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INTRODUCTION: Sphingomyelin (SM) levels have been associated with Alzheimer’s disease (AD), but the 

association direction has been inconsistent and research on cerebrospinal fluid (CSF) SMs has been limited by 

sample size, breadth of SMs examined, and diversity of biomarkers available. 

METHODS: Leveraging two longitudinal AD cohorts with metabolome-wide CSF metabolomics data (n=502), we 

analyzed the relationship between the levels of 12 CSF SMs, and AD diagnosis and biomarkers of pathology, 

neurodegeneration, and neuroinflammation using logistic, linear, and linear mixed effects models. 

RESULTS: No SMs were significantly associated with AD diagnosis, mild cognitive impairment, or amyloid 

biomarkers. Phosphorylated tau, neurofilament light, α-synuclein, neurogranin, soluble triggering receptor expressed 

on myeloid cells 2, and chitinase-3-like-protein 1 were each significantly, positively associated with at least 5 of the 

SMs.  

DISCUSSION: The associations between SMs and biomarkers of neurodegeneration and neuroinflammation, but 

not biomarkers of amyloid or diagnosis of AD, point to SMs as potential biomarkers for neurodegeneration and 

neuroinflammation that may not be AD-specific. 

Key words 

Metabolomics, Alzheimer’s disease, biomarkers, sphingomyelin, sphingolipid, neurodegeneration, 

neuroinflammation, cerebrospinal fluid 
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CSF: cerebrospinal fluid, CU: cognitively unimpaired, DVR: distribution volume ratio, IL6: interleukin-6, LMM: 

linear mixed effects model, LP: lumbar puncture, MCI: mild cognitive impairment, MRI: magnetic resonance 

imaging, NfL: neurofilament light, NTK: NeuroToolKit, PET: positron emission tomography, PiB: Pittsburgh 

compound B, p-tau181: phosphorylated tau, p-tau181/Aβ42: p-tau181 to amyloid beta 42 ratio, QC: quality control, ROI: 

region of interest, SM: sphingomyelin, sTREM2: soluble triggering receptor found on myeloid cells 2, WRAP: 

Wisconsin Registry for Alzheimer’s Prevention, YKL40: chitinase-3-like protein 1 
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1. Background 

To discover new therapeutic targets for Alzheimer’s disease (AD), we must better understand the changes caused by 

the disease. One approach to better understanding these changes in AD is metabolomics, a way of studying the 

byproducts of the body’s metabolic processes. Metabolomics grants a window into the metabolic state of the 

body[1] and has proven useful in studying a variety of diseases, including identifying a mechanism of insulin 

resistance for type 2 diabetes, developing precision medicine approaches to treating cancer, and identifying altered 

metabolites and their mechanism of change in central nervous system-related disorders such as simian 

immunodeficiency virus[2–5]. Metabolomics has also been a valuable tool for studying AD, as it has helped to 

identify new biomarkers and mechanisms for the disease[6].   

One of the findings from AD metabolomics studies has been the association between the sphingolipid metabolic 

pathway and AD[7]. Sphingolipids are a family of membrane lipids that participate in diverse and fundamental 

cellular processes, such as cell division, differentiation, and death[8]. In mammals, sphingomyelins (SMs) are the 

most abundant molecule of the sphingolipid metabolic pathway (Supplemental Figure 1)[8]. Despite the 

identification of SMs as associated with AD, there is disagreement as to how they are associated with the disease: 

some studies show that SMs decrease in tissue across brain regions  and in plasma during progression to AD, while 

others suggest that they increase[9,10]. Previous research in cerebrospinal fluid (CSF) SMs has been limited by 

sample size, breadth of SMs examined, and diversity of biomarkers available for AD, neurodegeneration, and 

neuroinflammation, which may have contributed to the lack of clarity in the role of SMs. 

Here, we build on our understanding of the role of SM metabolites in AD. Leveraging two large, longitudinal 

cohorts with metabolome-wide CSF metabolomics, robust cognitive diagnoses, and a diversity of CSF biomarker 

and brain imaging measures, we analyzed the relationship between SMs, AD diagnosis, and biomarkers of 

pathology, and markers of neurodegeneration and neuroinflammation. The results shed light on the role of SMs in 

neurodegeneration and neuroinflammation.  

 

2. Methods 
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2.1. Study Cohorts 

Data were included from the Wisconsin Registry for Alzheimer’s Prevention (WRAP) and the Wisconsin 

Alzheimer’s Disease Research Center (ADRC) cohorts[11,12].  These longitudinal studies of preclinical and clinical 

AD in middle to older aged adults include CSF metabolomics, clinical diagnosis, neuroimaging, and CSF 

biomarkers of AD, neurodegeneration, and neuroinflammation. All participants included in the current research had 

at least one lumbar puncture (LP); the CSF samples for WRAP and the Wisconsin ADRC were collected and 

analyzed following the same protocols. A committee of dementia specialists determined diagnosis of dementia-AD 

(n = 44 individuals), mild cognitive impairment (MCI) (n = 40 individuals), or cognitively unimpaired (CU) (n = 

409 individuals) (Table 1). This study was approved by the University of Wisconsin Health Sciences Institutional 

Review Board as part of the Generations of WRAP (GROW) study. Participants in the WADRC and WRAP studies 

provided written informed consent. 

