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 2 

ABSTRACT 32 

 33 

Wastewater-based epidemiology has emerged as a promising tool to monitor pathogens in a 34 

population, particularly when clinical diagnostic capacities become overwhelmed. During the 35 

ongoing COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 36 

(SARS-CoV-2), several jurisdictions have tracked viral concentrations in wastewater to inform 37 

public health authorities. While some studies have also sequenced SARS-CoV-2 genomes 38 

from wastewater, there have been relatively few direct comparisons between viral genetic 39 

diversity in wastewater and matched clinical samples from the same region and time period. 40 

Here we report sequencing and inference of SARS-CoV-2 mutations and variant lineages 41 

(including variants of concern) in 936 wastewater samples and thousands of matched clinical 42 

sequences collected between March 2020 and July 2021 in the cities of Montreal, Quebec 43 

City, and Laval, representing almost half the population of the Canadian province of Quebec. 44 

We benchmarked our sequencing and variant-calling methods on known viral genome 45 

sequences to establish thresholds for inferring variants in wastewater with confidence. We 46 

found that variant frequency estimates in wastewater and clinical samples are correlated over 47 

time in each city, with similar dates of first detection. Across all variant lineages, wastewater 48 

detection is more concordant with targeted outbreak sequencing than with semi-random 49 

clinical swab sampling. Most variants were first observed in clinical and outbreak data due to 50 

higher sequencing rate. However, wastewater sequencing is highly efficient, detecting more 51 

variants for a given sampling effort. This shows the potential for wastewater sequencing to 52 

provide useful public health data, especially at places or times when sufficient clinical sampling 53 

is infrequent or infeasible.  54 
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INTRODUCTION 55 

Quebec has been one of the Canadian provinces most affected by the COVID-19 pandemic, 56 

with 5,698 cases and 135 deaths per 100,000 inhabitants as of December 2021 (Public Health 57 

Agency of Canada 2021). After the first reported COVID-19 cases at the end of February 2020, 58 

the government implemented public health measures to control the spread of the virus, 59 

ranging from the closure of non-essential businesses to intra-provincial travel restrictions. The 60 

Coronavirus Sequencing in Quebec (CoVSeQ) consortium began sequencing SARS-CoV-2 61 

genomes from qPCR-positive nasal swabs sampled across the province, yielding insights into 62 

the early introduction events of the virus into the province, and their subsequent spread (Murall 63 

et al. 2021). As in many other places around the world, the Quebec Public Health lab (LSPQ) 64 

increased genomic surveillance of SARS-CoV-2 after the emergence of variants of concern 65 

(VOCs) at the end of 2020. Variants of interest (VOIs) are defined as SARS-CoV-2 lineages 66 

with mutations that have a potential impact on the clinical or epidemiological characteristics of 67 

the virus, while those with a demonstrated impact on disease transmission or clinical features 68 

are named VOCs (Institut national de santé publique du Québec 2021). For example, the 69 

Alpha variant (PANGO lineage B.1.1.7) had a significant transmission advantage relative to 70 

previously circulating lineages (Volz et al. 2021; Davies et al. 2021), which was then 71 

superseded by the even more transmissible Delta (B.1.617.2) variant (Campbell et al. 2021; 72 

Mlcochova et al. 2021). Although Quebec has the highest testing rate in Canada (491 tests 73 

performed per 100,000 habitants per week vs 335 on average in Canada as of December 18, 74 

2021) and a decreasing death rate since the beginning of 2021 (from 4.02 new deaths per 75 

100,000 habitants per week at the beginning of 2021 to 0.0 in mid August 2021), the recent 76 

increase in the case incidence rate (from 1.1 new cases per 100,000 habitants in mid July 77 

2021 to 3.3 in mid August 2021) and the threat of new variants with immune escape or further 78 

transmission advantages (Otto et al. 2021) calls for continued vigilance and improved 79 

surveillance.  80 

 81 

Wastewater (WW) surveillance has emerged as a method to track SARS-CoV-2 variants in a 82 

manner that is complementary to sequencing clinical samples. Wastewater-based 83 

epidemiology has the potential to variant lineages earlier than clinical sampling and provides 84 

valuable insights about the viral spread in the population (Bibby et al. 2021; Xiao et al. 2021). 85 

