
Supplementary material 

Raw corticospinal excitability during movement preparation in 

Parkinson’s disease patients OFF-/ON-DOPA and HC subjects 

In addition to the analyses of preparatory suppression and of corticospinal excitability at rest, 

we also considered the raw amplitude of MEPs (mV) acquired at TMSDELAY. Those raw 

measures were analysed by conducting a four-way ANOVA, with GROUP (Parkinson’s disease 

patients, HC subjects) as the between-subject factor and with DRT (ON-DOPA, OFF-DOPA), 

RESPSIDE (RESPND, RESPD) and MEPSIDE (MEPND, MEPD) as within-subject factors. The four-

way ANOVA conducted on the raw amplitude of MEPs acquired at TMSDELAY, i.e. while 

participants were preparing their movement, first showed a significant GROUP x DRT x 

MEPSIDE interaction [F(1,56) = 6.89, P = 0.01]. Post-hoc analyses revealed that in Parkinson’s 

disease patients, just as for the baseline measures, MEPD were significantly larger in the OFF-

DOPA as compared to the ON-DOPA state (P < 0.01), no matter the RESPSIDE (see 

Supplementary Fig. 2). The ANOVA also yielded a significant triple GROUP x RESPSIDE x 

MEPSIDE interaction [F(1,56) = 25.66, P < 0.001]. As shown by post-hoc analyses, both the 

amplitude of MEPND and of MEPD differed between the RESPND and RESPD conditions (both 

P < 0.001), with higher MEP amplitudes being found in both FDIs when the muscle was 

selected for the forthcoming movement (i.e. MEPND and MEPD in the RESPND and RESPD 

conditions, respectively) than when it was not selected (i.e. MEPND and MEPD in the RESPD 

and RESPND conditions, respectively). When taken individually, none of the different 

subconditions differed between patients and controls (all P > 0.09), thus showing equivalent 

raw delay measures of corticospinal excitability for both groups, in concordance with the rest 

measures presented in the main text.  

The four-way ANOVA was then repeated by considering the two Parkinson’s disease 

subgroups only. No significant effect of the main factor SUBGROUP was found [F(1,27) = 

0.04, P = 0.85] nor did any statistically significant interaction involving the factor SUBGROUP 

appear in the analysis [all F(1,27) < 3.92, all P > 0.06]. 

 



Principal component analysis  

Small datasets can suffer from inherent variability, raising the question as to whether results 

obtained in them can be extrapolated to bigger cohorts. Principal component analysis (PCA) is 

a well-established technique with data exploratory potential: it identifies the principal 

components responsible for most of the variance of the dataset and ranks them from the first 

(which explains most of the variance) to the last (which explains least of the variance). It then 

converts correlations (or lack thereof) among all variables into 2D graphs, in a “dimension 

reduction” fashion; variables which are highly correlated cluster together. The PCA algorithm 

thus increases the interpretability of the dataset while also minimizing information loss. 

In the Parkinson’s disease literature, PCA has so far mainly been used in the context of 

neuroimaging studies1,2 or studies focusing on diagnostic and symptom monitoring tools3-5. To 

the best of our knowledge, it hasn’t been used yet in the context of neurophysiological studies 

focusing on patterns of corticospinal excitability and of related motor behaviour or symptoms 

in Parkinson’s disease patients.  

Here, the standard protocol for PCA was applied with the function PCA from the R package 

“FactoMineR”; the fviz_pca visualizations from the package “factoextra” were used to guide 

the development of the analyses and configure the illustrations6. The corrplot function 

(https://github.com/taiyun/corrplot) from the package “corrplot” was used to generate a 

standardized correlation matrix of the variables according to the principal components.  

The PCA protocol was run on both the whole data set (Parkinson’s disease patients and HC 

subjects) as well as on patients only. For both of them, we first considered all the data, then we 

ran PCA according to the hand dominance (ND vs. D only) or according to the session (ON-

DOPA vs. OFF-DOPA only). We wanted to evaluate if certain variables would show higher 

correlational profiles with regard to certain (sub)groups (Parkinson’s disease patients vs. HC 

subjects, PD-EARLYSTAGE vs. PD-LATESTAGE). As discussed in the main text, when only 

considering the patient group, we also ran PCA according to Parkinson’s disease dominance, 

in order to analyse its potential for being a discriminative variable, as compared to hand 

dominance. As “years since diagnosis” could become a major distinctive variable between 

patients, it was removed from all PCA. With the iterations of the PCA development, the 

variables with minor importance to variance and those not relevant to the question in check 

were progressively removed in order to clarify the inner relationships between the variables that 

remained.   