 

2.2. CSF samples, biomarkers, and metabolomics   

The process through which CSF samples were acquired and biomarker concentrations were measured has been 

previously described[13]. Briefly, CSF samples were collected in the morning after fasting. Within 30 minutes of 

collection, samples were mixed, centrifuged, aliquoted, and then stored at -80°C. All CSF sample biomarker assays 

were performed at the Clinical Neurochemistry Laboratory, University of Gothenburg from March 2019 to January 

2020. All biomarker data were taken from the Roche NeuroToolKit (NTK; Roche Diagnostics International Ltd, 

Rotkreuz, Switzerland), a panel of exploratory prototype assays designed to robustly evaluate biomarkers associated 

with key pathologic events characteristic of AD and other neurological disorders, as previously described[13].  

For metabolomic analyses, CSF samples were shipped overnight to Metabolon, Inc. (Durham, NC), where samples 

were also kept frozen at -80°C until analysis[14]. The untargeted metabolomics analysis was performed using 

Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS). Chemical properties, 

metabolite identifiers, and pathway information were provided for each metabolite. All metabolite data underwent a 

quality control (QC) process. Of the 412 metabolites in the initial sample, 13 were removed for being missing in ≥ 

50% of the samples. Nine metabolites were removed for low variance (interquartile range = 0). Of the 1,172 CSF 

samples, one was removed for missing ≥ 40% of the metabolite values. We also removed 220 samples obtained as 

part of a clinical trial (CT: 00939822). Metabolite values were log10 transformed to avoid skewness. After these QC 
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steps, data were available on 390 metabolites from 951 CSF samples taken from 502 individuals. Of the 390 

metabolites, 12 metabolites in the sphingolipid metabolic pathway were used in the analyses described. Of the 12 

metabolites included in these analyses, 9 were designated by metabolon as tier 2 compounds, meaning that these 

compounds have a structure that has been confirmed by literature review, but they are not necessarily confirmed by 

a reference standard. These 9 metabolites were: behenoyl SM (d18:1/22:0), palmitoyl dihydro-SM (d18:0/16:0), SM 

(d18:1/14:0, d16:1/16:0), SM (d18:1/20:0, d16:1/22:0), SM (d18:1/20:1, d18:2/20:0), SM (d18:1/22:1, d18:2/22:0, 

d16:1/24:1), SM (d18:1/24:1, d18:2/24:0), SM (d18:2/16:0, d18:1/16:1), SM (d18:2/24:1, d18:1/24:2). 

 

2.3. Neuroimaging 

Detailed methods for radiotracer synthesis and positron emission tomography (PET) and magnetic resonance 

imaging (MRI) data acquisition, processing, and quantification have been previously described[15]. Briefly, 

anatomical MRI (T1-w and T2-w) underwent multispectral unified tissue class segmentation (SPM12)[16]. Regions 

of interest (ROIs) for PET analysis were defined by applying the inverse deformation field defined during tissue 

segmentation to the MNI152-space Automated Anatomical Labeling atlas [17] and restricting the subject-space 

ROIs to voxels with gray matter probabilities greater than 0.3. Reconstructed dynamic Pittsburgh compound B (PiB) 

PET data acquired from 0-70 minutes post nominal 555 MBq [11C] PiB injection on a Siemens EXACT HR+ or 

Siemens Biograph Horizon PET/CT were isotopically smoothed, interframe realigned, dynamically denoised, and 

registered to T1-weighted MRI[15]. Amyloid burden was assessed by averaging distribution volume ratio (DVR) 

estimates across eight bilateral regions (Logan graphical analysis, cerebellum gray matter reference region, 

k2’=0.149 min-1; ROIs included angular gyrus, anterior and posterior cingulate, medial orbital-frontal gyrus, 

precuneus, supramarginal gyrus, and middle and superior temporal gyri)[18]. The resulting measurement is referred 

to as the PiB Global DVR. 

 

2.4. Data Integration 

CSF data were matched to diagnosis data from the nearest clinic visit. To remove potential correlation between 

genetically related participants, only the oldest individual from each family group was selected (n = 32 individuals 

removed). Data were divided into two overlapping data sets for analysis. First was the cross-sectional “Diagnosis” 

data set, which was focused on clinical diagnoses, comprising the oldest visit per participant (n = 493), diagnosis at 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 21, 2022. ; https://doi.org/10.1101/2022.01.19.22268636doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.19.22268636
http://creativecommons.org/licenses/by-nd/4.0/


that visit, and matched CSF metabolomics and PiB data for that visit. Logistic regressions were used to identify 

associations between diagnosis and SMs, and linear regressions were used for associations between PiB Global 

DVR and SMs. SM-PiB Global DVR analyses were cross-sectional because there were not enough PiB Global DVR 

measurements per individual to perform a longitudinal analysis. However, results for these analyses with PiB as the 

outcome were presented with the results from the AD biomarkers (data set described below) to better group the 

outcomes conceptually. 

The second data set was the longitudinal “Biomarker” data set, which focused on CSF biomarkers, comprising all 

available visits with CSF biomarker data and their corresponding metabolomics data (n = 494 individuals and n = 

726 samples). This data set included all available LP visits for each individual to maximize sample size (Table 1). 

