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 2 

Abstract 15 

 16 

Wastewater surveillance is a useful complement to clinical testing for managing COVID-19. While 17 

good agreement has been found between community-scale wastewater and clinical data, little is 18 

known about sub-community relationships between the two data types. Moreover, effects of non-19 

detects in qPCR wastewater data have been largely overlooked. We used data collected from 20 

September 2020–June 2021 in Davis, California (USA) to address these gaps. By applying a 21 

predictive probability model to spatially disaggregate clinical results, we compared wastewater 22 

and clinical data at the community scale, in 16 sampling zones isolating city sub-regions, and in 23 

seven zones isolating high-priority building complexes or neighborhoods. We found reasonable 24 

agreement between wastewater and clinical data at all scales. Greater activity (i.e., more frequent 25 

detections) in clinical data tended to be mirrored in wastewater data. Small, isolated clinical-data 26 

spikes were often matched as well. We also developed a method for handling such non-detects 27 

using multiple imputation and compared results to (i) single imputation using half the qPCR limit 28 

of detection, (ii) single imputation using maximum qPCR cycle number, and (iii) non-detect 29 

censoring. Apparent wastewater trends were significantly influenced by non-detect handling. 30 

Multiple imputation improved correlation relative to single imputation, though not necessarily 31 

relative to censoring.   32 
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 3 

Text 33 

Introduction 34 

Wastewater surveillance (also known as wastewater-based epidemiology, or WBE) has become 35 

widely recognized as a useful complement to clinical testing for managing COVID-19. Relative 36 

to large-scale diagnostic testing, wastewater surveillance offers a less resource-intensive way to 37 

monitor COVID-19 infections and spread among large numbers of people. Wastewater 38 

surveillance is also unbiased, capturing data on entire populations rather than just the subset of 39 

individuals who come in for clinical testing [1]. 40 

Most studies to date comparing wastewater and clinical data have focused on the community 41 

scale; i.e., comparing trends in data collected from the influent to a given wastewater treatment 42 

plant (WWTP) to trends in data collected from clinical tests of a subpopulation served by that 43 

WWTP. Such studies have frequently found good agreement between the two data sources. But 44 

little is known about relationships between wastewater and clinical data at sub-community levels. 45 

A first objective of this study was to advance and inform uses of wastewater surveillance at 46 

multiple scales for pandemic response. For instance, comparing data trends for wastewater 47 

collected from different neighborhoods could help public-health officials strategically allocate 48 

resources such as testing, contact tracing and vaccination outreach. 49 

Separately, SARS-CoV-2 RNA in wastewater samples is typically quantified using either 50 

reverse transcription-quantitative polymerase chain reaction (RT-qPCR) or RT-droplet digital 51 

PCR (RT-ddPCR) [2]. While RT-ddPCR is becoming more popular for wastewater surveillance 52 

[3] due to its greater specificity and sensitivity [4,5], many laboratories continue to use RT-qPCR 53 

due to the higher cost and time requirements of RT-ddPCR and the large upfront capital investment 54 

of ddPCR instrumentation. 55 
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 4 

Bivins et al. (2021) recently drew attention to how variability in RT-qPCR methods and 56 

reporting affects results and interpretation [6]. An additional and important source of variability 57 

not considered by these authors is how non-detects are handled. qPCR non-detects occur routinely 58 

for reasons including low or zero starting target abundance, poor assay design/performance, or 59 

human error [7,8]. There is no current consensus on how to best manage qPCR non-detects. 60 

Researchers, whether through scientific software or manual analysis, typically handle non-detects 61 

either using single imputation (setting all non-detects equal to a constant value such as the mean 62 

of detected replicates, half the detection limit, or zero) or by censoring (excluding non-detects from 63 

analysis altogether) [8]. 64 

Unfortunately, both single imputation and censoring can substantially bias qPCR results [8]. The 65 

biasing effect is amplified when, as is often the case for wastewater data, the target is present in 66 

low concentrations to begin with. A second objective of this study was to demonstrate how 67 

different non-detect handling methods can affect apparent wastewater data trends, and to explore 68 

whether multiple imputation of non-detects can improve on more commonly used but less 69 

sophisticated approaches. 70 

 71 

Materials and Methods 72 

Study setting and design 73 

We used wastewater data collected through the Healthy Davis Together (HDT) program in 74 

Davis—a small city of approximately 69,000 located in northern California—to (1) examine 75 

relationships between wastewater and clinical data at multiple spatial scales, and (2) explore the 76 

value of multiple imputation for handling qPCR non-detects. 77 
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HDT is a joint, multi-pronged initiative between the city of Davis and the University of 78 

California, Davis (UC Davis) for local management and mitigation of COVID-19. Beginning in 79 

November 2020, HDT made free, saliva-based PCR tests for COVID-19 available to anyone living 80 

or working in Davis. Uptake of the clinical-testing program was considerable. The fraction of 81 

Davis residents who reported receiving at least one COVID-19 test rose from 30% to 73% from 82 

