Effectiveness of mRNA-1273 against SARS-CoV-2 omicron and delta variants

Authors: Hung Fu Tseng^{1,2}, Bradley K. Ackerson¹, Yi Luo¹, Lina S. Sy¹, Carla A. Talarico³, Yun Tian¹, Katia J. Bruxvoort⁴, Julia E. Tubert¹, Ana Florea¹, Jennifer H. Ku¹, Gina S. Lee¹, Soon Kyu Choi¹, Harpreet S. Takhar¹, Michael Aragones¹ and Lei Qian¹

Affiliations: ¹Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA. ²Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA. ³Moderna, Inc., Cambridge, MA, USA. ⁴Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA

*Corresponding Author: Hung Fu Tseng, Department of Research and Evaluation, Kaiser Permanente Southern California, 100 S Los Robles, Pasadena, CA 91101 Phone: (626) 564-3451

Email: Hung-Fu.X.Tseng@kp.org

Abstract

The SARS-CoV-2 omicron (B.1.1.529) variant is highly transmissible with potential for immune escape. Thus, we conducted a matched case-control study to evaluate the real-world vaccine effectiveness (VE) of mRNA-1273 against infection and hospitalization with omicron or delta in a large, diverse Southern California population. The study included 26,683 SARS-CoV-2 test positive cases with variant determined by spike gene status (16% delta, 84% omicron). The 2-dose VE against omicron infection was 42.8% (95% CI, 33.8%-50.7%) and declined quickly thereafter. The 3-dose VE was 94.0% (92.3%-95.4%) and 67.7% (65.5%-69.7%) against delta and omicron infection, respectively, and 21.7% (0.0%-45.0%) against omicron infection in immunocompromised individuals. The 3-dose VE against hospitalization with delta or with omicron was above 99%. Our findings demonstrate high and durable 3-dose effectiveness of mRNA-1273 against delta infection but lower effectiveness against omicron infection, particularly among immunocompromised people.

either delta or omicron.

The recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) omicron (B.1.1.529) variant contains multiple novel spike (S) protein mutations, raising concerns about escape from naturally acquired or vaccine-elicited immunity.¹ Several *in vitro* studies reported reduced vaccine-induced neutralization activity against omicron.^{2,3} Specifically, sera from individuals vaccinated with 2 doses of mRNA coronavirus disease 2019 (COVID-19) vaccines, including mRNA-1273 (Moderna COVID-19) vaccine), showed substantial reductions in neutralization activity against omicron compared with wild-type SARS-CoV-2.^{2,4,5} However, an mRNA-1273 booster increased neutralization activity against omicron, albeit lower than wild-type.^{2,3} We previously reported high and durable vaccine effectiveness (VE) of mRNA-1273 against infection and hospitalization from COVID-19 caused by other emerging SARS-CoV-2 variants, including delta (B.1.617.2).⁶ Limited data are available on real-world VE of mRNA-1273 against omicron.

As omicron has a deletion at positions 69-70, omicron-positive specimens exhibit Sgene target failure (SGTF). To provide timely results for these analyses, we used SGTF as a marker for omicron in specimens collected during December 2021. The US Food and Drug Administration (FDA) and World Health Organization advised that SGTF from select COVID-19 RT-PCR assays, including the Thermo Fisher TaqPathTM COVID-19 Combo kits, can be used as a screening method for omicron;^{7,8} SGTF has served as a proxy in the United Kingdom for identifying omicron.^{9,10} In Southern California, where delta was the dominant strain before omicron¹¹ and the proportion of SGTF among SARS-CoV-2 positive specimens increased from 1.2% to 94.1% from 12/06/2021 to 12/31/2021, SGTF can be used as a proxy for omicron, while positive specimens negative for SGTF can be considered delta. Herein, we report VE of mRNA-1273 against infection and hospitalization with omicron and delta within the Kaiser Permanente Southern California (KPSC) health care system in the United States.

