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Abstract 
The use of RNA sequencing from wastewater samples is proven to be a valuable way for 
estimating infection dynamics and circulating lineages of SARS-CoV-2. This approach has the 
advantage of being independent from patient population testing and symptomatic disease 
courses. However, it is equally important to develop easily accessible and scalable tools which 
can highlight critical changes in infection rates and dynamics over time across different locations 
given sequencing data from wastewater. Here we provide an analysis of variant dynamics in 
Germany using wastewater sequencing and present PiGx SARS-CoV-2, a highly reproducible 
end-to-end pipeline with comprehensive reports. This complete pipeline includes all steps from 
raw-data to shareable reports, additional taxonomic analysis, deconvolution and geospatial time 
series analysis. Using our pipeline on a dataset of wastewater samples from different locations 
across Berlin from February 2021 to June 2021, we could reconstruct the dynamic of the Variant 
of Concern (VoC) B.1.1.7 (alpha). Additionally, we detected the unique signature mutation 
M:T26767C for the VoC delta B.1.617.2 (delta) and its rise in late May. This is around 1 week 
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earlier than the increase of the proportion of detected delta cases with 6% in the first week of 
June and 18% in the second week . We also show that SARS-CoV-2 mutation load measured 
from wastewater sequencing is correlated with actual case numbers and it has potential to be 
used in a predictive manner. All in all, our study provides additional evidence that systematic 
wastewater analysis using sequencing and computational methods can be used for modeling 
the infection dynamics of SARS-CoV-2. In addition, the results show that our tool can be used to 
identify new mutations and to detect any emerging new lineages of concern. Our approach can 
support efforts for establishing continuous monitoring and early-warning projects for detecting 
SARS-CoV-2 or any other detectable pathogen.  
 

Introduction 
 
The ongoing COVID-19 pandemic highlighted the need for better monitoring systems for 
emerging pathogens and pathogenic variants in order to quickly respond to changing epidemic 
dynamics. Acknowledging the importance and potential impact of wastewater-borne 
epidemiological analysis, the European Commission has recently recommended to 
implement continuous monitoring on SARS-CoV-2 through wastewater in all member states 
[1]. SARS-CoV-2 is a positive strand RNA virus from the family Coronaviridae, genus 
Betacoronavirus [2, 3] and several studies showed that it can be shed in feces, urine, and saliva 
[4–6], raising concerns about possible environment-based transmission [7] but also opening up 
the possibility of Wastewater Based Epidemiology (WBE) vigilance.  An alternative to individual 
patient tests that are expensive and have privacy consent issues, WBE has been used, on a 
small scale, for different enteric microorganisms such as vaccine and wildtype polioviruses [8], 
rotaviruses, hepatitis A, astroviruses, adenoviruses, and noroviruses [9]. In the COVID-19 
pandemic, wastewater monitoring has been shown to be an effective tool for monitoring 
incidence rates.  Multiple  studies showed that it is possible to detect viral RNA even before 
widespread clinical reports [10–13], suggesting a potential as a monitoring and early alert 
system.  
Several WBE initiatives for SARS-CoV-2 monitoring were established worldwide, and currently, 
the COVIDpoops19 initiative [14] lists 88 dashboards from 263 universities monitoring 2302 
sites. However, most studies are based on RT-qPCR analyses, limited to quantifying the  viral 
titer and/or tracking a few known variants, correlating the results with the reported number of 
cases in the area. A few studies have been using amplicon sequencing or metagenomics 
covering the whole viral genome, allowing to track the change of proportions on signature 
mutations [15–17]. However, quantifying Variants of Concern (VoC) by NGS reads remains 
challenging, because phasing is difficult with the fragmented sequences generated. Moreover, 
sequencing and quantifying variants are just the first steps in understanding the dynamics of the 
outbreaks. The sequencing results should be easily analyzed and combined with geospatial 
time series analysis. Tracking of VoCs over time and space, can inform policy-making decisions 
in order to control new outbreaks.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 24, 2022. ; https://doi.org/10.1101/2021.11.30.21266952doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.30.21266952
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
3 

 

Overall, we aimed to build computational and methodological capacity to monitor emerging 
SARS-CoV-2 lineages and mutations via wastewater sequencing. For monitoring purposes, we 
sampled wastewater treatment plants from February 19th to June 10th, 2021.  We used the 
ARTIC protocol [18] for Illumina  amplicon sequencing covering the whole SARS-CoV-2 
genome to sequence the samples.  Finally, we developed a reproducible, open-source pipeline 
for analyzing continuous sampling of wastewater treatment plants to track signature mutations 
and Variants of Concern.  

