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ABSTRACT  

Telomeres, the repetitive DNA elements at chromosome ends, are pivotal for maintenance of 

genome integrity. Previous studies from our group and others have highlighted the translational 

potential of tissue-based telomere length measurements to address the clinical challenge of 

improving diagnosis, individualized risk stratification, and accurate prognostication of different 

diseases. Here, we describe a high-throughput method that quantitates cell type-specific 

telomere lengths at a single cell level in archival tissues from patient cohorts for research on 

prognosis. This approach is based on telomere-specific fluorescence in situ hybridization (FISH) 

combined with multiplex immunostaining for cell type-specific antibodies, followed by semi-

automated slide scanning and multi-channel acquisition of fluorescent images using the 

TissueFAXS Plus microscopy workstation and TissueQuest software (TissueGnostics). Here, 

we demonstrate that this method is sufficiently robust and reproducible to detect biologically 

significant differences in telomere lengths in archived tissues either on whole slides or sampled 

across tissue microarrays, which is essential when assessing prognosis in large patient cohorts. 
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INTRODUCTION 

Telomeres are repetitive DNA (TTAGGG) elements located at the extreme ends of eukaryotic 

chromosomes and bound by the shelterin protein complex. Telomeres function to mask double 

strand break DNA damage signals at chromosomal ends and inhibit terminal exonucleolytic 

degradation, thereby preventing chromosomal fusions (1, 2). Thus, telomeres are critical for 

maintenance of genome integrity. In normal somatic cells, telomeres shorten with each cell 

division and significant telomere shortening leads to p53-dependent senescence or apoptosis 

(3). In contrast, dysfunctional telomeres and the abrogation of cell cycle checkpoints during 

malignant transformation allows genomic instability to ensue via chromosomal breakage-fusion-

bridge cycles (4). 

 

Since accumulation of genomic instability promotes tumorigenesis and progression, numerous 

investigators have utilized tissue-based telomere length measurements to evaluate cancer 

prognosis, as well as risk, across a variety of tumor types [reviewed in (5, 6)]. For example, our 

group previously demonstrated that telomere length and cell-to-cell variability in telomere 

lengths are useful in predicting prostate cancer death in men surgically treated for their clinically 

localized prostate cancer (7). We have also shown that stromal cell telomere shortening is 

associated with an increased risk of prostate cancer (8). Taken together, these findings highlight 

the translational potential of tissue-based telomere measurements for cancer prognostication 

and risk stratification. 

 

Here, we validate a combined telomere-specific FISH and multiplex immunofluorescence 

staining method, followed by semi-automated slide scanning and multi-channel acquisition of 

digitized fluorescent images, to measure cell type-specific telomere lengths in archival human 

tissues from patient cohorts for research on prognosis. 
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MATERIALS AND METHODS 

Telomere-specific FISH and Immunostaining. The staining protocol is performed similar to 

previous descriptions (9, 10), with the following modifications (see Supplemental Methods). 

Briefly, a 4 µm formalin-fixed, paraffin-embedded tissue section is deparaffinized, hydrated, and 

steamed in target retrieval citrate buffer. Telomere-specific peptide nucleic acid (PNA) probe 

(CCCTAACCCTAACCCTAA with the N-terminal covalently linked to Cy3) is applied, denatured 

by incubation for 5 min at 84ºC, and hybridized overnight. For cell type-specific identification, 

immunofluorescent staining is then performed. After appropriate washing, the nuclei are 4'-6-

diamidino-2-phenylindole (DAPI) stained, slides are mounted with Prolong anti-fade, and 

coverslipped.  

 

Microscopy and Image Analysis. For automated scanning and image acquisition, the 

TissueFAXS Plus 6.108 automated microscopy workstation (TissueGnostics) is utilized, which 

contains an 8-slide ultra-precise motorized stage and utilizes a Zeiss Z2 Axioimager 

microscope. For the image analysis, a separate high-performance workstation with TissueQuest 

6.120 software module (TissueGnostics) is used to analyze the digitized fluorescent images with 

precise nuclear segmentation. 
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RESULTS 

Development of a combined telomere-specific FISH and multiplex immunofluorescence staining 

method  

In combination with telomere-specific FISH, multiplex immunostaining for cell type-specific 

antibodies is performed to identify specific cell types. For example, in benign and cancerous 

prostate tissue as shown in Figure 1, a basal epithelial cell-specific anti-cytokeratin primary 

antibody (i.e. CK903) is used to identify the benign prostate glands by delineating the basal 

prostate epithelial cells from the luminal prostate epithelial cells. Simultaneously, to easily 

identify and distinguish normal luminal epithelial cells and prostate cancer cells from the 

surrounding stromal cells, anti-NKX3.1 and/or anti-FOXA1 primary antibodies are included. 

Additionally, to identify and easily exclude lymphocytes in tissue, anti-CD3 and anti-CD20 

primary antibodies are used.  

 

Measurement of telomere length in individual cells of specified type 

Using the automated microscopy workstation, a 10X preview image on DAPI is first captured to 

allow for accurate orientation (Figure 1). Next, the regions of interest are identified and images 

are captured with a 40X oil objective using, sequentially, the DAPI, GFP, Cy3, and Cy5 

channels (Figure 1). To optimally acquire the telomere signals, the extended focus parameter is 

used with 3 steps above and below the z-axis plane, with a step size of 0.8 microns for each 

step. Using this approach, an entire TMA that contains ~400 spots can be imaged overnight 

(~14 hours), which is considerably faster than other current telomere-based imaging modalities 

(11).  