Results

The study included 26,683 cases with SGTF status available; 11,483 (43.0%) individuals were unvaccinated (2,883 delta, 8,600 omicron), and 15,200 (57.0%) were vaccinated (1,431 delta, 13,769 omicron; 416 vaccinated with 1 dose, 12,029 vaccinated with 2 doses, 2,755 vaccinated with 3 doses). The flow chart depicting selection steps is provided in Supplementary Fig. 1. The distribution of covariates by test outcomes, separated by variant type, is summarized in Table 1 (2-dose and 3-dose analyses) and Supplementary Table 1 (1-dose analysis).

Omicron cases more frequently had a history of COVID-19 than delta cases. In the 2dose and 3-dose analyses, 13.6% and 15.4% of omicron cases in the 2-dose and 3dose analyses, respectively, had a history of COVID-19 versus 2.5% and 3.0% of delta cases (Table 1).

Table 2 shows VE against delta and omicron infection or hospitalization. Overall, the 1dose VE was 55.6% (95% CI: 38.8–67.8%) and 20.0% (8.9-29.8%), the 2-dose VE was 60.7% (56.6-64.3%) and 15.5% (12.2-18.7%), and the 3-dose VE was 94.0% (92.3-95.4%) and 67.7% (65.5-69.7%) against delta and omicron infection, respectively. In analyses of 2-dose VE against delta infection by time since receipt of dose 2, VE at 14–90 days was 79.8% (67.4-87.5%) and subsequently declined, with VE of 66.3% (56.6-73.8%) at 91–180 days, 61.2% (56.9-65.0%) at 181–270 days and 57.5% (50.463.6%) at >270 days (Table 2, Fig. 1). The 2-dose VE against omicron infection was 42.8% (33.8–50.7%) at 14–90 days and declined quickly to 23.0% (15.8–29.6%) at 91– 180 days, 15.6% (12.1–19.1%) at 181–270 days and 8.6% (3.3–13.6%) at >270 days. The 3-dose VE against delta infection was 92.9% (91.2–94.3%) if dose 3 was received after October 20, 2021, and 87.8% (78.5–93.1%) if dose 3 was received on or before October 20, 2021. For vaccinated cases, the median number of days from vaccination to positive test date was 41 and 113 days if dose 3 was received after October 20, 2021, or on and before that day, respectively. However, the 3-dose VE against omicron infection was 67.9% (65.8–69.9%) if dose 3 was received after October 20, 2021 (for vaccinated cases, median number of days from vaccination to positive test date was 41 days), and 49.5% (40.4-57.3%) if received on or before October 20, 2021 (for vaccinated cases, median number of days from vaccination to positive test date was 111 days). These estimates were similar in analyses excluding individuals who were immunocompromised, except that the 3-dose VE against omicron infection increased to 54.8% (44.9–62.9%) among immunocompetent individuals who received dose 3 on or before 10/20/21 (Table 2, Fig. 2).

The VE of 2 and 3 doses against hospitalization with delta were both more than 98%, while they were 74.8% (2.4–93.5%) and 99.7% (82.2–100.0%) against hospitalization with omicron (Table 2). Notably, all four individuals hospitalized with omicron despite receipt of three mRNA-1273 doses were more than 60 years with chronic diseases and one was also immunocompromised (data not shown).

Table 3 presents the 3-dose VE against infection by subgroups. The 3-dose VE against delta infection was >92% across age, sex and race/ethnicity groups but lower in the

immunocompromised population (75.0% [38.3–89.9%]). The 3-dose VE against omicron infection was 68.6% (66.3–70.7%) in those aged <65 years and 63.6% (53.8%-71.4%) in those aged ≥65 years and only 21.7% (0.0–45.0%) in the immunocompromised population compared to 68.2% (66.1–70.2%) in the immunocompetent population. The 3-dose VE against omicron infection among those who had no history of COVID-19 was 69.1% (66.9%, 71.3%) in those aged <65 years, and 63.9% (53.8%, 71.8%) in those aged ≥65 years (data not shown).