In the PCA performed for both the whole dataset as well as for patients only, we successively 

accounted for the ON- vs. OFF-DOPA division and the difference in hand dominance. Taken 

together, results were homogeneous, as the raw neurophysiological variables (TMSBASELINE-IN 

and TMSDELAY) consistently came to explain most of the variance of the dataset, appearing 

either in the first (PC1) or second principal component (PC2). In the PCA run on patients only, 

both total and bradykinesia scores at the MDS-UPDRS-III typically dominated PC1, 

reinforcing the validity of the clinical tests. Furthermore, we also persistently saw MT and RT 

appear with correlation potential to preparatory suppression, especially OFF-DOPA. In the face 

of these relatively consistent results across all protocols run, we here present the PCA 

performed on patients only, comparing their ON- and OFF-DOPA session, as it highlights the 

aforementioned findings and paves the way for interesting correlations to be further explored 

in the future.  

First, in order to assess the validity of the PCA, we generated a cumulative variance plot 

(Supplementary Fig. 3.A), showing that by dimension 4, we had reached 75% of explicability 

for the variance of the dataset, which assured us that this PCA had a high informative value and 

that we could proceed with its use. Next, the matrix in Supplementary Fig. 3.B displays 

correlations on a scale from dark blue (strong negative correlation) to dark red (strong positive 

correlation). PC1 and PC2 appear similar, highlighting the importance of both clinical scores 

and raw MEP amplitudes. As shown on the biplot of Supplementary Fig. 3.C, representing PC1 

(x-axis) and PC2 (y-axis), clinical scores (both ON- and OFF-DOPA) appeared to co-evolve 

with OFF medication values of preparatory suppression and MTs, as well as RTs (both ON- 

and OFF-DOPA), all being positively correlated with PC1 (quadrant 1). Along the positive side 

of PC2, in quadrant 2, MT ON medication seemed to co-evolve with raw MEP amplitudes at 

TMSBASELINE-IN and TMSDELAY (both ON- and OFF-DOPA). Interestingly, along PC1 and PC2, 

MDS-UPDRS part III scores and raw neurophysiological values evolved in opposite directions, 

which lead us to investigate if the latter might have a potential non-linear relationship with 

disease progression, using additional LOESS regressions (Fig. 6, main text).  

Taken together, our PCA findings support further explorations in the future of the relationship 

between neurophysiological, behavioural and clinical variables in bigger Parkinson’s disease 

cohorts, in order to mitigate the variability inherent to smaller datasets.  

 



Modelling tabular data using conditional GAN  

Modelling the probability distribution of rows in tabular data and generating realistic synthetic 

data is a non-trivial task: tabular data usually contains a mix of discrete and continuous columns. 

Continuous columns may have multiple modes whereas discrete columns are sometimes 

imbalanced making the modelling difficult. Existing statistical and deep neural network models 

fail to properly model this type of data. Conditional tabular generative adversarial network 

(CTGAN) was designed to address these challenges. CTGAN has been shown to outperform 

Bayesian methods on most of the real datasets whereas other deep learning methods don’t 

(https://arxiv.org/abs/1907.00503). It has thus become the gold standard for synthetic data 

amplification techniques.  

We used CTGAN (package: https://github.com/sdv-dev/CTGAN; function: 

CTGANSynthesizer) to amplify our Parkinson’s disease data for raw MEP amplitudes at 

TMSBASELINE-OUT, TMSBASELINE-IN and TMSDELAY. We used 10000 epochs (number of iterations 

in the learning process) and a K-Fold cross validation as learning method. Next, we ran LOESS 

regressions with the years since diagnosis. We did this to challenge the question as to whether 

our observed patterns would hold up in bigger patient populations, since to the best of our 

knowledge there exist no longitudinal data on the progression of alterations of raw corticospinal 

excitability in Parkinson’s disease. As show in Supplementary Fig. 4, with an amplified dataset 

of 60 rows (31 new samples, for a total of 60 patient data points), the patterns observed in our 

cohort persisted, allowing us to infer that they have a high probability to remain and become 

more defined in larger patient populations. 