September 2020 to March 2021. As of April 2021, Yolo County had performed the most tests per 83 

capita of California’s 58 counties, at a rate quadruple the state median. 84 

HDT also conducts wastewater surveillance at the community, sub-regional, and 85 

building/neighborhood scales (Figure 1). At the community scale, samples are collected from the 86 

influent to the City of Davis Wastewater Treatment Plant (COD WWTP). The COD WWTP 87 

captures all of Davis’s municipal wastewater, with no contributions from UC Davis or from 88 

neighboring jurisdictions. At the sub-regional scale, samples are collected from sewershed nodes 89 

isolating the wastewater contributions of different geographic areas in the city. At the 90 

building/neighborhood scale, samples are collected from sewershed nodes isolating high-priority 91 

building complexes or neighborhoods identified through discussion with local officials. The HDT 92 

WBE program began in September 2020 with weekly samples collected from the COD WWTP. 93 

Zones were added and sampling frequency increased over the course of the sampling campaign 94 

(Figure S1). At full scale-up, the surveillance program sampled daily from the COD WWTP and 95 

3x/week from each of 16 sub-regional and seven building/neighborhood zones. 96 

  97 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 29, 2022. ; https://doi.org/10.1101/2022.01.28.22269911doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.28.22269911
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

 98 

Figure 1. Map of sub-regional (SR; blue) and building/neighborhood (BN; purple) sampling zones 99 

for SARS-CoV-2 wastewater-based epidemiology in the city of Davis, CA. Note overlapping 100 

zones: in particular, zone SR-M overlaps the entirety of zone BN-F; zone SR-N overlaps a portion 101 

of zone SR-O and the entirety of zone SR-M; and zone SR-P overlaps the entirety of zones SR-A 102 

through SR-E as well as zones SR-O, SR-N, and SR-M.  103 

 104 
Sample collection 105 

24-h composite samples were collected from each zone using insulated HachTM AS950 Portable 106 

Compact Samplers (Thermo Fisher Scientific, USA) programmed to collect 30 mL of sample 107 

every 15 minutes. The bulk of samples were processed immediately, with a small number stored 108 

at 4°C for up to one week before processing. 109 

 110 
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Sample processing 111 

Samples were pasteurized for 30 minutes at 60°C to reduce biohazard risk while preserving RNA 112 

quality. Samples were then spiked with a known concentration of φ6 bacteriophage (strain HB104; 113 

generously provided by Samuel Díaz-Muñoz, UC Davis) as an internal recovery control [9,10]. 114 

The φ6 spike solution was prepared using previously described methods [11], modified slightly 115 

by using ATCC® Medium 129 in place of LB media. The final steps in the processing pipeline 116 

were sample concentration and extraction. From September 2020 through the end of February 117 

2021, concentration was performed via ultrafiltration through 100 kDa Amicon® Ultra-15 118 

centrifugal filter devices, and column-based extraction was performed manually using either the 119 

NucleoSpin® RNA Stool Kit (Macherey-Nagel) or the AllPrep® PowerViral® DNA/RNA Kit 120 

(Qiagen). From February 2021 through June 2021, concentration was performed using Nanotrap® 121 

Magnetic Virus Particles (Ceres Nanosciences) and the MagMAX Microbiome Ultra Nucleic Acid 122 

Isolation Kit (Thermo Fisher) coupled with the KingFisher Flex liquid-handling system (Thermo 123 

Fisher). The particle-based method was far more conducive to automation and higher throughput 124 

than the ultrafiltration-based method, and the switch was necessary to accommodate greater 125 

numbers of samples as the sampling campaign scaled up. 126 

We performed a four-sample comparison of the two methods and found that while the 127 

ultrafiltration method yielded higher concentrations of the fecal-strength indicator PMMoV, the 128 

magnetic-bead method appeared to be more sensitive for SARS-CoV-2, as indicated by detection 129 

of the N1 and N2 regions of the SARS-CoV-2 nucleocapsid gene (Figure S2; Table S1). Further 130 

details on the concentration and extraction protocols are available in SI Materials and methods. 131 

Raw data from the methods comparison is available in SI Methods comparison. 132 

 133 
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RT-qPCR 134 

Sample extracts were analyzed by one-step RT-qPCR for four targets: N1 and N2 targeting 135 

regions of the nucleocapsid (N) gene of SARS-CoV-2, φ6 bacteriophage, and pepper mild mottle 136 

virus (PMMoV; used for normalization of SARS-CoV-2 results). Per Bivins et al. (2021) [6], the 137 

Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) 138 

checklist for this study is included as SI MIQE, and additional information on the RT-qPCR assay 139 

designs is available in Tables S1–S3. Triplicate wells were run for each target of each sample. 140 

Each run included a positive plasmid control and a no-template control, both run in duplicate. Six-141 

point master standard curves for each target (Table S4) were constructed using serial dilutions of 142 

plasmid containing the targets at known concentrations, with each dilution assayed in triplicate or 143 

quadruplicate. 144 

 145 

Multiple imputation of non-detects 146 

We developed and applied an expectation maximization-Markov chain Monte Carlo (EM-147 