Discussion

We evaluated the effectiveness of mRNA-1273 against the highly mutated omicron variant in a socio-demographically diverse population in a real-world setting. Between December 6, 2021, and December 31, 2021, the rapidly increasing proportion of omicron-positive specimens indicated unprecedented transmissibility and raised concerns over protection conferred by currently authorized or licensed COVID-19 vaccines. Our study demonstrates that while VE of 2 doses of mRNA-1273 against delta infection is high and wanes slowly, consistent with our previous findings,^{6,12} the 2-dose VE against omicron infection is inadequate, providing only modest protection of 42.8% within 3 months of vaccination and diminishing quickly thereafter. In addition, while the 3-dose VE against delta infection is high and durable, that against omicron is lower. Nevertheless, the point estimate (>50%) and lower bound of the 95% CI (>30%) still meet the US FDA criteria for emergency use authorization for 2 doses of COVID-19 vaccines.¹³ Also, this VE is similar to the 2-dose vaccine efficacy against asymptomatic infection observed in the phase 3 clinical trial (63.0% [56.6–68.5%]).¹⁴ The VE of 3

doses of mRNA-1273 against omicron infection is poor among individuals who are immunocompromised. While 2-dose VE against hospitalization with omicron is lower compared to that with delta, 3-dose VE is nearly 100% against hospitalization with either variant. Taken together, these data suggest that third (booster) doses may be needed <6 months after dose 2 in immunocompetent individuals and that 3 doses may be inadequate to protect against omicron infection in individuals who are immunocompromised. Furthermore, the data highlight the potential need for periodic adjustment of vaccines to target circulating variants, including omicron, that have evolved to escape current vaccine-induced immunity.

While there are limited prior data on VE of 2 or 3 doses of mRNA-1273 vaccine against infection or hospitalization with omicron, a preliminary analysis from Denmark found an initial VE of 2 doses of mRNA-1273 against omicron infection of 36.7% that waned quickly, similar to our findings.¹⁵ An early report by Andrews et al¹⁶ found waning of 2-dose protection with an initial VE of 2 doses of BNT162b2 against symptomatic omicron infection of 88% (65.9–95.8%) 2–9 weeks after dose 2 that declined to 34–37% (95% CIs ranging from –5 to 59.6%) 15 or more weeks after dose 2, but increased to 75.5% (56.1–86.3%) a median of 41 days (range 14–72 days) after a BNT162b2 booster. Collie et al¹⁷ found that the VE of 2 doses of BNT162b2 against hospitalization during a proxy omicron period was 70% at least 14 days after receipt of dose 2. In England, after a primary course of BNT162b2 vaccine, VE against omicron infection was initially 70% after a BNT162b2 booster, dropping to 45% after ≥10 weeks, but stayed around 70–75% for up to 9 weeks after a mRNA-1273 booster.¹⁰

A growing number of reports indicate that omicron disease is less severe than delta disease, resulting in a lower risk of hospitalization.^{1,18} This may reflect greater replication of omicron in the upper versus lower respiratory tract, which may also contribute to more efficient transmission, resulting in increased absolute¹⁹ numbers of hospitalizations. Booster vaccination has the potential to decrease hospital burden and improve outcomes.²⁰ While the sample size and follow-up period were not sufficient in our study or other studies to assess potential waning VE against hospitalization with omicron, our results of waning VE against omicron infection after dose 3 of mRNA-1273 underscores the importance of monitoring VE against hospitalization with omicron. This study provides novel data complementing recent reports of the effectiveness of other COVID-19 vaccines against omicron infection and has several strengths and limitations. Testing for SARS-CoV-2 infection was readily available among KPSC members, including drive-through testing and self-scheduled test appointments. Furthermore, we used a highly specific and sensitive RT-PCR test and monitored variant proportions at KPSC, allowing us to quickly assess VE of mRNA-1273 against omicron. Attributes associated with testing behavior or health-seeking behavior can be differential by exposure status, leading to potential bias. To control for these potential differences, we adjusted for history of SARS-CoV-2 molecular testing, history of COVID-19, prior health care utilization and other chronic diseases in the models. Although potential residual confounding or detection bias could remain, they were not likely to reverse the conclusion of the study. Second, we considered all SGTF specimens as omicron, rather than specifying a Ct value threshold, although this may have overestimated omicron detection. Our rate of SGTF closely mirrored regional trends in