Results 

A reproducible computational pipeline for tracking SARS-CoV-2 in 
wastewater  
We developed a new pipeline - PiGx SARS-CoV-2 - in the framework of our previously 
published set of pipelines called PiGx [19]. They are designed with a special focus on usability 
and reproducibility. The new pipeline was added to the PiGx collection of pipelines and it is 
distributed together, using GNU Guix (See Figure 1 for a diagram of the workflow). The pipeline 
comes with all the needed tools and their dependencies and can thus be reproduced on 
different systems independent of any other installed software. 
 

General description of the PiGx SARS-CoV-2 pipeline 

The PiGx SARS-CoV-2 pipeline provides end-to-end data processing and analysis for 
wastewater RNA sequencing. The pipeline takes the input of targeted sequencing of SARS-
CoV-2 RNA with geo-tagged samples. The pipeline takes a set of raw fastq read files, additional 
processing information for the reads and information about the lineages that should be tracked. 
After quality check  and alignment, the variants are called and annotated. The samples from 
different timepoints are used to produce time-series reports that track trending mutations over 
time. We use a particular  deconvolution step to also track the proportions of lineages 
representing Variants of Concern over time. Overall, the pipeline returns a set of reports that 
provide overviews over lineage and single-mutation abundance in each sample, a taxonomic 
classification analysis of unaligned reads, and detailed quality control information. Furthermore, 
all per-sample results are summarized as tables and also combined to visualize time-series and 
geo-location plots, making the pipeline suitable for continuous sampling.  
 
The pipeline needs local databases (downloaded by the user) for some of the annotation and 
alignment tools, such as Ensembl VEP, Kraken2, and Krona tools, while the tools themselves 
are automatically installed. Furthermore, the user needs to provide:  (i) a sample sheet (CSV 
format) containing information about sampling date and location; (ii) a settings file (YAML 
format) for specifying the experimental setup and optional custom parameter adjustments, (iii) a 
mutation sheet containing the lineages of interest and their signature mutations in nucleotide 
notation and and BED file containing their genomic coordinates; (iv) the reference genome of 
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the target species (see Methods for a detailed description); (v) BED file containing the PCR
primer locations (provided with the pipeline for ARTIC protocol). 
 
To ensure reliable variant calling and robust lineage abundance prediction, the sample has to
match stringent quality control measures. For this, information about the sequencing primers,
adapters, and also a BED file containing the sites of the signature mutations is necessary.
Specifically the latter is important to ensure comparability of the called variants across all
processed samples.   
 
Given these input files, the pipeline executes a series of quality check, alignment, variant
calling, deconvolution and mutation trend analysis steps. In the end, it provides interactive
reports with quality check, geospatial and time-series information for mutations and lineages, as
well as downloadable files for the downstream analysis.  

Figure 1: Flowchart of PiGx SARS-CoV-2 pipeline describing required input files, the 
analysis workflow and used tools and output files.  
 
 

Berlin wastewater SARS-CoV-2 sequencing and analysis 
 
We sequenced a total of 67,783,582 reads from 38 samples collected at  four different
wastewater treatment plants in Berlin operated by “Berliner Wasserbetriebe'' during a 125 days
interval from 06th of February to 10th of June 2021. We analyzed these RNA sequencing results
using our pipeline.  
The average number of covered signature mutation sites per sample was 81.3 (from a total of
94 tracked signature mutations, see mutations sheet in the Supplementary Table S1). From the
38 samples, 13 samples did not pass the defined quality control threshold (< 90% of the
signature mutation sites covered). The Supplementary Table S2 shows the quality control
results for each sample.  
We were able to align from 22.3% to 99% of the reads to the reference SARS-CoV-2 genome,
and the resulting alignments were used for variant calling. We were able to detect a total of
1,907 mutations (from those, 55 are signature mutations) across all the samples (See methods
for details on alignment and variant calling). The overall frequency of mutations per sample is
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shown on Supplementary Table S3. All counts for the found signature mutations (per sample
and pooled) can be found in Supplementary Table S4. 
 

Relationship between genome coverage from wastewater 
sequencing and case numbers 
In order to obtain comparable results for the lineage and mutation analysis over time, a
minimum reference genome coverage despite varying infection dynamics is needed. To test the
minimal coverage necessary, we compared how much genome coverage we get from our
samples over time with the number of COVID-19 cases in Berlin shown in Figure 2. Different
sampling locations or their characteristics were not taken into consideration. 
 