MCMC) model for multiple imputation of “missing” qPCR data: i.e., N1/N2 non-detects. Our 148 

multiple-imputation method for handling non-detects was inspired by the EM algorithm presented 149 

in McCall et al. (2014) [8]. Separately for each target (i.e., N1 and N2), we began by grouping 150 

results by sampling zone.1 Within each zone we modeled the Ct values (𝑋!,#) for each technical 151 

replicate (index 𝑖) and sampling date (index 𝑡) as independent and identically distributed. The 152 

values are modeled with a normal distribution characterized by a common variance 𝜎$% and 153 

common prior on the mean parameters 𝜃!,#. The normal distribution is truncated such that it is 154 

positive.  155 

 
1 The method can accommodate other types of groupings—e.g., by sampling scale. 
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We then used an empirical Bayesian approach to learn the prior for the model parameters. This 156 

approach enables discovery of hyperparameters shared by all samples from the same zone via the 157 

EM algorithm. The approach hence reduces variability in the inferred mean Ct values by specifying 158 

a common prior for all samples from a given location. Specifically, we modeled the priors for all 159 

𝜃!,# and common 𝜎 as two Gamma distributions with shape and rate parameters 𝛼!&, 𝛽!& and	𝛼!', 160 

𝛽!', respectively. We estimated these hyperparameters2 with the EM algorithm, which alternates 161 

between calculating the posterior distribution for the latent (i.e., model-inferred) parameters given 162 

the current hyperparameters (E step) and updating the hyperparameters using maximum likelihood 163 

based on the posterior expectation. Because closed forms for the posterior distribution do not exist 164 

for this application, we sampled from the posterior using MCMC via Python’s Stan package 165 

(pystan). 166 

The EM-MCMC algorithm can be summarized as: 167 

(1) Initialize the hyperparameters 𝛼!&, 𝛽!&, 𝛼!', 𝛽!'. 168 

(2) Generate 𝑇 (a user-defined choice) Monte Carlo samples of the latent parameters 𝜃!,# and 169 

𝜎 within the group using MCMC with the current hyperparameters. 170 

(3) Compute the maximum likelihood estimates of the hyperparameters given the 𝑇 sampled 171 

latent parameters (solved numerically via the scipy.stats.gamma.fit method). 172 

(4) Repeat steps 2 and 3 until convergence of hyperparameters.  173 

This process was carried out independently for each target and group. The Python script used for 174 

implementation is available at https://tinyurl.com/Safford-et-al-EM-MCMC. 175 

 176 

 
2 A hyperparameter is a parameter used only to influence the learning behavior of a model. Hyperparameter values are not derived from training or 
experimental data. By contrast, parameters are values determined by the model from analyzing input data. 
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Data analysis 177 

For multiple imputation, qPCR results grouped by zone were fed into the EM-MCMC model 178 

initialized with the hyperparameter priors 𝛼!& = 1, 𝛽!& = 1/35, 𝛼!' = 3, 𝛽!' = 1. The model was run 179 

for 20 iterations, generating 104 MCMC samples per iteration of which the first 500 were dropped. 180 

The model was then run again for one iteration (again with 104 MCMC samples and 500 drop 181 

samples) using the hyperparameter estimates. The model output contained estimated posterior 182 

mean N1 and N2 Cts (𝜃̅!() and 𝜃̅!(%) for each sample. the N1 and N2 targets for each location/date 183 

pair. Single imputation was performed for comparison method (i) by substituting 0.05 gene copies 184 

(gc)/reaction for N1 and 0.1 gc/reaction for N2 (i.e., half the N1 and N2 LODs calculated using 185 

99% confidence level) as the target concentrations for any technical replicate yielding a non-detect. 186 

Single imputation was similarly performed for comparison method (ii) by substituting 0.010 187 

gc/reaction and 0.047 gc/reaction (values calculated from the master standard curves using the 188 

assay’s maximum Ct of 45) as the target concentrations. Censoring was performed for comparison 189 

method (iii) by dropping non-detect values from N1 and N2 calculations. 190 

N1, N2, and PMMoV reaction concentrations were converted to gc/L of initial sample based on 191 

effective volumes analyzed. MATLAB® software (version R2021a; MathWorks) was used for 192 

subsequent analysis. N1 and N2 concentrations were averaged into a single concentration (𝐶()(%) 193 

per sample to facilitate data visualization and trend analysis. 𝐶()(% values were normalized using 194 

PMMoV according to the formula 𝐶*+,- = - .!"!#
.$%%&'

. ∗ 10/, where 105 is a scaling factor. 195 

Normalized outliers were winsorized at the [1,95] percentile levels. Finally, relative normalized 196 

values were calculated separately for each non-detect handling method using the formula 197 

𝐶*+,-,,01 =
.(&)*

.(&)*,*,-
, where 𝐶*+,-,-23 is the maximum normalized value of all sewershed 198 

samples. Relative normalized values were used to visualize and compare trends in wastewater data 199 
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processed using different non-detect handling methods. Because virus concentrations detected in 200 