This is because wastewater sampling can catch asymptomatic cases that would otherwise not 86 

present for a nasal swab sample, but that do excrete viral RNA in stool (Bibby et al. 2021; 87 

Jones et al. 2020). Wastewater is a complex mixture of fragmented viral RNA, which can be 88 

difficult to sequence and confidently identify mutations. Recent studies in the United States 89 

have shown that the dominant SARS-CoV-2 variants observed in clinical samples are largely 90 

mirrored in wastewater sequences (Crits-Christoph et al. 2021; Baaijens et al. 2021). 91 
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Wastewater also has the potential to capture mutations and variant lineages not observed in 92 

human clinical samples, potentially including animal reservoirs (Smyth et al. 2021). However, 93 

more studies are required to assess the sensitivity and spatio-temporal resolution of 94 

wastewater sequencing in comparison to clinical sequencing.  95 

 96 

RESULTS AND DISCUSSION 97 

Wastewater and clinical SARS-CoV-2 sampling and sequencing in Quebec 98 

As a demonstration of WW-based VOCs and VOIs surveillance, we deep-sequenced SARS-99 

CoV-2 genome-wide amplicons from 936 WW samples collected between March 2020 and 100 

July 2021 in the cities of Montreal, Quebec, and Laval, representing almost half of Quebec’s 101 

population. The WW samples were collected from interceptors at the end of the WW network 102 

(36.1%), residential areas (29.9%), WW treatment facilities (21.2%), prisons (7.69%), 103 

industrial zones (4.90%) and long-term care and housing centers (0.21%). We compare the 104 

WW data to semi-random clinical samples from the same cities, which we refer to as the 105 

clinical dataset (N = 13,296 sequences), and non-random priority sequencing of outbreaks 106 

and other samples of particular public health interest (e.g. suspected Alpha variant cases in 107 

early 2021, travel-related cases, etc.), which we refer to as ‘outbreak’ samples (N = 5,661 108 

sequences).  109 

 110 

Establishing thresholds for calling single nucleotide variants (SNVs) with confidence  111 

To study the genomic diversity of SARS-CoV-2 in WW samples, we first developed a 112 

bioinformatic pipeline to confidently identify single nucleotide variants (SNVs) while accounting 113 

for sequencing errors, then to infer VOIs, VOCs, and other variant lineages that contain 114 

combinations of signature SNVs (Methods). WW samples can contain a mixture of variants 115 

at different frequencies. True SNVs can be confused with errors that are introduced by sample 116 

processing, e.g. from errors introduced by the reverse transcriptase or the polymerase that 117 

are used for targeted SARS-CoV-2 amplification, or from read errors created by the 118 

sequencing platform. In this study, we chose illumina sequencing to minimize the per-read 119 

error rate (compared to Oxford Nanopore). To set appropriate thresholds for minimum SNV 120 

frequencies and coverage, we sequenced 14 SARS-CoV-2 positive control genomes from 121 

AccuGenomics, containing a set of known SNVs at 100% within-sample frequency, which we 122 

sequenced using the same Illumina amplicon strategy used for the WW samples. We 123 

assessed a range of filters for depth of coverage and minor allele frequency (MAF) required 124 

to call a SNV (Figure 1). Our SNV calling pipeline yields systematically low false positive rates 125 

(median < 7% even at 1% MAF and effectively zero at 25% MAF) across a range of filters and 126 

expected frequency of the true positive SNVs (Figure 1). To be conservative for subsequent 127 

analyses we selected a minimum site coverage of 50X and a MAF of 25%. These filters 128 
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maximized the F1 score, which combines information about the precision (i.e. the proportion 129 

of SNV calls that are true positives) and the sensitivity (i.e. the proportion of true variants that 130 

are identified). The F1 scores are poor when the expected frequency of the true positive SNVs 131 

is 100% (Figure S1A) but improves when we allow the expected nucleotide to have a 132 

frequency of at least 75% to allow for sequencing errors (Figure S1B). Note that very similar 133 

