/ritonavir as expected, possibly via inhibition of its inactivation through glucuronidation. 18 Though concentration in patients at 12 hours after dose was lower than in healthy volunteers, an observation that may be due to the influence of certain components of standard of care, it was above the putative tizoxanide plasma EC₉₀ in more than 50% of patients. This is similar to the achievement of plasma concentration above the EC90 in 51% of virtual subjects given 1000 mg b.i.d. nitazoxanide with food. 11 However, tizoxanide was undetectable in saliva samples collected from participants in the drug-drug interaction study and in patients throughout the follow-up period. Tizoxanide is highly bound to plasma proteins (over 99.9%) and we previously highlighted the critical importance of this parameter for in vitro to in vivo extrapolation.²⁴ Our predictions of tizoxanide distribution to human lung^{10,11} based on physicochemical properties, in vitro drug binding information, and tissue-specific data did not accurately recapitulate in vivo observation.

Confirmation of *in vitro* activity of nitazoxanide against SARS-CoV-2 prompted efforts to investigate its efficacy as a repurposed drug for COVID-19. Several ongoing, completed, or terminated clinical trials include nitazoxanide as monotherapy or as part of a combination strategy. A preprint of interim analysis from a study by Silva *et al* (clinicaltrials.gov identifier: NCT04463264; n = 45) showed no difference in the achievement of PCR negativity by day 7 (62.5% of patients in the 500 mg q.i.d. nitazoxanide arm versus 53.9% in the placebo arm, p = 0.620), though more of those treated with nitazoxanide had viral load reduction of 35% or more from baseline up to day 7 (47.8% versus 15.4%; p = 0.037).²⁵ In a preprint of results from the Vanguard study (NCT04486313, n = 379) that enrolled outpatients with mild or moderate COVID-19 within 72 hours of symptom onset, 600 mg b.i.d. extended release nitazoxanide was reported to reduce progression to severe COVID-19 by 85% (1/184,

0.5%) compared with placebo (7/195, 3.6%; p = 0.07). There was no overall difference in time to sustained clinical recovery and a non-significant trend towards a quicker time to symptom resolution and return to usual health was observed.²⁶ The Elalfy *et al* study (NCT04392427, n = 113) reported a cumulative day-15 SARS-CoV-2 clearance rate of 88.7% in patients with mild COVID-19 who were treated with a combination of nitazoxanide (500 mg q.i.d.), ribavirin, and ivermectin plus zinc supplement compared with 13.7% in those who received supportive symptomatic therapy (no data on statistical significance).²⁷ In the SARITA-2 study (NCT04552483, n = 392), PCR negativity was achieved in 29.9% of patients who received nitazoxanide (500 mg t.i.d. for 5 days) compared with 18.2% in the placebo arm (p = 0.009) and 55% reduction in viral load compared with 45% (p = 0.013). However, there was no difference in symptom resolution between the nitazoxanide and the placebo arms.²⁸ Taken together, all three studies where viral load was evaluated reported some benefit, both studies that evaluated symptom resolution observed no benefit, while both studies that evaluated PCR negativity reported conflicting findings.

Similar to the Vanguard and SARITA-2 studies, this analysis of available data from the NACOVID study showed no difference in clinical improvement or symptom resolution between patients treated with standard of care alone versus standard of care plus nitazoxanide (1000 b.i.d.) and atazanavir/ritonavir. However, we only achieved 64% of the target sample size of 89 required to show or exclude 60% improvement in time to SARS-CoV-2 PCR negativity. Additionally, the limited number of patients with detectable SARS-CoV-2 in saliva at baseline requires that our finding of no difference in viral load change in this trial be interpreted with caution. The choice of saliva for SARS-CoV-2 viral load in this trial was based on observed concordance with nasopharyngeal swabs in the testing laboratory and similar early reports. More recent data now suggest that the suitability of saliva as an alternative to nasopharyngeal swab may be limited to disease stages associated with high viral load. In this consopharyngeal swab may be limited to disease stages associated with high viral load.

The absence of detectable levels of nitazoxanide active metabolite tizoxanide in saliva samples in this

may be indicative of poor penetration into this matrix. If confirmed, this underscores some important

points. The use of plasma as a surrogate for target site concentration in COVID-19 should be supported

by confirmation of adequate penetration into the respiratory tract and acceptable correlation as with

certain antituberculosis drugs.³³ Remdesivir is known to penetrate poorly into human lungs after

intravenous administration,³⁴ and nebulised formulation is currently under development³⁵ to further

enhance its *in vivo* efficacy. Inhalation delivery with targeted activation within the lungs^{36,37} will be an

important strategy for drugs with confirmed in vitro activity against SARS-CoV-2 but poor penetration

into human lungs.