The Biomarker data set was used to identify associations between CSF biomarkers and metabolites. AD biomarkers 

included CSF Aβ42/Aβ40, CSF p-tau181/Aβ42, and CSF p-tau181[19–21]. The neurodegeneration biomarkers used were 

neurogranin, neurofilament light (NfL), and alpha-synuclein (α-synuclein)[22–24]. We also included biomarkers for 

neuroinflammation: interleukin-6 (IL6), chitinase-3-like protein 1 (YKL40), and soluble triggering receptor found 

on myeloid cells 2 (sTREM2)[25–27]. All Biomarker data were checked for skewness, and NfL, p-tau181, p-

tau181/Aβ42, and IL6 were log10-transformed for skewness ≥ 2[28].  

 

2.5. Data Analysis 

All analyses were performed using R (version 4.0.2) and the “Tidyverse” packages (version 1.3.0)[29]. Logistic and 

linear regressions were performed using the glm and lm functions, respectively, from the “stats” package (version 

3.6.2)[30]. Linear mixed effects models (LMMs) using the biomarker data set were performed using the lmer 

function from the “lme4” and “lmerTest” packages[31,32]. All P-values from regression models were subjected to a 

Bonferroni adjusted threshold of P ≤ 3.47×10-4 to determine significance (α = 0.05 / 12 metabolites / 12 primary 

outcomes).  

 

2.5.1. SM association with dementia-AD and MCI diagnoses 
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In the Diagnosis data set, diagnoses of dementia-AD and MCI (both relative to cognitively unimpaired [CU]) were 

separately regressed on each metabolite, controlling for sex and age. Pseudo R2 values to evaluate model fit were 

calculated for each regression using the R2 function from the “semEff” package (version 0.4.0)[33]. 

 

2.5.2. SM association with biomarkers of AD, neurodegeneration, and neuroinflammation 

For PiB Global DVR, cross-sectional associations with SMs were analyzed using the Diagnosis data set and a linear 

regression model adjusting for sex and age. Adjusted R2 values were calculated for the model, to assess model fit. 

LMMs were used to determine the association between SMs and biomarkers for which longitudinal data were 

available (Aβ42/40, p-tau181/Aβ42, p-tau42, neurogranin, NfL, α-synuclein, IL6, YKL40, and sTREM2) in the 

Biomarker data set. Models were adjusted for age, sex, and a random intercept for the participant ID to account for 

multiple observations per individual. Marginal R2 values for these models were calculated using the 

r.squaredGLMM function from the “MuMIn” package (version 1.43.17) to assess model fit[34].  

 

2.5.3. Independent signals 

To assess the extent to which SMs represented the same underlying signal, pairwise correlations were calculated 

between all 72 pairs of SMs. To determine whether models including the most strongly associated SM from our 

main analyses as a predictor were significantly improved by adding any other SMs, we repeated the main analyses 

with the top SM (stearoyl SM) as the main predictor, adding each of the other metabolites as an additional predictor. 

We used an analysis of variance (ANOVA) test to assess whether the model with stearoyl SM was significantly 

different from the model that included both stearoyl SM and an additional SM. We used the anova function from the 

“stats” package (version 4.0.2) to compare each pair of nested models[30]. To ensure equal sample sizes between 

the two groups, samples missing any of the values necessary for either regression were dropped. We compared the 

R2 values calculated for each of the regressions before and after removing the necessary samples to perform this 

analysis to ensure that they were not drastically altered by these removed samples. 
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2.5.4. Sensitivity Analyses 

APOE ε2/ε3/ε4 genotype was determined using competitive allele-specific PCR-based KASP genotyping for 

rs429358 and rs7412[14]. Because APOE ε4 count is strongly associated with AD and thus may feasibly  influence 

our results, we performed a sensitivity analysis in which we repeated the main analyses but also controlled for the 

number of C alleles (0, 1, or 2) at the rs429358 SNP, which effectively quantifies the number of ε4 alleles[35]. Only 

participants whose self-reported race was “white” were retained for this analysis because of previously reported 

heterogeneity in effect of the APOE ε4 allele by race[36].  We added APOE ε4 count as a covariate for these 

analyses. 

Some studies of SMs in plasma have suggested that the direction of association of SMs and AD differ based on 

sex[37–39]. To determine whether there are sex-specific differences in associations with SMs in CSF, the SM-

diagnosis and SM-biomarker regression analyses were repeated with interaction effects modeling, where the original 

regression models were rerun with the addition of a term for SM*female. A second sensitivity analysis was also 

conducted with stratification by sex (see Supplemental Table 1 for sex-stratified sample characteristics). 

Similarly, to understand whether associations between SMs and biomarkers of AD, neurodegeneration, and 

neuroinflammation are different with amyloid and tau positivity, we performed the SM-diagnosis and SM-biomarker 

regressions with additional terms for A+T+ (binary indicator), A+T- (binary indicator), SM*A+T+, and SM*A+T-. 

Using thresholds that were previously defined in the WRAP study, amyloid-positive individuals were defined as 

those with Aβ42/40 values below 0.046 pg/mL, and tau-positive individuals were defined as those with p-tau181 values 

above 24.8 pg/mL[13]. We additionally then conducted an analysis stratified by amyloid and tau status, in which the 

main SM-biomarker regressions were performed for all individuals who were amyloid-positive and tau-positive 

(A+T+), amyloid-positive and tau-negative (A+T-), and amyloid-negative and tau-negative (A-T-) separately (see 

Supplemental Table 2 for amyloid and tau status-stratified sample characteristics)[40].  