 

For the image analysis, as shown in Figure 2, a separate high-performance workstation is used 

to analyze the digitized fluorescent images with precise nuclear segmentation. Annotated 

regions of interest are set and processed. If required, based on the antibody staining, any 
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necessary exclusion areas can be excluded from the analysis. An exclusion region can be 

drawn either before or after an analysis has been performed. Relative telomere lengths are 

determined by calculating the ratio of the total Cy3 telomere FISH signal intensity to the total 

DAPI intensity for each nucleus, thereby compensating for differences in nuclear cutting planes 

and ploidy. 

 

Telomere-specific FISH signal intensities are linearly proportional to telomere length and can be 

quantified via digital image analysis 

In order to validate the method to detect differences in telomere lengths, a HeLa cell line 

bearing a single copy of the dox-inducible TPP1 gene (i.e. HeLa TPP1) that causes telomere 

elongation when expressed (12) were continually grown in the presence of dox, and collected at 

different time points (populations doublings: 0, 28, 58, and 84), thereby possessing different 

telomere lengths. A standard formalin-fixed, paraffin-embedded cell block containing pellets 

from each time point was created, stained, imaged, and analyzed using this new method. Cells 

from each corresponding time point were also collected and analyzed independently by 

telomere length by Terminal Restriction Fragment (TRF) Southern blot analysis, the “gold-

standard” method for determining absolute telomere lengths (13). As shown in Figure 3, the 

telomere length ratios determined by digital image analysis corresponded linearly with absolute 

telomere lengths as determined by TRF analysis (R2=0.98). Thus, these data also allow for 

telomere length ratios to be extrapolated to absolute telomere lengths. 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 22, 2022. ; https://doi.org/10.1101/2022.01.20.22269597doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.20.22269597
http://creativecommons.org/licenses/by-nc-nd/4.0/


  Heaphy et al, 2021 

7 
 

DISCUSSION 

Members of our group previously developed the TELI-FISH method which allows for telomere 

length determination in individual cells (9). However, this method is not automated and requires 

substantial labor for image collection and image analysis, thereby limiting the utility of further 

testing and application of tissue-based telomere measurements in a clinical setting. In contrast, 

other methodologies such as Terminal Restriction Fragment (TRF) Southern blot analysis (13, 

14), telomere-specific qPCR (15, 16), Single Telomere Length Analysis (STELA) (17), Telomere 

Shortest Length Assay (TeSLA) (18), or estimating telomere lengths from whole genome 

sequencing data (e.g. TelSeq) (19) requires less labor, although cellular identities and histologic 

architecture of the tissue, and spatial resolution are completely lost (20).  

 

Our new approach is based on telomere-specific FISH combined with cell type-specific 

immunofluorescent staining, followed by semi-automated slide scanning and multi-channel 

acquisition of digitized fluorescent images using the TissueFAXS Plus microscopy workstation, 

followed by image analysis using TissueQuest software (TissueGnostics). This new method is 

sufficiently robust and reproducible to detect biologically significant differences in telomere 

lengths in archived human tissues. 
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FIGURE LEGENDS 

Figure 1. Representative example of automated scan and image acquisition of a stained tissue 

microarray. The upper left panel shows a 10X preview image captured with the DAPI channel to 

allow for accurate orientation. The upper right panel highlights a specific region of interest (e.g. 

tissue microarray spot) in which multiple sequential images are captured with a 40X oil objective 

using the DAPI, GFP, Cy3, and Cy5 channels. The bottom panels highlight a representative 

region containing cancer and benign glands (multicolor combined immunofluorescence plus 

telomere FISH, left) and highlighting dramatically reduced telomeric FISH signals in the cancer 

cells compared to the benign cell populations (greyscale image of the Cy3 telomere FISH 

channel, right).  

 

Figure 2. Overall workflow of the method and example of automated prostate cancer cell and 

cancer-associated stromal cell segmentation and telomere detection. On the left, the overall 

workflow of staining, scanning, nuclear segmentation, cell-type identification, and telomere 

detection is depicted. On the right panel, after exclusion of benign prostate glands based on 

CK903 staining and cellular architecture, a representative example of the nuclear segmentation 

parameters that specifically identify (A, B) cancer cell nuclei (red circles; upper panels) based 

on high GFP or (C, D) cancer-associated stromal cell nuclei (red circles; lower panels) based on 

low GFP and Cy5 (i.e. lymphocytes) exclusion. A specialized algorithm to detect telomere FISH 

signals (yellow dots; right panels) is shown. Relative telomere lengths are determined by 

calculating the ratio of the total Cy3 telomere FISH signal intensity to the total DAPI intensity for 

each nucleus. 

 

Figure 3. Terminal Restriction Fragment (TRF) Southern blot analyses reveals a wide range of 

telomere lengths in the HeLa TPP1 cell line, increasing over time with population doubling when 

grown in the presence of dox. The telomere length (TL) ratios determined by digital image 
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analysis on FISH stained slides using the TissueGnostics approach corresponds linearly with 

the TRF Southern blot analyses. 
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