Supplementary tables 

Supplementary Table 1. Average number of trials remaining per condition after data cleaning in Parkinson’s disease patients and HC 

subjects.  

 

PD patients HC subjects 

MEPND MEPD MEPND MEPD 

TMSBASELINE-OUT 42.1 ± 3.2 42.2 ± 2.9 42.8 ± 3.1 42.8 ± 2.4 

TMSBASELINE-IN 26.8 ± 5.9 26.5 ± 6.6 29.0 ± 5.3 29.0 ± 4.8 

TMSDELAY 

 

RESPND 

 

 

RESPD 

 

 

RESPND 

 

 

RESPD 

 

 

RESPND 

 

 

RESPD 

 

 

RESPND 

 

 

RESPD 

 

26.4 ± 7.4 26.2 ± 7.3 26.4 ± 7.2 25.0 ± 7.5 30.4 ± 5.5 31.0 ± 5.1 30.5 ± 5.1 30.2 ± 5.4 

 

PD = Parkinson’s disease; TMSBASELINE-OUT = pulse delivered outside the context of the task, at complete rest in front of a blank screen; TMSBASELINE-IN = pulse delivered during the inter-

trial interval; TMSDELAY = pulse delivered during the preparatory delay, between the appearance of the preparatory cue and the imperative signal; MEPND and MEPD = motor evoked 

potentials probed in the non-dominant and dominant hand, respectively; RESPND and RESPD = non-dominant and dominant hand selected for providing the upcoming movement response, 

respectively.  

 

 

 



Supplementary Table 2. Demographic and clinical data in the PD-EARLYSTAGE and PD-LATESTAGE patient subgroups.  

 PD-EARLYSTAGE (n=17) PD-LATESTAGE (n=12) PD-EARLYSTAGE vs. PD-LATESTAGE 

 Mean (± SD) Range (min – max) Mean (± SD) Range (min – max) P-values a 

Age (years) 

UPPS 

BDI-II 

Years since diagnosis 

LEDD (mg) 

MDS-UPDRS-III, ON-DOPA 

MDS-UPDRS-III, OFF-DOPA 

62.7 (± 11.9) 

86.8 (± 17.2) 

9.8 (± 5.7) 

3.6 (± 1.5) 

671 (± 398) 

19.2 (± 10.1) 

25.1 (± 9.5) 

41 – 79 

57 – 114 

3 – 21 

1 – 6 

126 – 1895 

3 – 46 

9 – 44 

67.4 (± 7.9) 

89.4 (± 29.9) 

14.7 (± 7.2) 

10.8 (± 2.7) 

743.1 (± 158.8) 

26.9 (± 6.1) 

37.5 (± 6.5) 

55 – 79 

59 – 115 

7 – 24 

8 – 16 

460 – 953 

16 – 37 

25 – 51 

P = 0.38 

P = 0.72 

P = 0.08 

P < 0.001 

P = 0.23 

P = 0.01 

P < 0.01 

PD = Parkinson’s disease; BDI-II = Beck Depression Inventory, Second Edition; UPPS = UPPS Impulsive Behaviour Scale; ON-DOPA = session performed one hour after the intake of 

dopamine replacement therapy; OFF-DOPA = session performed after overnight withdrawal of dopamine replacement therapy (min.12 hours withdrawal for Levodopa and min. 24h 

withdrawal for dopamine agonists and other Parkinson’s disease medication); SD = Standard Deviation.  
a  = P-values for PD-EARLYSTAGE vs. PD-LATESTAGE comparisons (obtained from the Mann-Whitney U-test, except for the UPPS, which was analysed using a MANOVA).  

 

 



Supplementary figure legends 

Supplementary Figure 1. Neural measures of preparatory suppression in Parkinson’s 

disease (PD) patients only (individual data). Amplitude of MEPs recorded at TMSDELAY, 

expressed in percentage of MEPs elicited at TMSBASELINE-IN, shown for the non-dominant 

(MEPND) and dominant (MEPD) FDI in each patient participant, according to the OFF-DOPA 

(red) and ON-DOPA (black) session. The hand figures represent RESPSIDE for the upcoming 

movement; since 86% of the patients were right-handed, for the purpose of illustration, the left 

and right hands are used to represent non-dominant and dominant hand responses (RESPND and 

RESPD, respectively). For each session, the bars thus represent MEPND and MEPD for both FDI 

when they were either responding (two peripheral bars) or not responding (two central bars). 