Each SM-diagnosis and SM-biomarker regression was repeated as in the main set of regressions with the noted 

change for each sensitivity analysis. Regression results were subjected to the same Bonferroni-corrected significance 

threshold used in the main analyses (P < 3.47×10-4). P-values and effect sizes from the sensitivity analyses were 

compared to the results of the main set of analyses.  

 

3. Results  
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In both data sets, most participants were CU, white, female, and amyloid- and tau-negative as measured by LP 

(Table 1). The average baseline ages in the Diagnosis and Biomarker data sets were 64.1 (SD = 8.9) and 63.1 (SD = 

8.9) years, respectively. Metabolite and biomarker missingness is described in Supplemental Table 3. 

 

3.1. Pairwise correlations 

Pairwise correlations between metabolites showed that the metabolites were all closely correlated (Figure 1). No 

negative correlations were observed; correlation coefficients ranged from 0.46 to 0.89 (mean = 0.74); behenoyl SM 

(d18:1/22:0) and stearoyl SM (d18:1/18:0) were the least correlated of all metabolite pairs (Supplemental Table 4).    

 

3.2. SM associations with dementia-AD 

Of the SMs analyzed, none showed a significant association with either dementia-AD or MCI diagnosis relative to 

CU controls (Supplemental Table 5).  

 

3.3. SM associations with biomarkers of AD, neurodegeneration, and neuroinflammation 

SM associations with AD biomarkers (PiB Global DVR, CSF biomarkers of Aβ42/40, p-tau181/Aβ42, and p-tau181) 

were substantially different between measures of amyloid and tau. None of the 12 metabolites were significantly 

associated with any amyloid-related biomarkers (Aβ42/40, PiB Global DVR, and p-tau181/Aβ42) after Bonferroni 

correction (Table 2). Scatterplots for these outcomes plotted against metabolite levels showed large clusters of data 

points with no clear pattern (Figure 2B). In contrast, 12 SMs had positive, nominally significant associations with 

CSF p-tau181 (P < 0.05), and 6 associations remained significant after Bonferroni correction. Scatterplots of stearoyl 

SM (d18:1/18:0), the most significantly associated metabolite, and p-tau181 reflected this positive association (Figure 

2B).  

CSF levels of SMs were clearly associated with all CSF biomarkers of neurodegeneration. For all three biomarkers 

(neurogranin, NfL, α-synuclein), at least 11 of the 12 SMs were nominally and positively associated with each 
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biomarker (Table 3). This positive association was visible in scatterplots of each outcome plotted against stearoyl 

SM, where there was a clear association and a consistent, positive trend (Figure 2C).  

Associations between the 12 SMs and neuroinflammation biomarkers (YKL40, sTREM2, IL6) showed slightly less 

consistent results than the associations with the neurodegeneration biomarkers. Of the SM-IL6 associations, only 

three were nominally significant, and none were significant after multiple testing correction (Table 4 and Figure 

2D). In contrast, 10 of the 12 SMs were nominally, positively associated with YKL40; 5 of these associations 

remained significant after Bonferroni correction. Finally, all 12 SMs had positive, nominally significant associations 

with sTREM2; 9 associations remained significant after Bonferroni correction.  

Behenoyl SM (d18:1/22:0) yielded no significant associations after Bonferroni correction with any biomarkers 

analyzed, while stearoyl SM (d18:1/18:0) had the strongest significant association with all biomarkers where any 

significant association was observed. Palmitoyl SM (d18:1/16:0), SM (d18:1/14:0, d16:1/16:0), SM (d18:1/18:1, 

d18:2/18:0), SM (d18:2/16:0, d18:1/16:1), and stearoyl SM (d18:1/18:0) were significantly associated with the same 

seven biomarkers (p-tau181, NfL, α-synuclein, neurogranin, sTREM2, IL6, and YKL40) after Bonferroni correction. 

 

3.4. Independent signals 

Six models with p-tau181 as the outcome and stearoyl SM (the most significantly associated metabolite) as the main 

predictor were significantly improved by the addition of another metabolite predictor using nested ANOVA models 

(Supplemental Table 6). Only one metabolite significantly improved the model for NfL, while there were six 

metabolites that significantly improved the model for α-synuclein and seven that significantly improved the model 

for neurogranin. Among the models for neuroinflammation biomarkers, three metabolites significantly improved the 

models for sTREM2, one significantly improved the model for IL6, and five metabolites significantly improved the 

model for YKL40. 

 

3.5. Sensitivity Analyses 

The results of the sensitivity analysis with the APOE ε4 covariate were compared with the main analysis results and 

were not substantially different in either significance of associations or direction of effect (Supplemental Table 7). 
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Sensitivity analyses testing for sex-specific differences in associations between SMs and the outcomes found no 

significant interaction effects after Bonferroni correction either when testing for the significance of an interaction 

term in the regression (Supplemental Table 8). or when stratifying by sex (Supplemental Table 9). Sensitivity 

analyses testing for modification of the effect of SMs on the outcomes by amyloid and tau status suggested several 

significant differences. Simple main effects from the interaction testing suggested that effects of SMs were stronger 

in the A+T+ group for some biomarker and SM combinations, without a strong pattern. Five SM-neurodegeneration 

biomarker regressions and nine SM-neuroinflammation biomarker regressions had significant A+T+ interaction 

effects, in all cases having a positive interaction effect term indicating the biomarker level rising more quickly per 

unit increase in the SMs among the A+T+ group. Notably, 7 of the 12 SMs had a positive, significant interaction 

term in the models for YKL-40 (Supplemental Table 10 Supplemental Figure 2). Similarly, in the amyloid and tau 

(AT)-stratified regressions, there were generally larger effect sizes observed in the A+T+ group than the A-T- group 

for the biomarkers NfL, α-synuclein, neurogranin, sTREM2, and YKL40 when there were significant effects 

detected (Supplemental Table 11), though the smaller sample sizes among the subgroups likely lowered the power 

for detecting some of the SM-biomarker associations.  