omicron emergence from the Centers for Disease Control and Prevention (CDC).¹¹ Furthermore, based on whole genome sequencing results received for a subset of 955 positive specimens, we confirmed that all 319 cases exhibiting SGTF were omicron, and 632 of the 636 SGTF negative cases were delta (kappa 0.991). Third, this study was representative of a large, diverse racial, ethnic and socioeconomic population in Southern California but may be less representative of other populations. However, analysis of the effectiveness of mRNA-1273 against delta and omicron in parallel provided an internal comparator that put results in context.¹² Fourth, some individuals who were immunocompetent and who received a third dose before the October 21, 2021, Advisory Committee on Immunization Practices (ACIP) recommendation may have received a 100-µg dose rather than a 50-µg booster dose of mRNA-1273. However, we were not able to clearly assess the difference, as dosage information was not available from external vaccination records. Finally, the number of hospitalized individuals included was too small to draw definitive conclusions regarding VE and durability of 3 doses in preventing hospitalization. Long-term follow-up is needed to evaluate the durability of both 100-µg and 50-µg booster doses in preventing infection and hospitalization.

In conclusion, this study of mRNA-1273 found waning 2-dose but high 3-dose VE against delta infection, low 2-dose and 3-dose VE against omicron infection, modest 2-dose VE against hospitalization with omicron, and excellent 3-dose VE against hospitalization with omicron against omicron infection wanes within 3 months after dose 2, suggesting a need for a shorter interval between second and booster doses. Lack of protection against omicron infection in the immunocompromised

population underscores the importance of the recommended fourth dose (booster) for this population. Continued monitoring of VE against omicron infection and hospitalization in immunocompetent and immunocompromised individuals and surveillance for the emergence of newer SARS-CoV-2 variants are warranted to inform future vaccination strategies.

Online Methods

Study setting. KPSC is an integrated health care system that provides care to more than 4.6 million socio-demographically diverse health plan members at 15 hospitals and associated medical offices across Southern California. Comprehensive electronic health records (EHRs) used for this study included information on demographics, immunizations, diagnoses, laboratory tests, procedures and pharmacy records. KPSC began administering mRNA-1273 on 12/18/2020. Outside COVID-19 vaccinations were imported into members' EHRs daily from external sources, including the California Immunization Registry, Care Everywhere (system on the Epic EHR platform that allows health care systems to exchange members' medical information), claims (eg, retail pharmacies) and self-report by members (with valid documentation).

Laboratory methods. Molecular diagnostic testing for SARS-CoV-2 is available to members who request it for any reason, before procedures and hospital admissions, with and without symptoms. Specimens were primarily collected using nasopharyngeal/oropharyngeal swabs (for symptomatic individuals) or saliva (for asymptomatic individuals). Specimens were tested using RT-PCR TaqPath COVID-19 High-Throughput Combo Kit (Thermo Fisher Scientific). SGTF was defined as a RT-PCR test in which N and ORF1ab genes were detected (Ct values <37), but S gene was not detected. Specimens with SGTF were considered to be omicron, whereas positive specimens without SGTF were considered to be delta.

Study design. In this case-control study, cases included individuals who tested positive by the RT-PCR TagPath COVID-19 kit, had specimens collected between 12/6/2021 and 12/31/2021, were aged ≥ 18 years, and had ≥ 12 months of KPSC membership before the specimen collection date (for accurate ascertainment of exposure status and covariates). Individuals were excluded if they received a COVID-19 vaccine other than mRNA-1273, any dose of mRNA-1273 <14 days before the specimen collection date, 2 or 3 doses of mRNA-1273 <24 days apart from previous dose or >3 doses of mRNA-1273 prior to the specimen collection date. Additional exclusions included a positive SARS-CoV-2 test or COVID-19 diagnosis code ≤90 days before the specimen collection date. COVID-19 hospitalization included hospitalization with a SARS-CoV-2-positive test or hospitalization ≤7 days after a SARS-CoV-2–positive test. COVID-19 hospitalization was confirmed by manual chart review conducted by a physician investigator (B.K.A.) to verify the presence of severe COVID-19 symptoms. Controls included all individuals who tested negative with specimens collected between 12/6/2021 and 12/31/2021 and with the same age and membership requirement as cases. Randomly sampled controls were 2:1 matched to cases by age (18-44 years, 45–64 years, 65–74 years and ≥75 years), sex, race/ethnicity (non-Hispanic White, non-Hispanic Black, Hispanic, non-Hispanic Asian and other/unknown) and specimen collection date. Matching was conducted separately for the 1-, 2-, and 3-dose VE analysis. To accommodate variation in real-world practice, analyses did not require

dose 3 to be \geq 6 months from dose 2, as some members received dose 3 at a shorter interval in this study.

