Web-based supporting materials for "Bayesian"

- **Estimation of real-time Epidemic Growth Rates using**
- ⁵ Gaussian Processes: local dynamics of SARS-CoV-2
- in England"

2

7

by Laura M Guzmán-Rincón^{1,2} | Edward M Hill^{1,2} | Louise Dyson^{1,2} | Michael J Tildesley^{1,2} | Matt J Keeling^{1,2}

¹The Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom

2 Joint UNIversities Pandemic and Epidemiological Research, https://maths.org/juniper/

S | SUPPLEMENTARY MATERIAL

S.1 | Directed acyclic graph of the models

We display directed acyclic graph corresponding to the positives model described in Section 2.1.1 (Figure [1\)](#page-1-0) and the proportions 11 model described in Section 2.1.2 of the main document (Figure [2\)](#page-1-1), respectively.

12 S.2 | Growth rate comparison

13 Let w, n and z be continuous functions on ℝ ∪ {0}, such that at a given time $t \in \{0, 1, \ldots\}$, w(t) denotes the number of tests, and $z(t)$ denotes the number of positive tests. Note that although w, n and new cases, $n(t)$ denotes the number of tests, and $z(t)$ denotes the number of positive tests. Note that although w, n and ¹⁵ z are continuous functions, their values have an interpretable meaning only on discrete times (for instance, daily counts). ¹⁶ Our goal is to estimate the growth rate $r(t)$, defined as the *per capita* change in the number of new cases per time; that is, $r(t) = \partial_t (w(t))/w(t)$.

¹⁸ In the positives model, we approximate $r(t)$ as the growth rate of observed positive tests $z(t)$, denoted $r_z(t)$ = $\partial_t (z(t))/z(t)$. We describe $z(t)$ in terms of a latent function $x(t)$ such that $z(t) = \exp(x(t))$, which simplifies the 20 growth rate as $r(t) \approx r_z(t) = \partial_t(x(t))$.

21 In the proportions model, we describe the proportion of positive tests $z(t)/n(t)$ in terms of a latent function $x(t)$ such that $z = z(t)/n(t) = \text{logit}^{-1}(x(t))$. The derivative of x_t is not directly related to $r_z(t)$ as in the positives model; however, we show 23 below it is related to $r_2(t)$ and $r_n(t)$, where $r_n(t) = \partial_t(n(t))/n(t)$ is the growth rate of number of tests performed. First, we

FIGURE 1 Directed Acyclic Graph describing the hierarchical conditional independence structure of the positives model, described in Section 2.1.1. The parameters η , μ_t , x_t and ϵ_t and the hyperparameters l , σ , τ_{ϵ} and ϵ_w are enclosed in circles. Inputs of the model are enclosed in squares.

FIGURE 2 Directed Acyclic Graph describing the hierarchical conditional independence structure of the proportions model, described in Section 2.1.2. The parameters ρ , μ_t , x_t , ε_t and w_t and the hyperparameters l , σ , τ_{ε} , ε_t and w_t are enclosed in circles. Inputs of the model are enclosed in squares.

²⁴ compute the derivative of the function $x(t)$:

25

$$
\partial_t(x(t)) = \partial_t \left[\log \left\{ \frac{z(t)}{n(t) - z(t)} \right\} \right]
$$

$$
= \left(\frac{n(t) - z(t)}{z(t)} \right) \left(\frac{n(t) \partial_t (z(t)) - z(t) \partial_t (n(t))}{(n(t) - z(t))^2} \right)
$$

$$
\begin{array}{c} 26 \\ 27 \\ 28 \end{array}
$$

$$
= \{r_{z}(t) - r_{n}(t)\} [1 + \exp\{x(t)\}].
$$

29 Then, we approximate $r(t)$ as the growth rate of positive tests minus the growth rate of number of tests: $r(t) \approx r_z(t) - r_n(t) =$

30 $\partial_t (x_t) / [1 + \exp\{x(t)\}].$