 

4. Discussion 

Our study provides a robust exploration of the relationship between CSF SMs and various aspects of AD. We first 

explored whether CSF SMs were associated with diagnosis of AD or MCI in our cohorts. We found no significant 

associations between SMs and diagnosis of AD or MCI, partly contrasting with previous work that found an 

association between CSF SMs and prodromal AD, though not with mild or moderate AD[41]. The smaller sample 

size (n = 37) in the previous study may account for this difference, though it could also be that the differences in the 

particular subgroups of AD studied (CU/MCI/AD vs controls/prodromal/mild/moderate AD) led to this particular 

early stage signal going undetected in our analyses. Similarly, we found that amyloid biomarkers (Aβ42/40, PiB 

Global DVR, and p-tau181/Aβ42) were not significantly associated with the CSF SMs analyzed. This finding is 

consistent with previous research in the WRAP cohort that found no association between any of the CSF metabolites 

and these measures of amyloid[14]. However, there were significant SM associations with p-tau181 and several 

biomarkers for neurodegeneration and neuroinflammation. Five SMs (stearoyl SM (d18:1/18:0), SM (d18:2/16:0, 
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d18:1/16:1), SM (d18:1/18:1, d18:2/18:0), SM (d18:1/14:0, d16:1/16:0), and palmitoyl SM (d18:1/16:0)) in 

particular were significantly, positively associated with p-tau181 and each of the biomarkers for neurodegeneration 

(NfL, α-synuclein, and neurogranin). The same five SMs were significantly, positively associated with the 

neuroinflammation markers YKL40 and sTREM2. All these associations were similar when we controlled for the 

number of APOE ε4 alleles, indicating that these results were not likely to be influenced by APOE genotype. Of the 

twelve metabolites we analyzed, stearoyl SM (d18:1/18:0) had the strongest associations with our biomarkers when 

there was any statistically significant SM association observed. This particular metabolite, along with SM 

(18:1/18:1), has been previously identified as having a significant, positive association with AD pathology[42]. 

While neither of these metabolites were significantly associated with markers of amyloid in our study, they were 

both associated with p-tau181 and multiple biomarkers of neurodegeneration and neuroinflammation. Our pairwise 

correlations indicate that many of the CSF SMs we analyzed were intercorrelated, with potential subgroups among 

SMs based on chain length. Nested linear models with our most strongly associated metabolite, stearoyl SM 

(d18:1/18:0), supported the correlated nature of the SMs. Many of these models also showed some improvement 

with the addition of certain SMs, indicating that SMs other than stearoyl SM (d18:1/18:0) contain additional useful 

predictive information. 

In the secondary analyses, we found no significant effect modifications by sex and no difference between AT groups 

in relationships between SMs and cognitive status. However, we found evidence suggesting stronger SM effects on 

several biomarker outcomes, including α-synuclein, neurogranin, sTREM2, and YKL40, within the A+T+ subgroup 

than in other subgroups. Larger observed effect sizes in the A+T+ groups occurred for the biomarkers generally 

expected to change later on in the disease trajectory (e.g. p-tau)[43]. More research with larger sample sizes will be 

necessary to establish associations between SMs and various stages of AD more clearly given the relatively smaller 

sample sizes in the A+T- and A+T+ groups in this study.  

 Collectively, our results implicate CSF SMs as non-specific biomarkers of neurodegeneration and 

neuroinflammation. Strong positive associations between many SMs and markers like p-tau181, NfL, neurogranin, 

YKL-40, and sTREM2 make SMs a candidate marker of neurodegenerative and neuroinflammatory processes, but 

the lack of association of these SMs with amyloid measures might mean that SMs’ changes are not specific to AD. 

One potential mechanism for the role of SMs in neurodegeneration and neuroinflammation is that SMs only begin 
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changing as neurodegeneration or neuroinflammation occur and neurons begin to die, but not earlier, when amyloid 

is first beginning to accumulate. Previous research in preeclampsia has highlighted a mechanism by which SM 

levels increase. Stearoyl SM (d18:1/18:0), along with palmitoyl SM (d18:1/16:0), was elevated in plasma of 

preeclamptic mothers, thought to be a result of lipid rafts’ (microdomains of the cell membrane, consisting of SMs 

and other compounds) exposure to low oxygen levels[44]. This finding may grant insight into potential mechanisms 

for the association of CSF SMs with neurodegeneration: as neurons die, lipid rafts might release their components, 

including SMs, into CSF[8,10]. Mechanistic research into the SM changes during neurodegeneration are needed to 

further examine these hypotheses.  