Reports from other completed nitazoxanide studies are pending while several others are still

recruiting, including a phase Ib/IIa study investigating within the AGILE clinical trial platform

(NCT04746183)³⁸ the efficacy of the 1500 mg b.i.d. dosage which was shown to be safe with

acceptable tolerability³⁹ in mild to moderate COVID-19. As it is unlikely that doses higher than 1500

mg b.i.d. will be tolerable, the AGILE trial is expected to provide a firm signal for whether efficacy can

be achieved in COVID-19 at any dose.

Data sharing statement

The protocol for this clinical trial is already published in BMC Trials and subsequent versions with

approved amendments are available upon request. All data collection instruments created for this

trial have been made available on REDCap as a project template for other users. Requests for data

underlying the outcomes reported in this trial to facilitate further analyses in combination with data

from other studies will be considered on a case by case basis. Each request should be accompanied by

evidence of ethics approval.

Acknowledgements

The authors appreciate the patients who participated in this trial at the Infectious Disease Hospital,

Olodo, Ibadan, and the Olabisi Onabanjo University Teaching Hospital, Sagamu. We thank the staff

and management of both hospitals, as well as Oyo and Ogun State government officials who facilitated

the conduct of this trial. We thank Dr Kazeem Akano and Mrs Philomena Eromon who conducted

SARS-CoV-2 viral load testing at the African Centre of Excellence in Genomics of Infectious Diseases

(ACEGID), Redeemers University, Ede. The Obafemi Awolowo University Bioanalytical Laboratory

received infrastructural support from the Liverpool Biomedical Research Centre. The University of

Liverpool provided funding for the trial.

Declaration of interests

We declare no competing interests.

Contributors

AdO, AnO and SR conceived the initial study. AdO designed the study and developed the protocol with

input from all authors. AF, FB, BE, and BOA were responsible for study enrolment and data acquisition.

CH was responsible for SARS-CoV-2 viral load determination using RT-PCR. AdO, AA, BA and OOB were

responsible for database management and pharmacokinetic analyses. AdO, AA, AF and BE verified the

underlying data. AFF and AdO were responsible for analysis and interpretation of data. AdO drafted

the manuscript. AnO and OOB critically revised the manuscript. All authors contributed to conducting

the trial. All authors revised the report and read and approved the final version before submission. All

authors had full access to all the data in the study and had final responsibility for the decision to submit

for publication.