WWTP influent differed substantially from virus concentrations detected in sewershed samples, 201 

these calculations were performed separately on sewershed and WWTP data. Values in between 202 

sampling dates were linearly interpolated to facilitate comparison of wastewater and clinical data, 203 

and the MATLAB “smoothdata” function was applied using a centered 7-day moving average. 204 

 205 

Probabilistic assignment of clinical data to sampling zones 206 

All clinical data collected by HDT’s asymptomatic community-testing program3 since program 207 

inception were provided as an anonymized dataset indicating the date that each test was 208 

administered, the ZIP code and census block corresponding to the testee’s address, and whether 209 

the test was positive. Use of these data was deemed exempt from IRB review by the University of 210 

California, Davis IRB Administration. To compare clinical and wastewater data at the city/WWTP 211 

scale, we selected a subset of these data comprising all clinical-testing results for Davis ZIP codes 212 

(95616, 95617, and 95618). We designed a Python tool (available at https://tinyurl.com/Safford-213 

et-al-Predictive) that combines information on municipal wastewater flows with U.S. Census 214 

Bureau data to probabilistically assign HDT asymptomatic testing results to sewershed sampling 215 

zones via three steps. First, we used the geospatial coordinates of all maintenance holes (MHs) in 216 

the Davis sewer system, along with information indicating the relative positions 217 

(upstream/downstream) of each MH, to build a graph capturing directional connections among all 218 

MHs (Figure 2A). Second, we used 2019 American Community Survey (ACS) data from the U.S. 219 

Census Bureau (UCSB) to estimate the number of people living in each census block included in 220 

 
3 UC Davis also conducts a testing program open only to UC Davis students and employees. Data from this program were not included in the dataset 
used for this study. 
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the HDT clinical-testing dataset. We assume that each person in each census block produces the 221 

same amount of wastewater (a “unit”) each day, and that each person has an equal probability of 222 

discharging the wastewater unit to each MH located within the block (Figure 2B).  223 

Figure 2. (A) Visualization of the connection graph showing all maintenance holes (MHs) in 224 

the City of Davis sewershed. Orange dots indicate all MHs upstream of a target MH (in red). (B) 225 

Illustration of how the connection graph is used to probabilistically assign positive clinical-test 226 

results from census blocks to sewershed monitoring zones for the purpose of comparing trends in 227 

wastewater data to trends in clinical data. In the illustration, the sewershed monitoring zone 228 

covered by the sampler location at bottom and indicated in blue spans two census blocks. The 229 

census block on the left has a population of six and one positive test result; the census block on 230 

the right has a population of four and no positive test results. Tracking flow through the connection 231 

graph results in a predicted 0.33 infections captured by the sampler.  232 

  233 
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 234 

Finally, we used the connection graph to probabilistically assign positive clinical-testing results 235 

from census blocks to sewershed monitoring zones. We excluded Zones SR-F, SR-G, BN-F, and 236 

BN-G from the probabilistic case assignment due to unreliable population data. Using the UCSB 237 

data, our tool estimated the populations of each of these zones to be less than 100: these estimates 238 

are unreasonably low given our a priori knowledge of the study setting. For Zones SR-F and BN-239 

F, the unreliability could be because of the existence of potentially hard-to-count communities: 240 

several apartment complexes targeted at low-income renters in the former and a mobile-home park 241 

for senior citizens in the latter [12]. For Zones SR-F and BN-G, the unreliability can be attributed 242 

to the fact that the 2010 Decennial Census underlies the 2019 ACS. Zone SR-F comprises a large 243 

residential development that had not yet been built at the time that the 2010 Decennial Census was 244 

conducted. Zone BN-G largely comprises off-campus student housing that was under renovation 245 

at the same time. Population estimates for all other zones are provided in Table S7. 246 

 247 

Results and Discussion 248 

Sample collection and processing 249 

We analyzed 964 wastewater samples collected during the sampling campaign, comprising 77 250 

samples from the COD WWTP, 695 from the sub-regional zones, and 191 from the 251 

building/neighborhood zones. Overall, 204 samples (21%)—collected from September 24, 2020 252 

through March 1, 2021—were processed using ultrafiltration + manual extraction and the 253 

remaining 760 (79%)—collected from February 24, 2021 through June 11, 2021—were processed 254 

using magnetic beads. 255 

 256 

Virus recovery and detection 257 
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Mean φ6 recovery was 1.30±0.28% across all samples, in line with values reported elsewhere 258 

[13]. At least one sample from each monitoring site and a total of 377 samples across all sites 259 

tested positive for SARS-CoV-2 (i.e., N1 or N2 above LOD in at least one technical replicate). 260 

Non-detect replicates were common even among positive samples; only 32 samples were positive 261 

for all N1 and N2 technical replicates. 262 

N1 and N2 non-detect percentages were similar and inversely proportional to sampling scale 263 

(Table S5). This suggests that reliable detection of SARS-CoV-2 may become more challenging 264 

the further upstream in a sewershed that sampling is conducted. Pepper mild mottle virus 265 