Exposure. The exposure of interest was 1, 2 or 3 doses of mRNA-1273. Dose 3 in this analysis included both the 100-µg additional primary dose in individuals who were immunocompromised, as well as the 50-µg and 100-ug booster dose in adults.

Covariates. Demographic and clinical covariates were extracted from EHRs.¹² Variables assessed included socioeconomic status (Medicaid, neighborhood median household income), medical center area, pregnancy status, KPSC physician/employee status, smoking, body mass index, Charlson comorbidity score, autoimmune conditions, chronic diseases (kidney, heart, lung, and liver disease and diabetes), frailty index and immunocompromised status. To account for potential differences in care-seeking or test-seeking behaviors, the following variables were also adjusted for: health care utilization (virtual, outpatient, emergency department and inpatient encounters), preventive care (other vaccinations, screenings and wellness visits), history of SARS-CoV-2 molecular test performed from 3/1/2020 to specimen collection date (irrespective of result) and history of COVID-19 (positive SARS-CoV-2 molecular test or a COVID-19 diagnosis code) from 3/1/2020 to specimen collection date.

Statistical analyses. Characteristics of cases and controls for each analysis were compared by using the χ^2 test or Fisher exact test for categorical variables and two-sample *t* test or Wilcoxon rank sum test for continuous variables. The distribution of variant type by vaccination status was tabulated. Conditional logistic regression was used to estimate the adjusted odds ratios (OR) and 95% confidence intervals (CI) for vaccination against infection and hospitalization with delta or omicron. Analyses were

adjusted for potential confounders, determined by scientific relevance or by absolute standardized differences (ASD) >0.1 and *P* value <0.1. Unconditional logistic regression with additional adjustment of matching factors in the model was used when matched sets needed to be broken for certain subgroup analyses or when the conditional model failed to converge. VE (%) was calculated as (1–adjusted OR)×100. As VE is a prevented fraction, which is a percentage ranging between 0% and 100%, the point estimate and its CI cannot be a negative value.

We also assessed 2-dose and 3-dose VE against delta or omicron infection by time since receipt of mRNA-1273 dose 2 or 3 (for 2-dose VE: 14-90 days, 91-180 days, 181-270 days, and >270 days; for 3-dose VE: on or before 10/20/2021 versus on or after 10/21/2021). 10/21/2021 was chosen since it was the date the ACIP recommended a 50-µg booster of mRNA-1273 for individuals who completed their primary series ≥ 6 months prior.^{21,22} As more immunocompromised persons might have received dose 3 before the October 2021 recommendation, we conducted a separate analysis that excluded individuals who were immunocompromised to assess durability of protection of 3 doses in immunocompetent individuals. We also evaluated 3-dose VE in select subgroups, including by age (<65, ≥65 years), sex, race/ethnicity (Hispanic, Non-Hispanic and others) and immunocompromised status (yes, no). As VE in individuals with a history of COVID-19 is different from those without,⁶ we also evaluated 3-dose VE against omicron infection, stratified by age (<65 years and \geq 65 years), among individuals with no history of COVID-19. SAS 9.4 was used for analyses. The study was approved by KPSC Institutional Review Board. All study staff with access to protected health information were trained in procedures to protect the confidentiality of KPSC

member data. A waiver of informed consent was obtained as this is an observational study of authorized and recommended Moderna COVID-19 vaccine administered in the course of routine clinical care. To facilitate the conduct of this study, a waiver was obtained for written HIPAA authorization for research involving use of the EHR.