Figure 2: Covid-19 cases in Berlin rolling 7-day average and proportion of covered
reference genome. Samples with genome coverage below 40% were discarded because
they were technical outliers. R2 was calculated using Pearson correlation. Samples from
four different wastewater treatment plants were pooled by day. 
 
 
Figure 2 B shows that the genome coverage (samples pooled by day) does not correlate (R2 =
0.023) with the infection dynamic. The genome coverage matches our minimal requirement for
the analysis (>=90%) in 56% of the days (see Supplementary Table S5). It is also >=90% (with
few exceptions) for most of the sample time (see Supplementary Figure 1) and consistently
drops below 90% when cases are fewer than ~150 (Supplementary Table S5). From the data, it
is not clear whether the dips in mid-March and mid-April are related to the following decreases
in case numbers or sample quality.  
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Emerging mutations can be teased out from time-series analysis 
The time-series nature of the data can be also used to identify trending mutations for SARS-
CoV-2 in wastewater. By tracking the frequencies of mutations over time we were able to 
highlight any mutation which shows strong increasing trends. We applied a linear regression 
model for each mutation using the date of sampling as the independent variable to identify 
mutations with strong increasing or decreasing trends over time (see methods for details). We 
considered significant mutations where t-test p-value was smaller than 0.05 (Supplementary 
Table S6). Overall, nine mutations were significantly changing over time (Figure 3). 
 
 

 
Figure 3: Mutations that significantly increase over time. The mutations were pooled over 
locations of four different wastewater treatment plants and daytime  and sorted by 
decreasing coefficients from linear models. Statistical significance was evaluated by a t-
test using p <= 0.05 as cutoff. Only samples passing the sample quality scoring (> 90% 
mutation coverage) were used.  
 
Seven of those mutations (denoted here with the resulting protein mutation as translated by 
Ensembl VEP in the following pattern gene:protein-mutation::nt-mutation)  S:A570D::C23271A, 
ORF1ab:P4804-::C14676T, ORF8:Q27*::C27972T, S:D1118H::G24914C, N:D3E::T28282A, 
N:D3H::G28280C, N:D3V::A28281T are mutations characterizing uniquely for the alpha variant. 
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The mutation M:I82T::T26767C is characterized uniquely for delta and  ORF1ab:D1893-
::C5944T is a mutation that is not tracked as a signature mutation for any Variant of Concern. 
However it is reported as a mutation characterizing a subclade of B.1.1.7 .  

Deconvolution of mutation frequencies infers SARS-CoV-2 
lineage frequencies  
We have also developed the capability to deconvolve the frequencies of VoCs from pooled 
sequencing reads. Briefly, the deconvolution method uses signature mutations for each VoC 
and tries to discern the proportions of these variants making up the observed mutation 
frequencies in the pooled (bulk) sequencing reads obtained from the wastewater. In this study, 
we tracked four lineages which are currently classified as VoCs: B.1.1.7 (alpha), B.1.351 (beta), 
P1 (gamma) and B.1.1617.2 (delta). We characterized the lineages with a mutation sheet 
(Supplementary Table S1) containing signature nucleotide mutations from covidCG [20]. We 
took a list of mutations with a sequence consensus threshold of 70%. We included  mutations 
that are unique for each lineage as well as mutations that are shared by two or more lineages. 
However, the pipeline is flexible and can track more variants if the signature mutations are 
provided in nucleotide format. 
 
Next, we applied this deconvolution method (based on the frequencies of the signature 
mutations) to infer the proportions of each lineage on each sample (Supplementary Table S7). 
The lineage frequencies are predicted using a regression model based on the observed 
frequencies of the signature mutations for each lineage. Additionally, during the deconvolution 
process, we weighted the tracked lineages differently based on how many signature mutations 
were found for each of them for a given sample. This step is necessary in order to get more 
precise predictions of lineages with low abundance and for which only few or only shared 
mutations were found (See Methods for details).  
 
Figure 4A shows VoC proportion changes over time for each wastewater treatment plant in 
Berlin. Overall we can see an increase in B.1.1.7 (alpha) that had 29% on February 19th 
(beginning of sampling) and increased to 92% on June 10th (end of sampling) with a peak of 
99% on May 25. Also B.1.351 (beta) increased from zero detection in February to 2% on June 
10 peaking on May 27 with 6.8%. The B.1.617.2 (delta) lineage was barely detected with 3% 
over the sampling time increasing to 4% on June 10. For P1 we can detect a decrease from 8.6 
% on February 19 to zero detection in June. Similarly the proportion of the calculated reference 
strain (labeled as “WT”, see Methods “Signature matrix construction” for details) decreased from 
55% on February 19th to 3% on June 10 with an intermediate peak of 16% on May 12th. 
Unpooled results for single locations are attached as Supplemental material.  
 