F1 scores were obtained at 10% MAF and that our variant calling pipeline can detect low-134 

frequency mutations with high accuracy (Figures 1 and S2), but we proceeded with 25% to 135 

be conservative. In addition to the AccuGenomics controls, we also sequenced mixtures of 136 

two different SARS-CoV-2 viral cultures at known ratios, which we call “spike-in" samples. We 137 

found that our SNV-calling pipeline identified the expected SNVs close to their expected 138 

frequencies. Low variant frequencies (expected frequency < 5%) were inferred particularly 139 

accurately, with more variation in the 25-50% range (Figure S2). Overall, these results 140 

indicate that our SNV-calling filters are appropriate, and likely conservative, for identifying 141 

SNVs in wastewater containing mixtures of viral genomes. 142 

 143 

  144 
Figure 1. False-positive SNV calling rates across different depth and frequency filters. 145 
In all cases, the expected variant frequency was 100% in AccuGenomics SARS-CoV-2 146 
genome standards. The thresholds that define the filters are respectively the minimum 147 
coverage (X) and the minimum minor SNV frequency. The Kruskal-Wallis test p-value (at the 148 
top of the panel) indicates the significance of the differences across the different sets of filters.  149 
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Sampling and sequencing SARS-CoV-2 from wastewater 150 
Having established a reliable method for SNV calling, we applied it to a set of 936 WW samples 151 

collected between March 2020 and July 2021 in Montreal, Quebec City, and Laval (Table S1). 152 

Because SNV calling requires sufficient depth of coverage, we measured how coverage depth 153 

and breadth varied across the SARS-CoV-2 genome in our samples (Figure 2).  154 

 155 
Figure 2 Sequencing coverage across the SARS-CoV-2 genome recovered from 156 
wastewater. A) Depth of coverage, defined as the average number of sequencing reads 157 
covering a nucleotide site. Each point represents a unique wastewater sample. Each 158 
distribution is represented by a jitter plot (black points), a boxplot (black and white) and a violin 159 
plot (grey). The red dotted line indicates a coverage of 50 on a log10 scale. B) Breadth of 160 
coverage. The breadth of coverage represents the proportion of sites in each genomic region 161 
(gene or open reading frame; ORF) with a coverage of at least 50X. Boxplots are absent when 162 
75% of the samples have a breadth of coverage of  0 or, in other words, the 3 first quantiles 163 
of the distribution correspond to samples with a coverage <50 at the corresponding sites. The 164 
red dotted line indicates a breadth of coverage of 50% on a log10 scale.  165 
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The mean depth and breadth of coverage varied somewhat across genes, and was roughly 166 

bimodal, with samples tending to fall either close to 0-1X coverage or >1000X on average, 167 

with fewer samples in between (Figure 2). As expected, coverage correlated negatively with 168 

PCR Cycle threshold (linear regression adjusted R2 = 19.2%; Permutational ANOVA p < 2e-169 

4, n = 5000 permutations), as previously observed (Lythgoe et al. 2021; Baaijens et al. 2021). 170 

Due to this variation in coverage, not all nucleotide sites in the genome in all samples have 171 

sufficient depth to make SNV calls. However, given the substantial number of samples with 172 

>1000X coverage, we expect to obtain a reasonable number of high-confidence SNVs in our 173 

dataset. Using the >=50X coverage and 25% MAF filters described above, we called an 174 

average of 6.87 SNVs per sample (s.d. = 10.1) (Figure S3). 175 

 176 

Detecting SARS-CoV-2 lineages in wastewater using signature and marker mutations 177 