References

- Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real 1. time. Lancet Infect Dis 2020; 20(5): 533-4.
- Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan, China: 2. The mystery and the miracle. J Med Virol 2020; 92(4): 401–2.
- Cucinotta D, Vanelli M. WHO Declares COVID-19 a Pandemic. Acta Biomed 2020; 91(1): 157-60.
- 4. Thorlund K, Dron L, Park J, Hsu G, Forrest JI, Mills EJ. A real-time dashboard of clinical trials for COVID-19. Lancet Digit Health 2020; 2(6): e286-e7.
- Center for Drug Evaluation and Research. Combined Cross-Discipline Team Leader, Division Director, and ODE Director Summary Review for NDA 214787. Available at: https://www.accessdata.fda.gov/drugsatfda docs/nda/2020/214787Orig1s000Sumr.pdf.
- Center for Drug Evaluation and Research. Emergency use authorization (EUA) for paxclovid. Available at: https://www.fda.gov/media/155050/download.
- Center for Drug Evaluation and Research. Emergency use authorization (EUA) for molnupiravir. Available at: https://www.fda.gov/media/155054/download.
- Cao J, Forrest JC, Zhang X. A screen of the NIH Clinical Collection small molecule library identifies potential anti-coronavirus drugs. Antiviral Res 2015; 114: 1–10.
- National Centre for Advancing Translational Sciences. OpenData Portal Tizoxanide. Available at: https://opendata.ncats.nih.gov/covid19/sample/summary/NCGC00388427. Accessed 12 November 2021. https://opendata.ncats.nih.gov/covid19/sample?sdid=249850958.
- 10. Arshad U, Pertinez H, Box H, et al. Prioritization of Anti-SARS-Cov-2 Drug Repurposing Opportunities Based on Plasma and Target Site Concentrations Derived from their Established Human Pharmacokinetics. Clin Pharmacol Ther 2020; 108(4): 775-90.
- 11. Rajoli RKR, Pertinez H, Arshad U, et al. Dose prediction for repurposing nitazoxanide in SARS-CoV-2 treatment or chemoprophylaxis. Br J Clin Pharmacol 2021; 87(4): 2078-88.
- Tilmanis D, van Baalen C, Oh DY, Rossignol J-F, Hurt AC. The susceptibility of circulating human influenza viruses to tizoxanide, the active metabolite of nitazoxanide. Antiviral Res 2017; **147**: 142-8.
- Haffizulla J, Hartman A, Hoppers M, et al. Effect of nitazoxanide in adults and adolescents with acute uncomplicated influenza: a double-blind, randomised, placebo-controlled, phase 2b/3 trial. Lancet Infect Dis 2014; 14(7): 609-18.
- Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet 2020; 395(10224): 565-74.
- 15. Xu J, Zhao S, Teng T, et al. Systematic Comparison of Two Animal-to-Human Transmitted Human Coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses 2020; 12(2).
- Fintelman-Rodrigues N, Sacramento CQ, Lima CR, et al. Atazanavir inhibits SARS-CoV-2 replication and pro-inflammatory cytokine production. bioRxiv 2020: 2020.04.04.020925.
- 17. Fehr AR, Perlman S. Coronaviruses: An Overview of Their Replication and Pathogenesis. Coronaviruses 2015; 1282: 1-23.
- Zhang D, Chando TJ, Everett DW, Patten CJ, Dehal SS, Humphreys WG. In vitro inhibition of UDP glucuronosyltransferases by atazanavir and other HIV protease inhibitors and the relationship of this property to in vivo bilirubin glucuronidation. Drug Metab Dispos: The Biological Fate of Chemicals 2005; **33**(11): 1729–39.
- Hiscox JA, Khoo SH, Stewart JP, Owen A. Shutting the gate before the horse has bolted: is it time for a conversation about SARS-CoV-2 and antiviral drug resistance? J Antimicrob Chemother 2021; **76**(9): 2230-3.

perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

- 20. Olagunju A, Fowotade A, Olagunoye A, et al. Efficacy and safety of nitazoxanide plus atazanavir/ritonavir for the treatment of moderate to severe COVID-19 (NACOVID): A structured summary of a study protocol for a randomised controlled trial. *Trials* 2021; **22**(1): 3.
- 21. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. *J Biomed Inform* 2009; **42**(2): 377-81.
- 22. Marshall JC, Murthy S, Diaz J, et al. A minimal common outcome measure set for COVID-19 clinical research. *Lancet Infect Dis* 2020; **0**(0).
- 23. Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. *Cell Res* 2020; **30**(3): 269-71.
- 24. Boffito M, Back DJ, Flexner C, et al. Toward Consensus on Correct Interpretation of Protein Binding in Plasma and Other Biological Matrices for COVID-19 Therapeutic Development. *Clin Pharmacol Ther* 2021; **110**(1): 64-8.
- 25. Silva M, Espejo A, L Pereyra M, et al. Efficacy of Nitazoxanide in reducing the viral load in COVID-19 patients. Randomized, placebo-controlled, single-blinded, parallel group, pilot study. *medRxiv* 2021: 2021.03.03.21252509.
- 26. Rossignol J-F, Matthew CB, Oaks JB, et al. Early treatment with nitazoxanide prevents worsening of mild and moderate COVID-19 and subsequent hospitalization. *medRxiv* 2021: 2021.04.19.21255441.
- 27. Elalfy H, Besheer T, El-Mesery A, et al. Effect of a combination of nitazoxanide, ribavirin, and ivermectin plus zinc supplement (MANS.NRIZ study) on the clearance of mild COVID-19. *J Med Virol* 2021; **93**(5): 3176-83.
- 28. Rocco PRM, Silva PL, Cruz FF, et al. Early use of nitazoxanide in mild COVID-19 disease: randomised, placebo-controlled trial. *Eur Respir J* 2021; **58**(1).
- 29. Yee R, Truong TT, Pannaraj PS, et al. Saliva Is a Promising Alternative Specimen for the Detection of SARS-CoV-2 in Children and Adults. *J Clin Microbiol* 2021; **59**(2).
- 30. Hanson KE, Barker AP, Hillyard DR, et al. Self-Collected Anterior Nasal and Saliva Specimens versus Health Care Worker-Collected Nasopharyngeal Swabs for the Molecular Detection of SARS-CoV-2. *J Clin Microbiol* 2020; **58**(11).
- 31. Uddin MKM, Shirin T, Hossain ME, et al. Diagnostic Performance of Self-Collected Saliva Versus Nasopharyngeal Swab for the Molecular Detection of SARS-CoV-2 in the Clinical Setting. *Microbiol Spectr* 2021; **9**(3): e0046821.
- 32. Callahan C, Ditelberg S, Dutta S, et al. Saliva is Comparable to Nasopharyngeal Swabs for Molecular Detection of SARS-CoV-2. *Microbiol Spectr* 2021; **9**(1): e0016221.
- 33. van den Elsen SHJ, Oostenbrink LM, Heysell SK, et al. Systematic Review of Salivary Versus Blood Concentrations of Antituberculosis Drugs and Their Potential for Salivary Therapeutic Drug Monitoring. *Ther Drug Monit* 2018; **40**(1): 17-37.
- 34. Sun D. Remdesivir for Treatment of COVID-19: Combination of Pulmonary and IV Administration May Offer Aditional Benefit. *AAPS J* 2020; **22**(4): 77.
- 35. Vartak R, Patil SM, Saraswat A, Patki M, Kunda NK, Patel K. Aerosolized nanoliposomal carrier of remdesivir: an effective alternative for COVID-19 treatment in vitro. *Nanomedicine (Lond)* 2021; **16**(14): 1187-202.
- 36. Li J, Liu S, Shi J, Wang X, Xue Y, Zhu HJ. Tissue-Specific Proteomics Analysis of Anti-COVID-19 Nucleoside and Nucleotide Prodrug-Activating Enzymes Provides Insights into the Optimization of Prodrug Design and Pharmacotherapy Strategy. *ACS Pharmacol Transl Sci* 2021; **4**(2): 870-87.
- 37. Eedara BB, Alabsi W, Encinas-Basurto D, Polt R, Ledford JG, Mansour HM. Inhalation Delivery for the Treatment and Prevention of COVID-19 Infection. *Pharmaceutics* 2021; **13**(7).
- 38. Griffiths G, Fitzgerald R, Jaki T, et al. AGILE-ACCORD: A Randomized, Multicentre, Seamless, Adaptive Phase I/II Platform Study to Determine the Optimal Dose, Safety and Efficacy of Multiple Candidate Agents for the Treatment of COVID-19: A structured summary of a study protocol for a randomised platform trial. *Trials* 2020; **21**(1): 544.

39. Walker LE, FitzGerald R, Saunders G, et al. An Open Label, Adaptive, Phase 1 Trial of High-Dose Oral Nitazoxanide in Healthy Volunteers: An Antiviral Candidate for SARS-CoV-2. Clin Pharmacol Ther 2021.

Figure Legends

Figure 1. NACOVID trial profile.

Figure 2. Kaplan-Meier curves of time to clinical improvement (defined as a drop of 2 levels on the 1-

10 ordinal scale) by study arm. There was no difference between the two arms (7 days in the standard

of care arm alone versus 8 days in the standard of care plus intervention arm). The Cox proportional

hazards model adjusted hazard ratio was 0.898 (95% CI: 0.492-1.638, p = 0.725) after adjusting for

potential co-founders, including randomisation stratification variables, age and sex.

Figure 3. Changes in SARS-CoV-2 viral load in saliva of patients from enrolment to study day 28. In the

20 patients with detectable saliva viral load at enrolment, baseline viral load was 5.05 log10 copies/ml

in the SoC alone arm (n = 12), and 5.17 log10 copies/ml in the SoC plus intervention arm (n = 8). In this

small cohort, there was no difference in the rate of viral load decline between the two arms (Cox

proportional hazards model aHR = 0.948, 95% CI: 0.341-2.636, p = 0.919).

Figure 4. Kaplan–Meier curves of median time to complete symptom resolution by study arm. Overall,

there was no significant difference between the two arms, even after adjusting for potential co-

founders (Cox proportional hazards model aHR = 0.535, 95% CI: 0.251 - 1.140, p = 0.105).

Figure 5. Tizoxanide concentration-time profiles in healthy volunteers and plasma concentration in

COVID-19 patients. (A) Co-administration of nitazoxanide (NTZ) with atazanavir/ritonavir (ATZ/r)

increased plasma tizoxanide AUC₀₋₁₂ by 68.3% (37.6 μg.h/ml versus 63.3 μg.h/ml) and its C_{max} by 14.4%

(7630 ng/ml versus 8730 ng/ml). (B) Using samples collected at 11-12 hours after the last nitazoxanide

dose (1000 mg b.i.d.), the median concentration was 1546 ng/ml, above the EC90 of SARS-CoV-2 in

54% of patient samples.