In order to see if the predicted results can represent the reality we compared the deconvolution 
results with lineage analysis data published by the Robert Koch-Institute (RKI) for Germany 
(Figure 4B). Hereby, lineage dynamics for Germany are very comparable to the dynamics within 
the city of Berlin only. We can see that our predicted lineage frequencies are very similar to the 
reported frequencies. Only B.1.1.7 shows mostly higher predicted values, but with very similar 
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trends. Most importantly also the lineages with very low abundance and for which only very few
signature mutations where found (data shown in Supplementary Table S4) could be predicted
accurately.  

Figure 4: A) Proportion of tracked lineages over time. The proportions were calculated
with a deconvolution model based on the signature mutation frequencies. “WT” denotes
a set of reference mutations derived from the deconvolution matrix. Sample results were
pooled from four different wastewater treatment plants using weighted mean with read
number as weights. In case of undistinguishable lineages the proportion derived for the
group was distributed equally  for the affected lineages. Only samples passing the
sample quality scoring (>=90% mutation coverage) were considered. B) Comparison of
deconvolution results (dark color) with lineage frequency analysis data from RKI (light
color). Deconvolution results were pooled by weeks using weighted mean using sample
read numbers as weights. Only samples passing the sample quality scoring (>=90%
mutation coverage) were used.  
 

SARS-CoV-2 mutation load in wastewater is correlated with the 
incidence rate 
We hypothesized that more infections would lead to more mutations in the SARS-CoV-2
genome and therefore these two quantities will be correlated even though we calculate the
mutation load from wastewater samples rather than the genetic material obtained from patients.
In order to test that, we calculated mutation load as the number of non-signature mutations
obtained from SARS-CoV-2 wastewater sequencing experiments. We correlated
Berlin/Germany case numbers as a measure of incidence rate and mutation load and  found a
significant association between incidence rate and mutation load obtained from wastewater
(adjusted R2 =  0.35, Pearson’s correlation coefficient = 0.63, t-test p-value = 0.03, see Figure 5
and Supplementary Table S8). We have also performed a cross-correlation analysis between
case numbers and mutation load with different time lags. The highest correlation with different
time lags were not better than the ones without the lag (See Supplementary Figure 1). 
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We also checked if RT-qPCR results behave the same way using the correlation analysis. For
RT-qPCR, we used four pairs of primers for SARS-CoV-2 detection (RT-qPCR) on the
wastewater samples. Due to the very low amount of viral particles present overall, we decided
for a semi-quantitative approach, instead of using the Ct values, calculating the number of
positive detections divided by the number of total reactions carried, grouping all the samples for
each day (See Methods for details). The daily percentage of positive qPCR reactions ranges
from 0 to 62.5% (Supplementary Table S9). We used the same approach as with the mutation
load analysis. We also found positive but no significant correlation with RT-qPCR results and
incidence rates (adjusted R2 = 0.15,  coefficient =0.46, t-test p-value = 0.07, See Figure 5 and
Supplementary Table S8). In addition, we have also repeated the cross-correlation analysis
between incidence rate and RT-qPCR results with different time lags. In this case, lag= -1 week
also had positive correlation with the incidence rate (adjusted R2 = 0.25,  coefficient = 0.5, t-test
p-value = 0.03, See Supplementary Figure 1). 
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Figure 5: A) 7 days average of COVID-19 cases in Berlin, data from Robert Koch-Institute 
(RKI)  (light green, left axis) and proportion of samples positively determined SARS-CoV-
2 RNA by RT-qPCR  (dark violet, right axis)  over Feb - Jun 2021. B) Correlation of  7 days 
average of COVID-19 cases in Berlin and proportion of samples with positively 
determined SARS-CoV-2 RNA by RT-qPCR. C) 7 days average of COVID-19 cases in 
Berlin (RKI)  (light green) and mutation load (number of non-signature mutations 
detected)  (dark violet)  over Feb - Jun 2021. D) Correlation of  7 days average of COVID-
19 cases in Berlin and mutation load (number of non-signature mutations detected). For 
all figures samples from 4 different wastewater treatment plants were used and pooled 
by day. 
 