With these SNVs in hand, we sought to infer the presence of known variant lineages in WW 178 

samples. We defined “signature mutations” as SNVs with a minimum prevalence of 90% 179 

among the consensus sequences of a certain lineage (e.g. a particular VOC represented in a 180 

database). To find these signature mutations, we first calculated the prevalence of 181 

substitutions in thousands of publicly available consensus sequences collected during 2020 182 

and added data from CoV-Spectrum (Chen et al. 2021) to include under-represented lineages 183 

or lineages that emerged after 2020 (Methods). These variant lineages were named using 184 

the PANGO lineage designation scheme (Rambaut et al. 2020). We further defined “marker 185 

mutations” as signature mutations that are unique to a single variant lineage to the exclusion 186 

of others. 187 

Using these criteria, we identified an average of 4.42 signature mutations per sample 188 

(s.d. = 6.94) and 2.01 marker mutations per sample (s.d. = 3.22) (Figure S3). To call a variant 189 

lineage as present in a WW sample, we required at least 3 signature mutations including at 190 

least one marker mutation (Methods), yielding an average of 0.79 variant lineages identified 191 

per sample (s.d. = 1.14; min.=0; max. = 6). This approach allowed us to track the spread of 192 

variants with a confidence score, i.e. the number of signature mutations supporting the 193 

presence of a lineage, which includes at least one of its marker mutations (Figure S4 and 194 

Table S2). As expected in this time period, the samples are dominated by the Alpha variant 195 

(B.1.1.7), with sporadic identification of other variants.  196 

We also estimated the within-sample frequency of variant lineages using constrained 197 

linear models (Methods). These models infer the linear combination of known variant lineages 198 

(from the database of reference genomes) that best explain the frequencies of observed SNVs 199 

in the sample (Figure S6). We applied this approach to the 299 WW samples that have at 200 

least one lineage with at least 3 signature mutations, including at least one marker mutation. 201 

Among these samples, the regression model was significant for 250 samples (83.6%) and not 202 
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significant for the remaining 49 samples (16.4%). These variant frequency estimates (Figure 203 

S5) were generally concordant with the simpler approach relying on signature and marker 204 

mutations (Figure S4). Both approaches showed a predominance of the Alpha variant in all 205 

cities, with substantial numbers of B.1.160 in 2020 and early 2021, and A.2.5.X lineages 206 

previously described in Quebec clinical samples (Murall et al., 2021). 207 

The absence of variant lineage detections can simply be due to lack of sampling, lack 208 

of sequencing depth, or a true absence. Sampling frequency is indeed variable over time and 209 

cities (Figure S7) and the absence of detections is mostly explained by the absence of WW 210 

samples (81.4% of time points with missing lineages; grey shading in Figures S4 and S5) and 211 

modestly by lack of sufficient sequencing depth (18.6%; transparent red shading in Figures 212 

S4 and S5). This suggests that increased sampling frequency, coupled with modest 213 

optimization of RNA extraction and sequencing protocols, could increase both the true positive 214 

and true negative rates.  215 

 216 

Comparisons between wastewater and nasal swab sequencing 217 

To assess how SARS-CoV-2 variant lineage detection in wastewater compared with 218 

sequencing of clinical samples in the same cities and time period, we considered the top three 219 

most prevalent lineages detected in our WW samples: Alpha (B.1.1.7), B.1.160, and A.2.5.X). 220 

For these analyses, we supplemented the 936 WW sequences with 13,296 clinical samples 221 

from a semi-random population sample of nasal swabs (of which 9,262 passed sequencing 222 

quality filters and were deposited in GISAID; Table S3) and 5,661 non-random ‘outbreak’ 223 

samples sequenced with high priority by the Quebec Public Health lab (of which 1,848 passed 224 

filters and were deposited in GISAID; Table S4; Methods). In each sample type, we defined a 225 

variant lineage’s frequency relative to other lineages in a 2-week time window. The frequency 226 

estimates from WW and both types of clinical samples are significantly correlated (linear 227 

regression adjusted R2 = 0.63 with semi-random clinical data, and 0.34 with outbreak data; 228 