As noted above, previous studies on the relationship between AD and SMs in plasma and brain tissue have found 

significant associations but differing directionality, making CSF SMs especially interesting [9,10]. Our lack of 

significant SM-amyloid associations contrasted with a previous study on the association of total SMs with Aβ in 

CSF, which found significant associations between SMs (including stearoyl SM (d18:0/18:1)) and various markers 

of amyloid including Aβ42 and Aβ40[45]. Here, with a larger sample size, we found no association of SMs with Aβ 

markers. A few differences could explain this discrepancy, including differences in study population (e.g., our 

population was enriched for older individuals, mean = 64.1) or different biomarkers used (e.g., Aβ42 and Aβ40 vs 

Aβ42/Aβ40). 

This study has certain limitations that must be taken into consideration when interpreting its results. While we were 

able to produce one of the largest sample sizes of AD and MCI individuals used to study CSF SMs, our samples of 

individuals with AD and MCI were still relatively small (n = 89) compared to cognitively unimpaired controls (n = 

409) (Table 1), potentially limiting our ability to assess diagnosis-related outcomes. We also lacked diversity; over 

95% of individuals included in this study were self-reported white, limiting the generalizability of this study to other 

populations. As sample sizes for underrepresented groups grow, we will be better able to investigate the role of SMs 

across a greater range of populations. We also were limited by the types of sphingolipids that we examined. 

Ceramides, particularly, are a type of sphingolipid that has been implicated in AD and other diseases, but we were 

not able to assess their role here, as they were not measured in CSF for our study[46]. There is a high correlation 

between p-tau181 and neurodegeneration biomarkers in this cohort, which may differ in a sample with more non-AD 

dementia present. Finally, nine SMs analyzed were designated as tier 2 compounds by Metabolon, compounds that 
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have a structure that has been confirmed by literature review, but they are not necessarily confirmed by a reference 

standard, though we note that stearoyl SM (d18:1/18:0) was not one of these tier 2 compounds[47].  

 

5. Conclusion 

In this study, we examined the relationship between 12 SMs, MCI/AD diagnoses, and PET and CSF biomarkers of 

AD, neurodegeneration, and neuroinflammation, providing a comprehensive investigation of the role of CSF SMs in 

AD pathology. While we found no association between SMs and dementia-AD or MCI diagnoses nor with amyloid 

biomarkers, we did find strong positive associations between the SMs and p-tau181, NfL, sTREM2, neurogranin, α-

synuclein, and YKL40. Based on these findings, we hypothesize that SMs are non-specific biomarkers of 

neurodegeneration and neuroinflammation. There is still much to be learned: identifying a mechanism for SMs’ role 

in neurodegeneration and neuroinflammation, understanding how SM levels differ across other neurodegenerative 

diseases, and characterizing them in diverse cohorts with larger numbers of AD individuals will grant greater 

insights into the role of these metabolites in AD.  
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Table 1. Baseline characteristics of individuals. 

Characteristic 

Diagnosis data set  

(cross-sectional) 

(n = 493 individuals) 

Biomarker data set individuals 

(n = 494 individuals) 

Biomarker data set visits  

(longitudinal) 

(n = 726 visits) 

Overlap 

(n = 485 individuals) 

Diagnosis, n (%)  

 

  

  

Dementia-AD  44 (8.9%) 43 (8.7%) 44 (6.1%) 43 (8.9%) 

MCI 40 (8.1%) 42 (8.5%) 45 (6.2%) 40 (8.2%) 

CU 409 (82.9%) 409 (82.8%) 637 (87.7%) 402 (82.9%) 

Primary Race, n (%)    

White 472 (95.7%) 473 (95.7%) 693 (95.5%) 464 (95.7%) 

Black or African American 16 (3.3%) 16 (3.2%) 22 (3.03%) 16 (3.3%) 

American Indian or Alaska Native 3 (0.6%) 3 (0.6%) 4 (0.6%) 3 (0.6%) 

Asian 1 (0.2%) 1 (0.2%) 3 (0.4%) 1 (0.2%) 

Other 1 (0.2%) 1 (0.2%) 4 (0.6%) 1 (0.2%) 

Sex, n (%)  

 

   

Male 191 (38.7%) 191 (38.7%) 273 (39.4%) 189 (39.0%) 

Female 302 (61.3%) 303 (61.3%) 453 (65.4%) 296 (61.0%) 

CSF amyloid and tau status, n (%)  
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A-T- 319 (64.7%) 324 (65.6%) 500 (68.9%) 317 (65.4%) 

A+T- 61 (12.4%) 59 (11.9%) 85 (11.7%) 59 (12.2%) 

A-T+ 20 (4.1%) 20 (4.0%) 28 (3.8%) 19 (3.9%) 

A+T+ 85 (17.2%) 84 (17.0%) 102 (14.0%) 83 (17.1%) 

Not measured 8 (1.6%) 7 (1.4%) 11 (1.5%) 7 (1.4%) 

Age in years mean, (SD) 64.1 (8.9) 63.1 (8.9) 63.4 (8.3) 64.0 (9.0) 

PiB Global DVR, n, (SD) 179 (9.4) N/A N/A 179 (9.4) 

PiB Positive, n, (%) 50 (27.9%) N/A N/A 50 (27.9%) 

For demographics information in the sex- and amyloid-stratified groups, see Supplemental Tables 1 and 2. For data on missingness by biomarker and metabolite, 

see Supplemental Table 3. All individuals with PiB Global DVR measurements were present in the Diagnosis data set.  