 
The proportion of samples with SARS-CoV-2 RNA starts to strongly increase to 25% on 
February 25th  from 8% on February 19th. The  number of cases however are only starting to 
increase from ~360 on March 11th to ~548 on March 18th. This is an offset of nearly three 
weeks. The second increase in proportion was from 25% on March 25th to 58% on April 8th. 
And the following case increase was shown from ~547 on April 8th  to ~841 cases on April 15th  
which is an offset of one week. So on average the increase of SARS-CoV-2 RNA in wastewater 
was shown two weeks earlier than the increase in detected COVID-19 cases (Supplementary 
Table S9). 
 

Discussion 
In many countries like Germany, epidemiological monitoring of SARS-CoV-2 is largely 
dependent on PCR-based methods without sequencing which is applied on patient samples. 
These techniques can be used for variant detection only after a concerning new lineage is 
detected and an appropriate assay was developed. In order to discover new  lineages, we need 
to be able to call mutations of the SARS-CoV-2 genome which can be done using sequencing. 
However, sequencing-based techniques are deployed on only a fraction of the patient 
population. Wastewater monitoring emerged as a viable option to track the prevalence of 
COVID-19 and also for the emergence of different lineages [21] at the population level not only 
because it is faster and cheaper than sequencing of samples derived from testing but it can also 
be more representative (without bias through the choice of which samples are going to be 
sequenced). Furthermore it can also be used to track emerging mutations or lineages of SARS-
CoV-2. However, sequencing of SARS-CoV-2 material obtained from wastewater presents data 
analysis challenges as the samples are potentially from numerous patients, and have lower 
quality than material obtained directly from patients. In addition, the analytical workflows should 
be able to deal with samples from multiple locations and time points and combine the 
information in an easily accessible manner.  
 
In order to address these challenges, we have built a reproducible analytics pipeline that takes 
in raw sequencing reads and provides sharable interactive reports with geospatial information, 
and mutation and lineage tracking features over time. In comparison to other commonly used 
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pipelines for variant analysis like V-pipe [22] or the recommended ARTIC bioinformatics pipeline 
[23], PiGx SARS-CoV-2 additional features (discussed below) improved usability, 
reproducibility, and application for environmental samples like wastewater. In addition, the 
geospatial tracking allows to compare and monitor infection dynamics from different locations 
(See example reports in Data access section).  In terms of usability, the novelty with PiGx 
SARS-CoV-2 is that the output reports include result visualization for each sample individually 
and also for the overview and summary of all samples with a choice of visualization methods 
that are straightforward to interpret. Furthermore, all outputs relevant for the assessment for 
lineages, quality control and mutations are produced in human-readable format such as HTML 
reports from which CSV files can be extracted. That makes further data analysis easier by 
providing formatted tables. Last but not least, PiGx SARS-CoV-2 offers state-of-the-art software 
reproducibility thanks to GNU Guix [19].  
 
The pipeline comes with built-in flexible quality control metrics since samples from wastewater 
can have more frequent quality issues. In our analysis, we applied a strict cutoff for genome 
coverage (>=90%) to reduce noise in our predictions. Our pipeline also allows the user to input 
their own reference genome and their own set of signature mutations and lineages. As an 
additional step for QC, we implemented a taxonomic classification of reads that did not align to 
the SARS-CoV-2 reference genome. Since we used a PCR based protocol, we expect some 
degree of nonspecific amplifications, so it is of great help to have an additional control by means 
of the taxonomic classification to assess potential biases [24]. Also since Kraken2 is a k-mer 
classifier, this method can reveal reads that match SARS-CoV-2 but are not aligned by stringent 
alignment tools. This is important to know because it provides insights about potential loss of  
new mutations missed on the alignment. This step allows the user to investigate potential issues 
and, if necessary, to adjust the alignment stringency. In our results, the taxonomy report shows 
a large amount of fragments (~2 million reads across all samples) is mapped to SARS-CoV-2 
(Supplement Table S10) and we will investigate this further. 
 
One of the primary features of our approach is built-in tracking of emerging mutations. This 
feature allowed early prediction of lineages such as B.1.617.2 from a single signature mutation 
M:I82T::T26767C (Figure 3) in our dataset. We were able to detect the lineage before it was 
detected in the population (Figure 4 B). This specific mutation was described to be associated 
with critically increased viral fitness [25]. This analysis and results are also visualized without 
the need for any additional steps directly in the summarizing report. We showed that our 
pipeline and its reports can be a valuable tool for early warning predictions and to guide 
targeted further analysis. 
 