Permutational ANOVA both p < 2e-4, pooled over the three most prevalent variants; n = 5000 229 

permutations). Note that this method ignores missing data, so sampling gaps do not contribute 230 

to the regression. In general, variants are detected first in clinical or outbreak data, and shortly 231 

thereafter in wastewater (Figure 3). The Alpha VOC (B.1.1.7) in particular tended to be 232 

detected first in outbreak samples, likely because suspected Alpha cases were prioritized for 233 

sequencing by the Quebec Public Health lab at the time. Notably, Alpha was detected in WW 234 

concurrently or shortly after outbreak samples, despite being detected much later (or not at 235 

all) in semi-random clinical sequences (Figure 3).  236 
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 237 
Figure 3 Relative abundance of the most prevalent VOC/VOIs in Quebec in clinical, 238 
outbreak and WW samples. The relative abundance of each variant was estimated as the 239 
percentage of samples in which the variant is present over a 2-week period. Gaps in the time 240 
series can be explained by a lack of sampling (transparent grey), i.e. the absence of detections 241 
of a particular lineage due to the absence of samples, or missing detections in the sequencing 242 
data (transparent red), i.e. the absence of detections of a particular lineage although samples 243 
were collected during the corresponding period. We only show time intervals starting in 244 
September 2020 because sampling frequency was sparse before that (Figure S7).  245 
 246 
Next, we sought to generalize these results beyond the most prevalent variants and to 247 

consider different possible time-lags between clinical and WW samples. For example, clinically 248 

undetected asymptomatic or pre-symptomatic cases could be detected earlier with WW 249 

sampling. Conversely, outbreak and clinical samplings might detect some lineages earlier than 250 

WW when the testing rate is high and appropriately targeted. We considered time lags 251 

between 0 and 8 days between collection of WW and clinical or outbreak samples, and 252 

calculated concordance, defined simply as the detection of a variant in both sample types. We 253 

found that concordance was maximized between WW and both clinical or outbreak samples 254 

at a maximum time lag of around 7 days, regardless of the number of signature SNVs required 255 

to define variants (Figures S8 and S9). The 7-day time interval is similar to the average pre-256 

symptomatic phase duration, i.e. 6.4 days (Backer, Klinkenberg, and Wallinga 2020). To 257 

assess the significance of these concordance scores, we permuted (1000 times) the variant 258 

detections across cities and time (days) and compared the concordance score after 259 

permutations to the original concordance score to obtain a p-value. Using a 7-day maximum 260 

time lag and defining variants with at least three signature SNVs, we estimated that 41.7% of 261 

WW calls are concordant with semi-random clinical sampling data (permutation test p-value = 262 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 1, 2022. ; https://doi.org/10.1101/2022.02.01.22270170doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.01.22270170
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

0.23) and 85.7% of WW calls are concordant with outbreak sampling data (permutation test 263 

p-value = 0.009). None of the tested time gaps yield a significant concordance between WW 264 

and semi-random clinical data (Figure S8). The stronger concordance between WW and 265 

outbreak sequences is surprising, as one would expect WW to better capture the same 266 

variants as the semi-random clinical samples. Although the reasons for this observation are 267 

unclear, it speaks to the unknown and potentially orthogonal biases implicit in each of the 268 

sampling schemes. Out of the 14 variant lineages detected both in WW and outbreak datasets, 269 

13 are also detected in the clinical dataset (Figure S10). This suggests that the weaker 270 

concordance between WW and clinical data relative to outbreak data is not explained by the 271 

identity of the lineage in question, but rather by discrepancies in the timing of detection. 272 

Indeed, 37 lineages were detected earlier by semi-random clinical sampling than WW or 273 

outbreak sampling, including A.2.5.X, B.1.1.7 (Alpha), B.1.160, B.1.526 (Iota) and R.1, while 274 

seven lineages were detected earlier in the outbreak dataset, including P.1 (Gamma), 275 