Abbreviations: AD, Alzheimer’s disease; MCI, mild cognitive impairment; CU, cognitively unimpaired; CSF, cerebrospinal fluid; PiB, Pittsburgh Compound B; 

DVR, distribution volume ratio; SD, standard deviation.  
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Figure 1. Pairwise correlations of SMs. A heatplot showing the correlation between each metabolite pair. Darker colors indicate stronger correlations, while lighter colors 

indicate weaker correlations. The lowest correlation coefficient was 0.47 and the highest was 0.89. 
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Figure 2. Associations between biomarkers, diagnosis, and stearoyl SM (d18:1/18:0). 
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Results from stearoyl SM (d18:1/18:0) are displayed because this SM was consistently the most significantly associated SM and all other significant associations with SMs were in 

the same direction. A) Boxplots showing stearoyl SM (d18:1/18:0) levels for individuals with CU, MCI, and dementia-AD diagnoses. A small but statistically insignificant 

increase in metabolite level can be seen moving from the CU to AD group. None of the SM-diagnosis regressions were statistically significant. B) Scatterplots with each of the 

four AD-specific outcomes (x-axis) and stearoyl SM (d18:1/18:0) (y-axis). Stearoyl SM was not significantly associated with the measures of amyloid, but was significantly, 

positively associated with p-tau181 after Bonferroni correction (Table 2). C) Scatterplots of each of the three neurodegeneration biomarkers (x-axis) plotted against stearoyl SM 

(d18:1/18:0) (y-axis). Stearoyl SM was significantly, positively associated with NfL, neurogranin, and α-synuclein after Bonferroni correction (Table 3). D) Scatterplots of each of 

the three neuroinflammation biomarkers (x-axis) plotted against stearoyl SM (d18:1/18:0) (y-axis). Stearoyl SM was significantly, positively associated with YKL40 and sTREM2 

and nominally, negatively associated with IL6 after Bonferroni correction (Table 4). A-D: The units of stearoyl SM (d18:1/18:0) as well as p-tau181, p-tau181/Aβ42, NfL, and IL6 are 

standardized by log10-transformation as laid out in the methods section of this paper. B-D: Longitudinal data were used to perform the regressions shown. Best fit lines constructed 

using linear regression models of form outcome ~ stearoyl SM with 95% confidence intervals are drawn onto each of the scatterplots.  
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Table 2. Associations between SMs and AD biomarkers. 

  PiB Global DVR Aβ42/40 p-tau181/Aβ42 (pg/mL) p-tau181 (pg/mL) 

Metabolite β P R2 
β P R2 β P R2 β P R2 

behenoyl SM (d18:1/22:0) 0.02 0.85 0.09 -3.54E-04 0.86 0.13 0.02 0.54 0.16 0.02 0.07 0.13 

palmitoyl dihydro-SM 

(d18:0/16:0) 0.07 0.60 0.09 -3.00E-04 0.93 0.13 0.01 0.84 0.15 0.04 0.04 0.14 

palmitoyl SM (d18:1/16:0) -0.19 0.23 0.10 -1.87E-03 0.68 0.14 0.03 0.64 0.16 0.17 5.59E-10 0.16 

SM (d18:1/14:0, d16:1/16:0) -0.05 0.70 0.09 -1.41E-03 0.68 0.14 0.03 0.58 0.16 0.09 8.09E-07 0.14 

SM (d18:1/18:1, d18:2/18:0) -0.15 0.38 0.10 -3.22E-03 0.50 0.14 0.07 0.30 0.16 0.22 5.10E-13 0.17 

SM (d18:1/20:0, d16:1/22:0) 0.01 0.93 0.09 -2.60E-03 0.38 0.14 0.05 0.26 0.16 0.06 3.17E-04 0.14 

SM (d18:1/20:1, d18:2/20:0) 0.08 0.56 0.09 -2.97E-03 0.35 0.13 0.06 0.16 0.16 0.06 3.50E-04 0.14 

SM (d18:1/22:1, d18:2/22:0, 

d16:1/24:1) 0.15 0.19 0.10 -3.62E-03 0.13 0.14 0.05 0.18 0.17 0.03 0.01 0.13 

SM (d18:1/24:1, d18:2/24:0) 0.05 0.69 0.09 -6.82E-04 0.79 0.14 0.01 0.73 0.16 0.03 0.04 0.13 

SM (d18:2/16:0, d18:1/16:1) -0.08 0.57 0.10 -4.76E-03 0.17 0.14 0.09 0.07 0.17 0.09 1.93E-06 0.14 

SM (d18:2/24:1, d18:1/24:2) 0.06 0.59 0.09 -4.02E-03 0.13 0.14 0.05 0.15 0.16 0.04 0.01 0.13 

stearoyl SM (d18:1/18:0) -0.22 0.18 0.10 -1.04E-03 0.84 0.14 0.05 0.50 0.16 0.37 1.83E-23 0.23 

SM: sphingomyelin; PiB Global DVR: positron emission tomography Pittsburgh compound B; Aβ42/40: amyloid-beta 42/40 ratio; p-tau181/Aβ42: phosphorylated-tau181 to amyloid-

beta 42 ratio; p-tau181: phosphorylated-tau; β: change in the outcome with a one unit increase of the standardized metabolite level; P: uncorrected P-value of the corresponding 

regression; R2: adjusted R2 for PiB Global DVR, marginal R2 for CSF biomarkers; bolded values indicate significant results at threshold p<3.47×10-4. 
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Table 3. Associations between SMs and neurodegeneration biomarkers. 