(PMMoV) non-detects were never observed, indicating that the high percentages of N1/N2 non-266 

detects can be attributed to frequently low abundance of SARS-CoV-2 in the wastewater samples 267 

rather than a systematic problem with the qPCR protocols used. This is further supported by (1) 268 

inclusion of N1 and N2 positive controls for every qPCR run, and (2) the fact that samples yielding 269 

higher numbers of positive technical replicates also exhibited lower Cts on average for those 270 

replicates (Table S6)—i.e., non-detects were more common when the target was present at lower 271 

concentrations. 272 

Multiple imputation of non-detects 273 

Trace plots of posterior means generated by the EM-MCMC model over time generally showed 274 

good convergence. Trace plots of the MCMC samples exhibited no obvious patterns, indicating 275 

strong mixing of the Markov chains (Figure S3). Table 1 summarizes model output. The top half 276 

of the table shows that the number of positive replicates for a given sample exhibit a weak negative 277 

correlation with average standard deviations of N1 and N2 posterior mean Cts. This indicates that 278 

as the number of positive replicates increases, so too does the model’s confidence in its estimate 279 

of the “true” Ct. The bottom half of the table shows that the more positive replicates of a sample 280 
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there are, the closer the average of those replicates is likely to be to the posterior mean Ct. The 281 

model output also shows that sampling scale exhibits a weak positive correlation with (1) standard 282 

deviations and (2) differences between the posterior mean and the average of positive replicates. 283 

This is likely because larger overall numbers of non-detects at higher-granularity sampling zones 284 

yield larger estimates for the per-zone variance. The very large posterior mean Cts for samples 285 

with zero positive replicates indicate that the model predicts that these samples contain essentially 286 

zero SARS-CoV-2 RNA. 287 

Table 1. Summary of imputation model output  288 

Average imputed standard deviation 

Sampling scale 
N1* N2* 

Number of positive replicates Number of positive replicates 
0 1 2 3 0 1 2 3 

Community 7.85 
(0.10) 

3.27 
(0.05) 

2.85 
(0.07) 

2.71 
(0.03) 

7.84 
(0.09) 

3.29 
(0.14) 

2.91 
(0.09) 

2.73 
(0.04) 

Sub-regional 11.22 
(3.89) 

3.90 
(0.81) 

3.28 
(0.57) 

2.92 
(0.36) 

11.30 
(3.85) 

3.79 
(0.66) 

3.27 
(0.53) 

2.83 
(0.33) 

Building/neighborhood 20.15 
(4.15) 

4.69 
(0.90) 

3.42 
(0.57) 

2.94 
(0.28) 

20.01 
(4.48) 

4.25 
(0.64) 

3.69 
(0.62) 

3.20 
(0.50) 

Overall 13.78 
(5.83) 

3.99 
(0.87) 

3.24 
(0.55) 

2.89 
(0.33) 

13.73 
(5.78) 

3.79 
(0.66) 

3.25 
(0.53) 

2.86 
(0.35) 

Average difference in mean Cts 

Sampling scale 
N1* N2* 

Number of positive replicates Number of positive replicates 
0 1 2 3 0 1 2 3 

Community 13.66 
(0.06) 

8.29 
(0.51) 

3.82 
(1.29) 

1.53 
(0.17) 

13.64 
(0.06) 

6.89 
(1.20) 

3.86 
(0.55) 

1.41 
(0.15) 

Sub-regional 20.47 
(7.38) 

8.99 
(1.49) 

4.73 
(1.26) 

1.96 
(1.02) 

20.62 
(7.31) 

7.97 
(1.34) 

4.37 
(0.87) 

1.58 
(0.58) 

Building/neighborhood 37.63 
(7.94) 

10.26 
(1.45) 

4.94 
(0.87) 

1.88 
(0.96) 

37.37 
(8.48) 

8.41 
(1.23) 

4.98 
(0.78) 

1.76 
(0.63) 

Overall 25.37 
(11.18) 

9.16 
(1.52) 

4.65 
(1.26) 

1.89 
(0.93) 

25.27 
(11.07) 

7.90 
(1.36) 

4.34 
(0.85) 

1.57 
(0.55) 

*Upper value indicates average; lower (parenthetical) value indicates standard deviation. 
 289 

Comparison of clinical and wastewater data 290 

Davis is a small community that experienced a relatively low COVID-19 burden during this 291 

study, daily numbers of HDT-reported cases were generally low. Double-digit numbers of 292 
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confirmed cases were reported on only 11 of the 234 days included in this study, and days on 293 

which the number of confirmed cases was zero or one were common. Probabilistically assigned 294 

case levels at the sub-regional and building/neighborhood scales were frequently fractional and 295 

near zero as a result. Figure S4 co-plots the clinical data and normalized SARS-CoV-2 296 

concentrations for each sampling zone. 297 

Correlations between clinical and wastewater data were reasonably good at all sampling scales. 298 