B.1.617.X (Kappa/Delta), B.1.1.519 and C.37 (Lambda). Only B.1.351 (Beta), B.1.621 (Mu) 276 

and B.1.214.2 were detected first in the WW data.  277 

A major reason that more variant lineages are detected earlier in clinical and outbreak 278 

sequences is simply the sampling effort: there are about five times more available outbreak 279 

samples than WW samples in our dataset, and about ten times more semi-random clinical 280 

samples. As a result, there are more lineage detections in clinical data (Figure S11A), which 281 

is consistent with another study from the United States (Baaijens et al. 2021) and is explained 282 

by a higher monthly sequencing rate (Figure S11B). However, at an equal sequencing rate, 283 

WW is able to detect more variant lineages than clinical or outbreak sampling (Figure 4). This 284 

suggests that, for a given sequencing effort, WW surveillance could detect a higher diversity 285 

of variants. Even in our current limited sample of 936 WW sequences, we are able to infer the 286 

presence of certain variants that are not apparent in clinical sequences (Figure S10).  287 

 288 
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 289 
Figure 4 Wastewater sampling detects more unique variant lineages at a given 290 
sequencing rate. Monthly richness of detected lineages in function of sequencing rate for 291 
clinical (gold), outbreak (green) and wastewater (skyblue) samplings. We estimated the 292 
sequencing rate as log10(number of sequences per month+1) and richness as log10(number 293 
of variant lineages detected +1). 294 
 295 

CONCLUSION 296 

Using a relatively conservative SNV calling pipeline and lineage detection method, we tracked 297 

the spread of SARS-CoV-2 lineages in wastewater between March 2020 and July 2021 across 298 

three cities in the province of Quebec. Although WW sequencing could be used to detect novel 299 

mutations or variant lineages not found in clinical samples (Smyth et al. 2021), here we 300 

focused on identifying known variants. Consistent with a similar study in the US, we found that 301 

sequencing coverage in WW was dependent on viral load, as measured by the qPCR cycle 302 

threshold (Ct) value (Baaijens et al. 2021). This suggests that WW sample concentration or 303 

optimization of RNA extraction could yield more sequence data and improve variant inference. 304 

We also found that the most prevalent variants were detected concordantly in WW and clinical 305 

samples over a 7-day time frame, but that variants were generally detected first in clinical 306 

samples, suggesting that clinical diagnostics efforts were effective at the time of sampling. We 307 

note that certain VOCs and VOIs, including B.1.351 (Beta), B.1.214.2, and B.1.621 (Mu) were 308 

detected in WW before clinical samples. Several other variants were detected only in WW but 309 

not clinical samples. These could be true positives that were undetected by clinical sampling, 310 

or false positives that could have arisen for a variety of reasons, including the threshold 311 

number of signature or marker SNVs required to identify a lineage. In other words, even if we 312 

trust the SNV calls, recurrent SNVs could potentially confuse one variant lineage for another. 313 

Outbreak samples sequenced as part of targeted public health investigations were particularly 314 
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concordant with WW samples, for reasons that remain unclear. Despite sources of error in 315 

sampling and sequencing, WW-based detection of variant lineages is generally aligned with 316 

clinical samples from the same city and time period. Our analyses pooled a variety of sample 317 

types at the city level. Future studies could examine the spatial scales (province, city, 318 

neighborhood, residence) at which wastewater sequencing is most concordant with clinical 319 

sampling.  320 

 321 

Importantly, WW samples are able to detect more variant lineages per sequencing run. This 322 

is intuitive, because WW includes a mixture of viruses, thereby often sampling multiple 323 

individuals at a time, depending on the wastewater catchment area. This mixture of viruses 324 

must then be inferred based on sequencing data. Here we used Illumina short-read data, and 325 

a SNV calling pipeline benchmarked on known standard SARS-CoV-2 genomes. We then 326 

inferred variant lineages as combinations of SNVs present in known variants, based on either 327 

a simple threshold of signature and marker mutations, or on a constrained linear model, 328 

yielding similar results. Long-read technology is potentially useful for resolving multiple SNVs 329 

on the same sequencing read, potentially providing more direct evidence for variant genomes 330 

and circumventing the need for inference based on unlinked SNV frequencies. However, RNA 331 

in wastewater is generally quite fragmented, which may impose an upper limit on the utility of 332 

such methods. Furthermore, the single read accuracy of Nanopore sequencing is to date not 333 

at par with the read accuracy offered by Illumina.  334 

 335 

While there is room for methodological improvements ranging from sample collection, 336 

sequencing, and computational inference of variants, the general concordance between 337 

wastewater and clinical sampling is encouraging. In contexts where clinical sampling is 338 

infrequent or infeasible, wastewater can provide a complementary window into VOC 339 

frequencies. The value of wastewater sequencing became exceedingly clear during the 340 