Another key feature of our approach is the deconvolution method that helps us identify the 
proportion of lineages present in a pooled sample such as wastewater samples. By making use 
of a weighted regression method we were able to provide accurate estimates of lineage 
proportions for our samples over time. For the four VoCs that we tracked with signature 
mutations, we showed in Figure 4 that our model can accurately predict the composition of 
lineages when comparing with the number of cases reported during the same time frame, even 
with very low frequencies. It is important to note that the mutations commonly used for tracking 
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B.1.1.7 in other studies, S:N501Y::A23063T and del69/70 [26, 27] were rare or not found, 
respectively. However, mutations S:A570D::C23271A, ORF1ab:P4804-::C14676T, 
ORF8:Q27*::C27972T, S:D1118H::G24914C, N:D3E::T28282A, N:D3H::G28280C, and 
N:D3V::A28281T were found and mostly important for our predictions. The method predicts the 
increase of the VoC B.1.617.2 (delta) in June 2021. Supplement Figure 2 shows that the single 
mutation M:I82T::T26767C—a unique signature mutation of B.1.617.2—can predict the 
following increase in delta-related case numbers two weeks earlier (see Supplementary Table 
11). This increase cannot be seen with similar scale with the results from the deconvolution. 
Possible reasons are that the deconvolution is influenced by PCR bias and inaccuracies 
because only few (at most four) signature mutations for the B.1.617.2 lineage were found in 
June. Conclusively it can be said that there is room for improvement for the model’s accuracy 
on lineages with low abundance, but having the individual mutation detection in place can still 
guide early detection of increasing appearance of potential new lineages of concerning 
mutations.  
  
 
As reported in previous studies in other cities around the globe [28], we showed that also for 
Berlin the quantification from wastewater can reveal increasing but also decreasing infection 
dynamics potentially earlier than it is possible from clinical testing. Although RT-qPCR results 
are not fully quantitative, observing this expected trend was important and paved the way for 
more robust lineage and mutation trend analysis using sequencing.  
 
Interestingly, we have also shown that mutation load calculated from SARS-CoV-2 wastewater 
sequencing is predictive of incidence rates. The fact that mutation load is associated with case 
numbers (incidence rate) is also shown previously on mutation analysis of patient-derived 
SARS-CoV-2 samples [29]. However, to our knowledge this is the first time we are able to show 
the link between mutation load derived from wastewater samples and the incidence rates. In 
addition, in our dataset, mutation load has a slight advantage over RT-qPCR results when we 
compare the variance explained by the two models. We showed that mutation load from 
wastewater SARS-CoV-2 samples is at least as predictive as RT-qPCR for incidence rates. 
However, to make more conclusive statements we need to sample wastewater for a much 
longer duration and compare the results. Regardless of the methods used on wastewater, as 
previously published reports also indicate, wastewater monitoring may provide early warning for 
future case numbers and emerging mutations before these patients hit the healthcare system.  
 
In conclusion, we present a reproducible, comprehensive workflow with a high level of usability 
that has features for tracking mutations and Variants of Concern over time and geographical 
locations. We highlight these points using real-world data from Berlin wastewater sequencing 
samples, and demonstrate the potential to provide more detailed and conclusive insights for 
SARS-CoV-2 wastewater sequencing efforts.  
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Methods 

Experimental methods 

Enrichment of viral particles from raw wastewater and RNA extraction 
Raw wastewater samples were collected from four different wastewater treatment plants across 
Berlin, serving a population of approximately 3.4 mio in total. They were collected as composite 
two hour samples (8-10pm and 10-12pm) at the primary influent collector at the indicated 
wastewater treatment plants. Typical characteristics of Berlin wastewater treatment plant 
influents are 500-1500 mg/L chemical oxygen demand, 200-600 mg/L suspended solids, 40-80 
mg/L ammonium-N, 2-8 mg/L orthophosphate-P, 1500-2000 µS/cm electrical conductivity. 
 
Samples were stored and transported at four degrees, and processed about 12 hours after 
collection. Virus particles were enriched as previously described [30]. About 100ml sample was 
filtered through 2 glass fiber and 0.2 µM PVDF filters (Millipore, cat# AP2007500  and 
S2GVU02RE). Of this filtrate, 60 ml was transferred to a 10 kDa cutoff centricon unit, that was 
previously pre-conditioned with 50 ml ultrapure water and centrifugation with 3000 g for 15 
minutes at 4 °C. After centrifugation of the samples for 30 minutes at 4 °C and again 3000 g, the 
unit was inverted and about 400 µl concentrate was collected by centrifugation for 1000g at 4 °C 
for 3 minutes. The concentrate was mixed with 3 volumes of Trizol LS (ThermoFisher cat# 
10296-010), and the RNA extracted using the Direct-zol RNA miniprep kit (Zymo cat# R2052) 
including the DNase treatment and elution with 50 µl ultrapure water according to the 
manufacturer’s instruction. Absence of PCR inhibitors was confirmed by mixing the sample 1:1 
with total RNA from human cells followed by amplification of a human transcript by RT-qPCR. 
 