Zones and time periods exhibiting greater activity (i.e., more frequent detections) in clinical data 299 

tended to also exhibit greater activity in wastewater data. We generally observed more data activity 300 

at the community and sub-regional scales than at the building/neighborhood scale, as well as more 301 

activity in bigger zones at a given scale. This finding is logical—average COVID-19 case counts 302 

will be higher in zones covering more people—but important because it indicates that the 303 

predictive probability model is reasonably successful at assigning positive cases to the appropriate 304 

sampling zones. 305 

In multiple zones (e.g., BN-D, BN-E, SR-C, SR-E, and SR-I), even relatively small and isolated 306 

spikes in clinical data were matched by spikes in wastewater data. As Zulli et al. (2021) observe, 307 

parallel spikes in wastewater virus concentrations and clinical case rates recorded at the 308 

community and regional levels during the winter 2020/2021 COVID-19 surge indicate that 309 

wastewater monitoring can provide accurate information on changes in disease burden [14]. Our 310 

results provide evidence that wastewater monitoring is similarly valuable at the sub-regional and 311 

building/neighborhood levels. 312 

Separately, wastewater data from most zones sampled in this study were characterized by major 313 

peaks and valleys—with a high positive result frequently occurring right after a low positive result 314 

and vice versa—rather than smooth trends. This phenomenon can be mostly attributed to low-315 
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frequency sampling during the period of highest disease burden. Based on daily sampling of 316 

wastewater from multiple WWTPs in Wisconsin, Feng et al. (2021) concluded that “a minimum 317 

of two samples collected per week [is] needed to maintain accuracy in trend analysis” [15]. Due 318 

to staffing and lab-capacity constraints, however, wastewater samples for this study were only 319 

collected on a weekly basis from November through late January. Trend smoothness generally 320 

improved when sampling frequency was increased in late winter / early spring. Data from zone 321 

SR-L provide a particularly good example of how increased sampling frequency made it easier to 322 

trace trends. 323 

 324 

Even after sampling frequency increased, we occasionally observed isolated high-positive 325 

results that did not appear part of broader trends (e.g., for zone SR-H in late March and zone SR-326 

F in late April). These isolated positives could be due to aberrations (such as an infected group of 327 

individuals temporarily visiting a zone or coincidental passage of a large amount of virus-rich fecal 328 

matter near an autosampler actively drawing up volume) rather than sustained community spread. 329 

This possibility cautions against basing public-health interventions on individual data points. 330 

Occasional mismatches between wastewater and clinical data trends (e.g., the spike observed for 331 

clinical—but not wastewater—data in early April for Zone SR-B) have multiple possible 332 

explanations. One is that while the predictive probability model performs reasonably well, it is still 333 

at best an approximation of the number of clinically confirmed cases in each wastewater sampling 334 

zone. Furthermore, generally low COVID-19 levels in Davis yielded sparse and/or weak positive 335 

signals in the clinical data, which in turn made it difficult to perceive trends at more granular spatial 336 

levels. A more precise comparison of wastewater and clinical data would require disclosing the 337 

addresses of individuals testing positive—an unacceptable privacy violation. 338 
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A second explanation is that the HDT dataset used in this study is incomplete. The dataset does 339 

not include results from other COVID-19 testing opportunities available to Davis residents (e.g., 340 

tests conducted in medical settings or through county-run testing programs). The HDT dataset also 341 

does not include results from the parallel on-campus testing program for UC Davis students and 342 

employees even though these individuals frequently reside off campus. This explanation could 343 

account for the February spike in wastewater—but not clinical—data observed for Zone BN-D, 344 

since Zone BN-D includes an apartment complex targeted at students. 345 

A final explanation is that neither WBE nor clinical testing reliably capture the “true” level of 346 

COVID-19 infections in a sampling zone. WBE results can be affected by many factors, including 347 

variability in SARS-CoV-2 excretion rates [16], wastewater composition and temperature, average 348 

in-sewer travel time, per-capita water use [17], autosampler settings [18], and movement of people 349 

in and out of sampling zones. Clinical-testing results can be further biased by various types of self-350 

selection [19,20]. Though it is impossible to precisely determine the relative contributions of these 351 

factors and biases, context can suggest which are likely to have the greatest influence in a given 352 

instance. For example, an unexplained spike in wastewater—but not clinical—data for a zone 353 

housing disproportionate numbers of individuals with characteristics that could cause lower 354 

propensity to test (e.g., limited access to transportation; low English proficiency) could be a sign 355 

of the presence of infected individuals detected through WBE but not clinical testing. 356 

 357 

Comparison of non-detect handling methods 358 

We compared our multiple-imputation method with three other, commonly used methods for 359 

handling non-detects in wastewater qPCR data: 360 

(1) [LOD0.5]. Single imputation with half the detection limit. 361 
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(2) [Ctmax]. Single imputation with the maximum qPCR cycle number. 362 