A. Individual data points, excluding outlier subject 19 (S19). B. Individual data points, 

including outlier subject 19, who exhibited a considerable lack of preparatory suppression, 

especially in the ON-DOPA session. Both figures confirm the global tendency for a lack of 

preparatory suppression in Parkinson’s disease patients, especially in the selected hand 

conditions, no matter the medication status. C. and D. show the individual data points of PD-

EARLYSTAGE and PD-LATESTAGE, respectively, illustrating a more marked lack of 

preparatory suppression and more variability in patients at later stages of the disease.  

Supplementary Figure 2. Raw corticospinal excitability at TMSDELAY. Raw amplitude of 

MEPs (in mV) recorded in the FDI during the task, while participants were preparing their 

movement response (TMSDELAY). MEPs are shown for Parkinson’s disease (PD) patients (red 

and black) and HC subjects (light grey) in the non-dominant (MEPND) and dominant (MEPD) 

hand. Based on the results of the ANOVA, RESPND and RESPD measures are pooled together. 

Red bars represent the OFF-DOPA whereas black bars represent the ON-DOPA session; such 

sessions were fictive and randomly attributed in HC subjects. MEPD in patients were 

significantly reduced in the ON-DOPA session compared to the OFF-DOPA session, no matter 

the RESPSIDE. ANOVA, **P < 0.01. 

Supplementary Figure 3. Principal component analysis (PCA) for the Parkinson’s disease 

patients group only. A. Cumulative variance plot. The x-axis shows the principal 

components, while the y-axis illustrates the cumulative variance explained by them. The plot 

shows that >75% of the variance (dashed line) of the dataset was explained within the first four 

dimensions of principal components, which proofed that a PCA was a valid method to explore 



the data included in this study. B. Correlation matrix. The matrix showed the importance, 

within the first five principal components (PC1-PC5), of the different variables included in the 

PCA. Dark blue represents strong negative correlations, while dark red represents strong 

positive correlations; the more intense the color, the more significant the correlation. C. Biplot. 

Represented in this biplot are the different variables projected along the first and second 

principal components (PC1 on the x-axis, PC2 on the y-axis). Along PC1, clinical scores 

seemed to co-evolve with values of preparatory suppression and MT, especially OFF-DOPA, 

as well as RTs. Along PC2, MTs ON-DOPA appeared to co-evolve with raw MEP amplitudes 

at TMSBASELINE-IN and TMSDELAY. Taken together, this PCA highlights the importance of 

further investigating the relationship between neurophysiological, behavioural and clinical 

motor variables in bigger Parkinson’s disease cohorts. 

Supplementary Figure 4. LOESS regressions illustrating the relationship between raw 

corticospinal excitability and years since diagnosis of Parkinson’s disease, after synthetic 

data amplification using CTGAN. All x-axes represent the number of years since diagnosis. 

Red curves and circles represent the OFF-DOPA session, while blue curves and circles 

represent the ON-DOPA session. The light grey horizontal lines represent the mean of HC 

subjects in each subcondition. The three left-side graphs represent the results for the non-

dominant FDI (MEPND, left in most subjects) while the right-side ones represent the results for 

the dominant one (MEPD, right in most subjects). The span for all LOESS regressions was set 

to 0.4.  Data was amplified by ~100% (31 additional samples), hence bringing the number of 

data points to a total of 60 as compared to our original dataset. A. and B. Baseline measures. 

The y-axis represents the raw amplitude of MEPs (in mV) recorded in the FDI at rest, outside 

(TMSBASELINE-OUT) and within (TMSBASELINE-IN) the context of the task, for A. and B., 

respectively. C. Delay measures. The y-axis represents the raw amplitude of MEPs (in mV) 

recorded in the FDI during the task, while participants were preparing their movement response 

(TMSDELAY). Based on the absence of an effect of the RESPSIDE in the triple interaction 

including DRT, MEPs from both RESPND and RESPD conditions were pooled together for each 

FDI. These LOESS regressions run on synthetically amplified data showed that the triphasic 

patterns observed in our original data set held up when data points were increased with machine 

learning algorithms, using CTGAN. Such patterns thus have a high probability of surviving in 

larger Parkinson’s disease patient cohorts.    

 



Supplementary figures 

Supplementary Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 2. 
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Supplementary Figure 4. 
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