Data availability

Individual-level data reported in this study are not publicly shared. Upon request, and subject to review, KPSC may provide the deidentified aggregate-level data that support the findings of this study. Deidentified data may be shared upon approval of an analysis proposal and a signed data access agreement.

Acknowledgments

Medical writing and editorial assistance were provided by Srividya Ramachandran, PhD, and Jared Mackenzie, PhD, of MEDiSTRAVA in accordance with Good Publication Practice (GPP3) guidelines, funded by Moderna, Inc., and under the direction of the authors. Laboratory and database support were provided at KPSC by Lee Childs, Julie Stern, Joy Gelfond, Radha Bathala, Kourtney Kottmann, Ana Acevedo, Elmer Ayala, Samantha Quinones, Samantha Baluyot, Errol Lopez and Don McCarthy. The authors thank the KPSC Lab Leadership and Technician Team for their support of this study. The authors would like to acknowledge Helix OpCo, LLC, for their whole genome sequencing of SARS-CoV-2 specimens. The authors thank the patients of Kaiser Permanente for their partnership with us to improve their health. Their information, collected through our electronic health record systems, leads to findings that help us improve care for our members and can be shared with the larger community. Julie Vanas, Moderna, Inc., provided critical operations support and Yamuna Paila, Moderna, Inc., provided critical input on specimen sequencing.

Author contributions

H.F.T, L.S.S, L.Q, K.J.B, and C.A.T were involved in the study concept and design, as well as acquisition, analysis, or interpretation of data (including B.K.A). H.F.T and B.K.A drafted the manuscript. Y.L, L.S.S, C.A.T, Y.T, K.J.B, J.E.T, A.F, J.H.K, G.S.L, S.K.C, H.S.T, M.A, and L.Q critically revised the manuscript for important intellectual content. L.Q, Y.L, Y.T, and J.E.T conducted the statistical analyses. L.S.S, C.A.T, G.S.L, M.A, S.K.C, and H.S.T provided administrative, technical, or material support. C.A.T and H.F.T obtained funding and provided supervision.

Competing interests

All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi disclosure.pdf and declare the following: H.F.T., B.K.A., Y.L., L.S.S., Y.T., J.E.T., A.F., J.H.K., G.S.L., S.K.C., H.S.T., M.A. and L.Q. are employees of Kaiser Permanente Southern California, which has been contracted by Moderna, Inc., to conduct this study. K.J.B. is an adjunct investigator at Kaiser Permanente Southern California. C.A.T. is an employee of and a shareholder in Moderna, Inc. H.F.T. received funding from GlaxoSmithKline and Segirus unrelated to this manuscript; H.F.T. also served in advisory boards for Janssen and Pfizer Inc. B.K.A. received funding from GlaxoSmithKline, Dynavax, Segirus, Pfizer Inc. and Genentech for work unrelated to this study and has served on advisory boards for GlaxoSmithKline. Y.L. received funding from GlaxoSmithKline, Segirus and Pfizer Inc. unrelated to this manuscript. L.S.S. received funding from GlaxoSmithKline, Dynavax and Segirus unrelated to this manuscript. Y.T. received funding from GlaxoSmithKline unrelated to this manuscript. J.E.T. received funding from Pfizer Inc. unrelated to this manuscript. A.F. received funding from Pfizer Inc., GlaxoSmithKline and Gilead unrelated to this manuscript.

J.H.K. received funding from GlaxoSmithKline unrelated to this manuscript. G.S.L. received funding from GlaxoSmithKline unrelated to this manuscript. S.K.C. received funding from Pfizer Inc. and Pancreatic Cancer Action Network unrelated to this manuscript. H.S.T. received funding from GlaxoSmithKline, Pfizer Inc., ALK and Wellcome unrelated to this manuscript. M.A. received funding from Pfizer Inc. unrelated to this manuscript. L.Q. received funding from GlaxoSmithKline and Dynavax unrelated to this manuscript.

Funding

This study was funded by Moderna, Inc.