Reverse transcription / quantitative polymerase chain reaction (RT-qPCR) 
The extracted RNA was amplified using the LunaScript reverse transcription mix (NEB cat# 
E3010L), with 16 µl RNA and 4 µl reaction master mix according to the manufacturer’s 
instructions, except for a 20 minutes incubation at 55 °C instead of 10 minutes. Afterwards, the 
cDNA was diluted 1:10 with ultrapure water, and 3.75 µl diluted cDNA used per qPCR reaction, 
using a SYBR green master mix (ThermoFisher cat# 43-643-46), and final concentrations of 
250 nM of the primers on Supplementary Table S12. The presence of the proper amplicon was 
verified using a 2.5% TAE agarose gel. 
 

ARTIC-seq of the SARS-CoV-2 genome 
Amplicon sequencing libraries of the SARS-CoV-2 genome were generated using the ARTIC v3 
protocol [18], using 6 µl of the cDNA generated as described above as an input. The primer 
pools were obtained from IDT. Amplicon libraries were sequenced on an Illumina Miseq or 
Novaseq device with 2x250 paired-end sequencing and 20% phiX spike-in. 
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Computational Methods  

General Pipeline description 
In the first step the pipeline takes the raw reads and the additional information about used 
primers and adapters to perform extensive quality control. Primer trimming is done with iVAR 
[31] and fastp [32] is used for adapter trimming and filtering. In order to make the read quality 
process comprehensible, fastQC reports are generated after each step and summarized with 
additional MultiQC reports. The processed reads  are  aligned to the reference genome by BWA 
Mem [33] and various coverage statistics are taken by SAMtools coverage/bedcov [34]. The 
alignment is used further for single nucleotide variant (SNV) calling using LoFreq [35]. For 
predicting the lineage abundances, a deconvolution matrix  is generated by matching the set of 
mutations called by LoFreq against the provided mutation sheet. The SNVs are translated to 
protein mutations by Ensemble VEP [36]. Kraken2 [37] is used to get taxonomic classification of 
the unaligned reads as an additional quality measure and further insight in the samples. A 
deconvolution method is used to calculate the proportion of lineages (more details in the section 
Deconvolution analysis) for each sample. For summarizing and visualizing the deconvolution 
results as a time series, samples with SARS-CoV-2 genome coverage below 90% are 
discarded. For each mutation, linear regression models are used (more details in the section 
Regression analysis for mutations) to detect if any mutation is significantly increasing over time. 
Here discarded samples were also not included. 
For each sample a set of four reports (multiQC, general qc report, taxonomic classification 
report, lineage report) is generated using R - markdown and knitr. The R-package of plotly  is 
used for generating interactive visualizations. The relevant results across all provided samples 
are summarized by an extra report that provides insightful visualizations and accessible 
navigation linking to all the single reports. In this way the pipeline output provides both - an 
easily accessible overview about lineage and mutation dynamics in a communicable format but 
also enables extensive data exploration and access to sample wise tables and summaries 
without the need for running extra scripts. PiGx SARS-CoV-2 uses snakemake [38] for 
automatic workflow management. 
 

Pipeline accessibility  
The pipeline can be installed over GNU Guix and runs with the command [ pigx-sars-cov2-ww -s 
{sample_sheet} {settings_file} ]. A cloud version that does not require any installation is also 
already under development. Alternatively, the pipeline will be available through Docker 
packages. However, to ensure reproducibility using GNU Guix is recommended [39]. 

Deconvolution analysis 
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Model description: With m being a system of linear equations build by using B being a signature 
matrix constructed from the signature mutations provided as input and f being the proportions 
for the lineages the deconvolution approach can be represented as m = f x B. Similar to what 
has been shown before for deconvolution of cell types from gene expression profiles or  
methylation profiles [40], we follow  the assumption that the frequency of signature mutations 
corresponds with the frequency of the actual lineage which is characterized by it. The difference 
in our approach is that we use sequence mutations and apply weights to the signature matrix in 
order to get more realistic prediction results.  
 