  NfL (pg/mL) α-synuclein (pg/mL) Neurogranin (pg/mL) 

Metabolite β P  R2 β P R2 β P R2 

behenoyl SM (d18:1/22:0) 0.06 1.23E-03 0.46 31.79 8.96E-04 0.09 46.86 0.08 0.04 

palmitoyl dihydro-SM (d18:0/16:0) 0.15 2.14E-06 0.46 87.32 1.16E-07 0.11 148.66 0.01 0.05 

palmitoyl SM (d18:1/16:0) 0.37 1.57E-18 0.52 254.75 1.72E-35 0.26 608.66 1.34E-15 0.10 

SM (d18:1/14:0, d16:1/16:0) 0.16 8.83E-08 0.47 142.70 4.19E-18 0.16 336.80 1.74E-09 0.07 

SM (d18:1/18:1, d18:2/18:0) 0.37 3.99E-17 0.51 247.38 3.30E-32 0.25 626.89 2.13E-15 0.10 

SM (d18:1/20:0, d16:1/22:0) 0.17 2.34E-09 0.48 103.61 1.02E-12 0.12 207.71 8.00E-06 0.05 

SM (d18:1/20:1, d18:2/20:0) 0.12 6.43E-05 0.45 64.18 3.29E-05 0.10 179.55 7.21E-04 0.05 

SM (d18:1/22:1, d18:2/22:0, d16:1/24:1) 0.10 5.20E-06 0.46 50.48 1.34E-05 0.09 110.05 3.23E-03 0.05 

SM (d18:1/24:1, d18:2/24:0) 0.09 1.30E-04 0.47 49.82 3.79E-05 0.09 81.38 0.04 0.04 

SM (d18:2/16:0, d18:1/16:1) 0.22 5.16E-12 0.49 146.47 1.36E-19 0.17 337.93 1.39E-09 0.07 

SM (d18:2/24:1, d18:1/24:2) 0.14 1.02E-08 0.48 75.29 2.36E-09 0.10 111.55 0.01 0.04 

stearoyl SM (d18:1/18:0) 0.45 1.94E-21 0.53 325.23 1.25E-51 0.36 994.55 2.82E-28 0.18 

SM: sphingomyelin; NfL: neurofilament light; β: change in the outcome with a one unit increase of the standardized metabolite level; P: P-value of the corresponding regression; 

R2: marginal R2 for the corresponding regression; bolded values indicate significant results at threshold p < 3.47×10-4. 
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Table 4. Associations between SMs and neuroinflammation biomarkers. 

  sTREM2 (ng/mL) IL6 (pg/mL) YKL40 (ng/mL) 

Metabolite β P R2 β P R2 β P R2 

behenoyl SM (d18:1/22:0) 0.47 0.03 0.11 -0.02 0.48 0.03 6.87 0.05 0.31 

palmitoyl dihydro-SM (d18:0/16:0) 1.64 5.15E-05 0.12 0.02 0.75 0.03 19.80 3.67E-03 0.32 

palmitoyl SM (d18:1/16:0) 4.55 1.06E-16 0.17 -0.10 0.12 0.03 63.27 2.92E-11 0.35 

SM (d18:1/14:0, d16:1/16:0) 1.91 6.67E-07 0.12 -0.07 0.18 0.03 27.02 5.14E-05 0.33 

SM (d18:1/18:1, d18:2/18:0) 4.30 2.70E-14 0.17 -0.17 7.56E-03 0.04 59.56 2.40E-09 0.35 

SM (d18:1/20:0, d16:1/22:0) 1.48 7.69E-06 0.12 -0.06 0.22 0.03 15.09 0.01 0.32 

SM (d18:1/20:1, d18:2/20:0) 0.88 0.01 0.12 -0.01 0.78 0.02 13.51 0.03 0.33 

SM (d18:1/22:1, d18:2/22:0, d16:1/24:1) 1.03 9.70E-05 0.11 -0.03 0.40 0.03 9.82 0.03 0.32 

SM (d18:1/24:1, d18:2/24:0) 0.92 7.96E-04 0.12 -0.03 0.44 0.03 5.99 0.19 0.32 

SM (d18:2/16:0, d18:1/16:1) 2.26 1.12E-08 0.13 -0.14 8.31E-03 0.04 31.62 3.08E-06 0.33 

SM (d18:2/24:1, d18:1/24:2) 1.28 1.27E-05 0.12 -0.05 0.23 0.03 11.71 0.02 0.32 

stearoyl SM (d18:1/18:0) 6.99 3.15E-28 0.24 -0.18 5.77E-03 0.04 105.64 1.41E-18 0.39 

sTREM2: soluble triggering receptor found on myeloid cells 2; IL6: interleukin-6; YKL40: chitinase-3-like protein 1; β: change in the outcome with a one unit increase of the 

standardized metabolite level; P: P-value of the corresponding regression; R2: marginal R2 for the corresponding regression; bolded values indicate significant results at 

threshold p<3.47×10-4. 
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