Omicron wave, which began in Canada in mid-December 2021 and is still ongoing in late 341 

January 2022. Anecdotally, we were able to detect Omicron with 11 signature mutations on 342 

December 4, 2021 in Montreal (data not shown). Together, our results suggest that 343 

wastewater sequencing can continue to provide a similar portrait of SARS-CoV-2 variant 344 

lineages, potentially with much less sampling and sequencing effort. 345 
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METHODS 378 

Sample collection and sequencing 379 

To perform the genomic surveillance of SARS-CoV-2, we collected WW samples at the 380 

institutional, district, and municipal scale from Montreal, Quebec City, and Laval. The samples 381 

were collected by composite sampling, grab sampling, and passive sampling. The composite 382 

samples were collected with autosamplers, which collected wastewater every 10 minutes, over 383 

a 24, 48, or 72 hour time period. The passive samples were collected through 2 absorbent 384 

materials, Q-tips and negatively charged membranes, Mixed Cellulose Ester (MCE) filters, 385 

which were housed in torpedoes (Schang et al. 2021). The torpedoes were also deployed over 386 

a 24, 48, or 72 hour time period. For time series analyses, the samples were pooled from the 387 

different scales (institution, district) and from the different sampling methods (composite, grab, 388 

and passive) for each date; thus the analyses were conducted at the municipal scale. 389 

Wastewater samples, grab or composite, were additionally concentrated by filtration. First, in 390 

50 ml of wastewater, the pH was adjusted to between 3.5-4.5, and MgCl was added to a final 391 

concentration of 25 mM. Then the samples were filtered through a 0.45 µm MCE filter. All 392 

samples were processed within at most 72 hours; the MCE filters and Q-tips were stored at -393 

80°C. RNA was then extracted using the Allprep Powerviral DNA/RNA kit. The protocol was 394 

followed according to the manufacturer, with the exception of the lysis step, where a final 395 

concentration of 10% Beta-Mercaptoethanol was used in the lysis buffer and incubation time 396 

was raised to 30 minutes at 55°C. After extraction, RNA samples were submitted to the McGill 397 

Genome Center for reverse transcription followed by targeted SARS-CoV-2 amplification 398 

using the ARTIC V3 primer scheme (https://artic.network/resources/ncov/ncov-amplicon-399 

v3.pdf). Samples were purified and a Nextera DNA Flex library preparation was performed for 400 

Illumina paired-end amplicon sequencing (PE150) on a NovaSeq instrument at the McGill 401 

Genome Center. The detailed protocol can be accessed at: 402 

dx.doi.org/10.17504/protocols.io.by6xpzfn.  403 

 404 

SNV calling and quality control 405 

For each sample, we performed quality control of the raw reads using fastp (v.0.20.0, read 406 

length >=70, Phred Score >20 and cut_tail option (S. Chen et al. 2018). We then aligned reads 407 

to the reference genome (MN908947.3 or NC_045512.2) using bwa (v.0.7.17) (Li 2013) and 408 

performed a coverage analysis with samtools (v.1.10) depth (Li 2011). In total, 936 WW 409 

samples were collected and sequenced with Illumina. For each of these samples, we 410 

performed SNV calling from the read mapping using samtools (v.1.10) mpileup and varscan 411 

(v.2.4.1) pileup2snp (Li 2011; Koboldt et al. 2012). To select coverage and SNV frequency 412 

filters for SNV calling, we analyzed 14 positive controls from AccuGenomics for which we 413 

know the list of expected mutations (https://accugenomics.com/accukit-sars-cov-2/). These 414 
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controls allow us to measure a limit of detection and to evaluate the background error due to 415 

library preparation, sequencing, or other sources of noise. Using these controls, we can then 416 

determine the variant calling filters that allows to minimize the background error, i.e. the false 417 

positive and false negative rates, and maximizes the accuracy of SNV calling, i.e. F1 score. 418 