Signature matrix construction: The signature matrix is obtained by matching the set of mutations 
found in the sample against  the set of signature mutations provided as input. In case the 
mutation sheet contains mutations that are shared between lineages, it is possible that multiple 
lineages can not be distinguished from each other. In this case, the signature matrix will be 
deduplicated leaving only one column of the duplicated lineages which will be renamed with the 
grouped names of all lineages showing this duplicated signature mutation “pattern”.  
To make the matrix more robust additional “reference mutations” are added as well as a 
reference column denoted as “WT”. Bulk frequencies for the “reference mutations” are the 
difference between 1 and the value of the related signature mutation. 
We propose the assumption that the more signature mutations can be found for a specific 
lineage the higher the probability that this lineage is present with a higher proportion within the 
sample. We therefore weigh the signature matrix (without the reference mutations) for each 
lineage with the proportion of signature mutations that has been found for each specific lineage 
from the total number of signature mutations that was given to characterize it. Applying weights 
results into less variation and more accurate predictions.  
 
 
Regression: To deconvolute the lineage abundance we performed robust regression analysis on 
the signature matrix and the bulk frequency values of the signature mutations using the “Robust 
Fitting of Linear Models” - rlm() function from the R library MASS  [41] ( default settings, maxit = 
100). Similar to the deconvolution method CIBERSORT [40], we set negative coefficients to 0 
and normalized all coefficients to add up to 1 which then form the output value providing the 
predicted lineage frequency values for the provided lineages and an additional “WT” (reference 
strain) estimation.  
PCR bias as well as the number of signature mutations found influences the robustness of the 
results. We therefore added the additional constraint to only perform the deconvolution analysis 
on samples matching a minimum quality score.  
 
Dealing with indistinguishable variants: After deconvolution grouped indistinguishable lineages 
have to be split again. There are three possible outcomes for those groups: 
Firstly, when no signature mutations for a lineage could be found the group includes the “WT” 
column and is in fact “WT” only. So the grouped lineages are getting the proportion value 0, 
“WT” get’s the deconvoluted value. Secondly, the grouped lineages are deconvoluted to 0. In 
this case both lineages are assigned with the value 0. Thirdly, the grouped lineages are not 
equal to “WT” and are getting a deconvolution value above 0. In this case the assumption for 
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normal distribution of the lineage abundances is applied and the deconvolution value is divided 
by the number of grouped lineages. Each lineage is assigned this adjusted value.  
 
 

Regression analysis for mutations 
For the regression analysis on mutation frequencies we applied a linear regression model using 
the “Fitting Linear Models” - lm - function of R base . The test was only performed on mutations 
if N(x>0) > 5 being the number of frequency values x that are above 0 across all samples. To 
get only increasing trends, the coefficient values were filtered for values x > 0  only. P-values 
were calculated by the lm-function using t-test and were filtered for p < 0.05. We report the 
mutation trend analysis together with and sorted by the regression coefficient as a comparable 
value for unstandardized effect size.  
 

Pooling of samples for time series analysis and plots 
For summarizing across daytime and location, the lineage frequencies are pooled by calculating 
the weighted average using the total number of reads of each sample as weights. The mutation 
frequencies are pooled by using the simple mean setting removal of missing values to FALSE. 
Figures and deconvolution plots are done with ggplot2 [42] . For the cross-correlation analysis 
samples were pooled by week and the pooled unique set of non-signature mutations was 
counted.  
All details and code can be found on the pipelines repository: 
https://github.com/BIMSBbioinfo/pigx_sarscov2_ww 
 

Sample scoring for quality check 
With the provided BED file for the signature mutations listed in the mutation sheet a coverage 
analysis is performed using BEDtools coverage [43] within the pipeline. For the regression 
analysis and time series plots only samples are taken in concern that cover more than 90% of 
all provided signature mutation sites.  
 

Correlation of mutation load analysis to case numbers 
We checked if the number of non-signature mutations (here referred to mutation load) correlates 
with the number of cases in Berlin. For that, we performed  a cross correlation analysis using 
the “CrossCorrelation Function” - ccf() from R “tseries” package (see Supplementary Figure 1) 
up to h = ± 7. Later we performed a time series intersection to calculate values for cases and 
mutations or qPCR for lag = -1. We did a standard linear regression on the intersection results 
using pearson correlation to get R². 
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Reproducible environment  
The presented results were produced using PiGx SARS-CoV-2 version 0.03 commit 
2603b275106a2a96a422dcfba61554f4d9c0d780. The manifest and guix-version file to create a 
reproducible environment are provided as supplemental material.   
 

Data access 
The data will be deposited to the European Nucleotide Archive (ENA). The interactive report 
that was used and produced for this pipeline can be found here: https://bimsbstatic.mdc-
berlin.de/akalin/AAkalin_pathogenomics/sarscov2_ww_reports/211104_pub_version/index.html  
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