(3) [Ctavg]. Censoring non-detects entirely (and setting average concentrations of samples 363 

with no positive replicates to zero). 364 

Figure S5 co-plots the clinical data and relative normalized SARS-CoV-2 concentrations 365 

calculated using each method for each sampling zone; Figure 3 provides a representative subset of 366 

these plots. 367 

The plots show that trends in normalized virus concentration can be substantially influenced by 368 

the way in which non-detects are handled. For instance, peak relative normalized virus 369 

concentrations in the WWTP data are much higher when calculated using multiple imputation than 370 

when calculated using any of the comparison methods. Conversely, relative normalized virus 371 

concentrations in samples collected at zones SR-B, SR-C, and SR-D from mid-February through 372 

mid-March are much lower when calculated using multiple imputation. These zones are all 373 

geographically proximate and of roughly equivalent size, indicating that zones with similar 374 

characteristics may be similarly susceptible to bias in non-detect handling method. 375 

  376 
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Figure 3. Wastewater vs. clinical data in Davis, showing effects of different methods of handling 377 

non-detects. Symbols represent individual sample results; lines represent trends (as centered 7-day 378 

moving averages). Representative suite of plots; see Figure S6 for plots from all zones. 379 

We applied Spearman’s rank-order correlation to quantitatively assess how well trends captured 380 

by multiple imputation and the three comparison methods match clinical-data trends. Results are 381 

summarized in Table 2. While the Spearman correlation analysis provides a framework for 382 

interpreting the data, it suffers from several limitations. These include factors discussed above, 383 

including the low COVID-19 burden in Davis, imprecision associated with the predictive 384 

probability model, and external factors that can inherently confound wastewater analysis. It is also 385 
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hard to definitively “match” trends in clinical and wastewater data. For instance, trends in clinical 386 

data collected from symptomatic individuals been observed to lag trends in wastewater data 387 

[21,22]. But it is unknown whether and to what extent this lag may apply when clinical data derives 388 

from a large-scale asymptomatic testing program like HDT. 389 

With these caveats in mind, important takeaways from the correlation analysis are as follows. 390 

First, because the LOD0.5 and Ctmax methods involve a similar approach, their correlation 391 

coefficients track more closely with each other than with the Ctavg or multiple imputation 392 

coefficients. 393 

Table 2. Spearman’s rank-order correlation coefficients between clinical cases and normalized 

virus concentration, by zone and non-detect handling method. Bolded rows indicate zones where 

wastewater surveillance began prior to the winter COVID-19 surge. As described in the text, Zones 

SR-F, SR-G, BN-F, and BN-G were excluded from the clinical/wastewater data comparison. 

Scale Zone 
Non-detect handling method 

LOD0.5 Ctmax Ctmean Multiple 
imputation 

Community WWTP 0.4740*** 0.5049*** 0.4337*** 0.5457*** 
(0.000) (0.000) (0.000) (0.000) 

Sub-regional 

SR-A -0.2778*** -0.2932*** -0.2143*** 0.0199 
(0.001) (0.000) (0.009) (0.810) 

SR-B -0.4728*** -0.4951*** -0.5779*** -0.5986*** 
(0.001) (0.000) (0.000) (0.000) 

SR-C -0.1035 -0.1077 0.1675 0.4793*** 
(0.474) (0.457) (0.245) (0.000) 

SR-D -0.4374*** -0.4053*** -0.4970*** -0.0937 
(0.001) (0.003) (0.000) (0.509) 

SR-E -0.5253*** -0.5332*** -0.4904*** -0.6165*** 
(0.000) (0.000) (0.000) (0.000) 

SR-H -0.0832 -0.0979 -0.1966 -0.3691*** 
(0.531) (0.461) (0.136) (0.004) 

SR-I 0.2291 0.1708 0.2418* 0.0280 
(0.102) (0.226) (0.084) (0.844) 

SR-J 0.2763*** 0.2865*** 0.4763*** 0.4067*** 
(0.001) (0.000) (0.000) (0.000) 

SR-K 0.3330*** 0.2923*** 0.5866*** 0.3694*** 
(0.000) (0.000) (0.000) (0.000) 

SR-L 0.4117*** 0.3809*** 0.4413*** 0.3782*** 
(0.000) (0.000) (0.000) (0.000) 

SR-M 0.6198*** 0.6194*** 0.4881*** 0.5927*** 
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(0.000) (0.000) (0.000) (0.000) 
SR-N 0.5450*** 0.5769*** 0.7597*** 0.7220*** 

(0.000) (0.000) (0.000) (0.000) 
SR-O -0.5702*** -0.5768*** -0.6666*** -0.3343** 

(0.000) (0.000) (0.000) (0.025) 
SR-P 0.1998** 0.2075** 0.6747*** 0.3970*** 

(0.037) (0.030) (0.000) (0.000) 

Building/ 
neighborhood 

BN-A 0.1174 0.0860 0.1612 -0.0871 
(0.348) (0.492) (0.195) (0.487) 

BN-B -0.2520 -0.2956* -0.6876*** -0.6087*** 
(0.157) (0.095) (0.000) (0.000) 

BN-C 0.6666*** 0.6699*** 0.8203*** 0.8216*** 
(0.000) (0.000) (0.000) (0.000) 