Table 1. Baseline characteristics of NACOVID trial participants at enrolment.

Participants	All	SoC alone	SoC with NTZ/	P value
	(N = 57)	(N = 26)	ATZ/r (N = 31)	
Body weight (kg)	68 (11)	67 (11)	70 (11)	0.322
Body mass index (kg/m²)				
Underweight (<18.5)	3 (5)	2 (8)	1 (3)	0.397
Normal weight (18.5-24.9)	21 (37)	11 (42)	10 (32)	
Overweight (24.5-29.9)	22 (39)	7 (27)	15 (48)	
Obese (≥30)	11 (19)	6 (23)	5 (16)	
Age (years)	38 (16)	40 (18)	37 (13)	0.620
18-50	37 (65)	18 (69)	19 (61)	0.532
51-75	20 (35)	8 (31)	12 (39)	
Sex				
Female	19 (33)	7 (27)	12 (39)	0.347
Male	38 (67)	19 (73)	19 (61)	
Ethnicity				
Hausa	2 (4)	1 (4)	1 (3)	0.921
Igbo	3 (5)	1 (4)	2 (7)	
Yoruba	44 (77)	21 (81)	23 (74)	
Others	8 (14)	3 (12)	5 (16)	
Comorbidities	, ,	, ,	, ,	
No	42 (74)	16 (62)	26 (84)	0.057
Yes	15 (26)	10 (39)	5 (16)	
Time from diagnosis to	, ,	. ,	, ,	
enrolment (days)				
≤ 1 days	10 (18)	13 (50)	15 (48)	0.468
2-4 days	29 (51)	7 (27)	5 (16)	
≥ 5 days	18 (31)	6 (23)	11 (36)	
Disease severity	, ,	, ,	, ,	
Mild Covid-19	44 (77)	19 (73)	25 (81)	0.571
Moderate Covid-19	10 (18)	6 (23)	4 (13)	
Severe Covid-19	3 (5)	1 (4)	2 (6)	
Baseline symptoms	, ,	. ,	, ,	
Nose and throat	57 (100)	26 (100)	31 (100)	1.000
Chest/respiratory	21 (37)	10 (39)	11 (35)	0.816
Gastrointestinal	3 (5)	1 (4)	2 (7)	0.661
Body/systemic	15 (26)	7 (27)	8 (26)	0.924
Ct value at diagnosis	28.4 (6.9)	29.7 (11.2)	29.3 (6.9)	0.338
Saliva SARS-CoV-2 viral load	127094	112256	149352	0.546
(copies/ml)	(337070)	(325927)	(374849)	
SPO ₂ %	97.9 (4)	97.5 (0.64)	98.3 (0.37)	0.263

Ct, cycle threshold on the reverse transcriptase polymerase chain reaction assay; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SPO₂, peripheral oxygen saturation.