We calculated this score using the precision, i.e. the proportion of SNV calls (positives) that 419 

are true positives,  and the recall/sensitivity, i.e. the proportion of expected variants that have 420 

been called (Powers 2020). The SNV calling and  post-variant-calling pipeline is available at 421 

https://github.com/arnaud00013/Wastewater_surveillance_pipeline. 422 

 In addition to the AccuGenomics controls, we also sequenced mixtures of two different 423 

SARS-CoV-2 viral cultures at known ratios, which we called “spike-in” samples. In these 424 

samples, a viral culture extract was spiked into a SARS-CoV-2 positive control sample at a 425 

concentration of 1%, 2%, 5%, 10%, 20% or 50%. Both samples were obtained from the first 426 

wave of the pandemic and differed by 11 mutations . We performed variant calling on the 427 

sequenced spiked-in samples based on the same method as the WW samples, except for the 428 

VAF filter, which we removed to be able to detect expected low-frequency mutations. Because 429 

each Spike-sample is a mixture of variants and are thus not clonal, the expected variant 430 

frequency (VAF) is calculated based on the virus concentration and initial VAF in the samples. 431 

Expected_VAF = (Concentration_positive_control * VAF_in_postive_ctrl) + 432 

(Concentration_ViralCulture * VAF_in_L00241026_ ViralCulture) where 433 

Concentration_positive_control would be 1%, 2%, 5%, 10%, 20% and 50%, and 434 

Concentration_ViralCulture = 1 - Concentration_positive_control. 435 

 436 

Detection of lineages of interest in WW samples and estimation of their within-sample 437 

frequency 438 

To infer the presence of SARS-CoV-2 lineages in WW samples, we used the number of 439 

lineage signature mutations, i.e. the number of mutations that have a minimum prevalence of 440 

90% among the consensus sequences of the lineage. To find these signature mutations, we 441 

first calculated the prevalence of substitutions in thousands of publicly available consensus 442 

sequences collected during 2020 and added data from CoV-Spectrum about under-443 

represented lineage in the database or lineages that emerged during 2021 (C. Chen et al. 444 

2021). The database contains 755 lineages and is available at 445 

https://github.com/arnaud00013/Wastewater_surveillance_pipeline/blob/main/ 446 

Post_variant_calling_analysis/Database_all_mutations_prevalence_in_SC2_lineages_conse447 

nsus_sequences_as_of_2021_07_08.json. At least 3 signature mutations including a marker 448 

mutation, i.e. a substitution that have a very high prevalence (>=90%) only among consensus 449 

sequences from a certain lineage, are required to call a lineage present in a WW sample. We 450 

selected this filter arbitrarily as a compromise between confidence of detection and 451 
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sensitivity/stringency. We also made sure to evaluate the effect of selecting different filters on 452 

the concordance between WW and clinical sampling. 453 

 For the calculation of within-sample frequency of SARS-CoV-2 lineages, we used a 454 

linear model to fit the lineages’ signature mutations data to the within-sample mutation 455 

frequency data. The rationale of the approach is that the frequency of lineage signature 456 

mutations within a sample is a linear combination of the frequency of the lineages and the 457 

prevalence of the mutations in the consensus sequences of these lineages. To make sure that 458 

linear regression converged to a good solution, we needed to apply certain constraints (Figure 459 

S6). Thus, we implemented this analysis using the "ConsReg()" function from the R (R 460 

Development Core Team 2011) package ConsReg (v.0.1.0), which allows us to perform linear 461 

regressions under constraints for regression coefficients. We explored the space of solutions 462 

using a Grid Search (coefficients initial values = 0.1,0.5 or 0.9) and a Monte Carlo Markov 463 

Chain optimizer. 464 

 465 
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