BN-D 0.4889*** 0.5033*** 0.4847*** 0.5270*** 
(0.000) (0.000) (0.000) (0.000) 

BN-E 0.7741*** 0.7881*** 0.1969 0.3883*** 
(0.000) (0.000) (0.195) (0.000) 

p-values are in parentheses: *** p<0.01, ** p<0.05, * p<0.1 
 394 

Second, much higher correlation coefficients were generally observed for the 11 zones where 395 

wastewater surveillance began prior to the winter COVID-19 surge. This can be explained by 396 

greater activity in the wastewater and clinical data during the winter surge, as well as by the fact 397 

that sampling zones added later in the campaign were generally smaller—and hence less active—398 

than zones added earlier. Time periods and zones with more data activity provide more positive 399 

data points on which to perform meaningful rank-order comparisons. The larger datasets available 400 

for zones where sampling began early also strengthen the robustness of data comparisons (as 401 

indicated by the universally low p-values of correlation coefficients for these zones). Correlation 402 

coefficients calculated for time periods and zones with less activity and where sampling began 403 

later can be easily skewed by a small number of disparate results between the wastewater and 404 

clinical data. 405 

Third, the correlation analysis revealed no clear “winner” among the four non-detect handling 406 

methods. For the 11 zones where sampling began early, correlation coefficients tended to be 407 

weaker for the LOD0.5 and Ctmax methods. The Ctavg method performed the best on average across 408 

these zones, but also performed the worst (with multiple imputation performing best) for the 409 
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WWTP data—the one zone where imprecision associated with probabilistic assignment of 410 

confirmed positives was not a factor, and hence where correlation between the wastewater and 411 

clinical data is arguably most meaningful. 412 

 413 

Implications for multiscale deployment of wastewater surveillance 414 

This study demonstrates that wastewater surveillance can provide a useful complement to 415 

clinical testing at multiple levels of spatial granularity. Visual and quantitative comparison of data 416 

from HDT’s universal asymptomatic clinical-testing program with data from the initiative’s 417 

intensive wastewater-surveillance campaign revealed meaningful correlations at the community, 418 

sub-regional, and building/neighborhood scales. The predictive probability model we developed 419 

for disaggregating deidentified HDT case data by wastewater-sampling zone provides a framework 420 

that can be easily extended to support sub-community comparison of clinical and wastewater data 421 

in other settings.  422 

This study also demonstrates that qPCR non-detects are an important but often overlooked 423 

determinant of apparent trends in wastewater data. Our results indicate that single imputation with 424 

a value equivalent to half the assay limit of detection, the maximum qPCR cycle number, or similar 425 

generally weakens correlation between wastewater and clinical data. Simply censoring non-detects 426 

seemed to be a better approach. We did not find clear evidence that multiple imputation of non-427 

detects delivers consistently better correlations between wastewater and clinical data than 428 

censoring does. However, the fact that multiple imputation yielded the strongest correlation for the 429 

WWTP data suggests, as discussed above, that this approach merits further investigation. With 430 

adjustments to the algorithm, tuning parameters, and variable groupings used herein, multiple 431 
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imputation could support more reliable analysis of trends in wastewater data—and hence position 432 

wastewater surveillance as an even stronger weapon in the fight against pandemic spread. 433 

We acknowledge two limitations of our work. First, some comparisons presented herein are 434 

incomplete because sampling zones were added over time. Only two of the seven sampling zones 435 

at the building/neighborhood scale, for instance, were active during the winter pandemic surge. 436 

Though this means that our results do not provide deep insight into the value of spatially granular 437 

wastewater surveillance during periods of peak disease spread, we note that wastewater 438 

surveillance tends to be more valuable outside of such periods—e.g., as an early-warning system 439 

when background case levels are low. Second, we did not rigorously test the effect of different 440 

data groupings when running the multiple-imputation model. Though grouping data by sampling 441 

zone is a logical choice, it is possible that alternate groupings (e.g., grouping by sampling scale, 442 

grouping temporally, pooling results from adjacent sites, etc.), coupled with appropriate tuning of 443 

model parameters, could significantly alter and perhaps improve results. Indeed, further refinement 444 

and optimization of our multiple-imputation model is needed to unlock the full potential of this 445 

promising approach to handling qPCR non-detects in wastewater data. 446 

  447 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 29, 2022. ; https://doi.org/10.1101/2022.01.28.22269911doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.28.22269911
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

Supporting Information.  448 

The following files are available free of charge. 449 

• Additional materials and methods, including information on qPCR assay, and methods 450 

comparison, and sampling zone populations (SI Materials and methods, figures, 451 

tables.pdf) 452 

• Raw data and metadata from sample collection and analysis (SI Sample data and 453 

metadata.xlsx) 454 

• Probabilistic assignments of clinical-testing results (SI Clinical model output.xlsx) 455 

• Raw data from methods comparison (SI Methods comparison.xlsx) 456 

• MIQE checklist (SI MIQE.xls) 457 
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