Figure 1

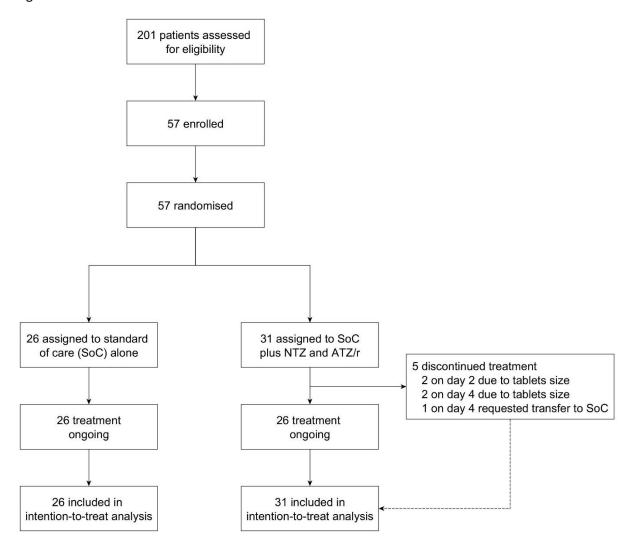


Figure 2

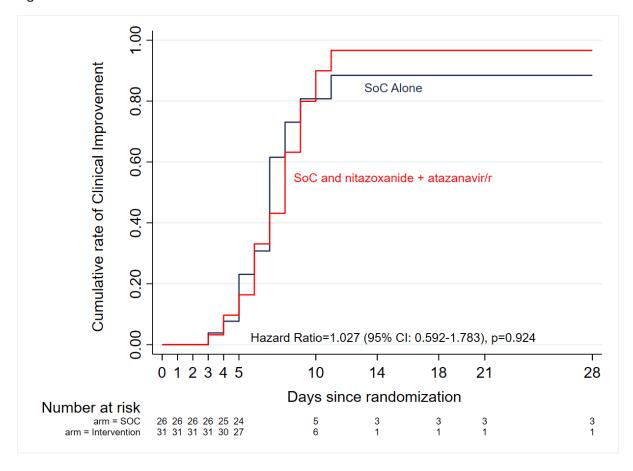


Figure 3

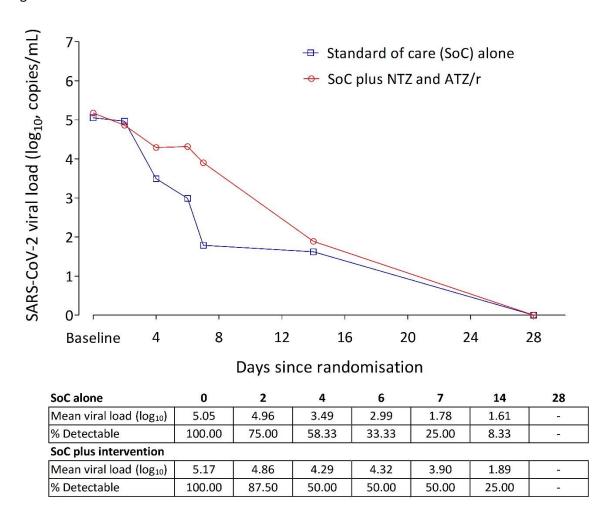


Figure 4

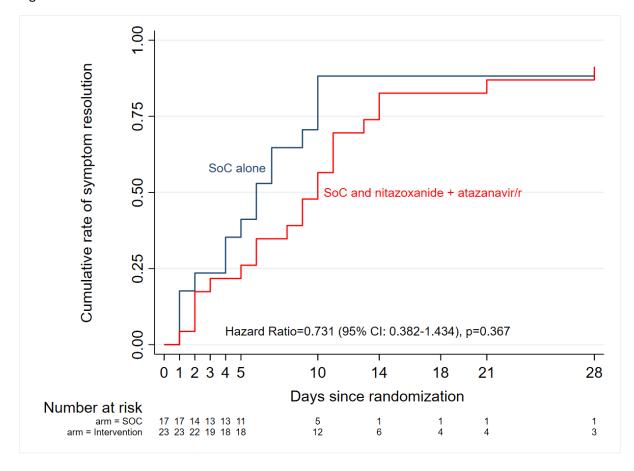
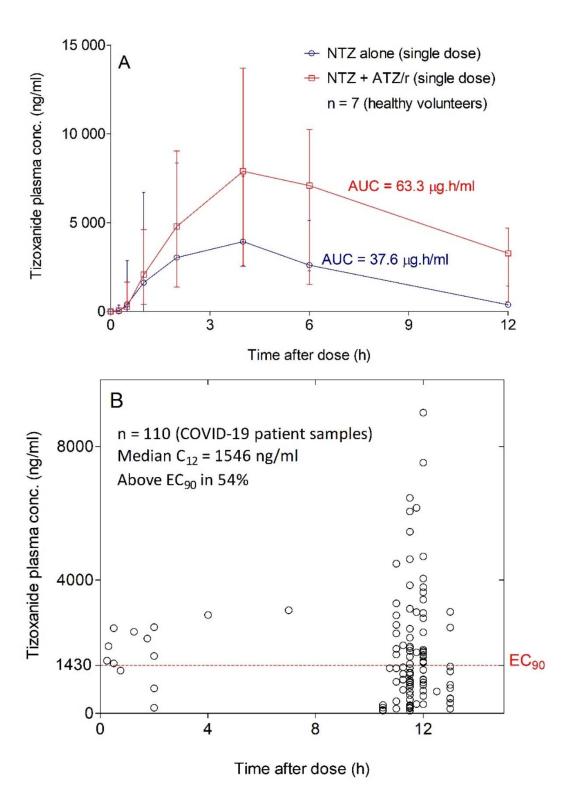



Figure 5