References

- 1. Wolter, N., *et al.* Early assessment of the clinical severity of the SARS-CoV-2 Omicron variant in South Africa. *medRxiv*, 2021.2012.2021.21268116 (2021).
- 2. Garcia-Beltran, W.F., *et al.* mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. *Cell*.
- Nicole A. Doria-Rose, X.S., Stephen D Schmidt, Sijy O'Dell, Charlene McDanal, Wenhong Feng, Jin Tong, Amanda Eaton, Maha Maglinao, Haili Tang, Kelly E. Manning, Venkata-Viswanadh Edara, Lilin Lai, Madison Ellis, Kathryn Moore, Katharine Floyd, Stephanie L. Foster, Robert L. Atmar, Kirsten E. Lyke, Tongqing Zhou, Lingshu Wang, Yi Zhang, Martin R Gaudinski, Walker P Black, Ingelise Gordon, Mercy Guech, Julie E Ledgerwood, John N Misasi, Alicia Widge, Paul C. Roberts, John Beigel, Bette Korber, Rolando Pajon, John R. Mascola, Mehul S. Suthar, David C. Montefiori. Booster of mRNA-1273 Strengthens SARS-CoV-2 Omicron Neutralization. *MedRxiv* medRxiv 2021.12.15.21267805(2021).
- Cele, S., *et al.* SARS-CoV-2 Omicron has extensive but incomplete escape of Pfizer
 BNT162b2 elicited neutralization and requires ACE2 for infection. *medRxiv* (2021).
- 5. Wilhelm, A., *et al.* Reduced Neutralization of SARS-CoV-2 Omicron Variant by Vaccine Sera and Monoclonal Antibodies. *medRxiv*, 2021.2012.2007.21267432 (2021).
- Bruxvoort, K.J., *et al.* Real-world effectiveness of the mRNA-1273 vaccine against COVID-19: Interim results from a prospective observational cohort study. *Lancet Reg Health Am*, 100134 (2021).
- United States Food and Drug Administration. SARS-CoV-2 Viral Mutations: Impact on COVID-19 Tests Vol. 2022 (2021).
- 8. WHO. Enhancing Readiness for Omicron (B.1.1.529): Technical Brief and Priority Actions for Member States. https://www.who.int/publications/m/item/enhancing-

readiness-for-omicron-(b.1.1.529)-technical-brief-and-priority-actions-for-member-states. (2021).

- Public Health England. Investigation of novel SARS-CoV-2 variant: variant of convern 202012/01. (2020).
- 10. Public Health England. SARS-CoV-2 variants of concern and variants under investigation in England (2021).
- United States Centers for Disease Control and Prevention. COVID Data Tracker: Variant Proportions. Vol. 2022.
- Bruxvoort, K.J., *et al.* Effectiveness of mRNA-1273 against delta, mu, and other emerging variants of SARS-CoV-2: test negative case-control study. *BMJ* 375, e068848 (2021).
- Food and Drug Administration. Emergency Use Authorization for Vaccines to Prevent COVID-19: Guidance for Industry. (2021).
- El Sahly, H.M., *et al.* Efficacy of the mRNA-1273 SARS-CoV-2 Vaccine at Completion of Blinded Phase. *N Engl J Med* 385, 1774-1785 (2021).
- Hansen, C.H., *et al.* Vaccine effectiveness against SARS-CoV-2 infection with the Omicron or Delta variants following a two-dose or booster BNT162b2 or mRNA-1273 vaccination series: A Danish cohort study. *medRxiv*, 2021.2012.2020.21267966 (2021).
- Andrews, N., *et al.* Effectiveness of COVID-19 vaccines against the Omicron (B.1.1.529) variant of concern. *medRxiv*, 2021.2012.2014.21267615 (2021).
- Collie, S., Champion, J., Moultrie, H., Bekker, L.G. & Gray, G. Effectiveness of BNT162b2 Vaccine against Omicron Variant in South Africa. *N Engl J Med* 10.1056/NEJMc2119270 (2021).
- Ferguson N, *et al.* Report 49: Growth, population distribution and immune escape of Omicron in England (Imperial College London, 2021).

- 19. Chan, M.C.W., *et al.* SARS-CoV-2 Omicron variant replication in human respiratory tract ex vivo. *Research Square* 10.21203/rs.3.rs-1189219/v1 (2021).
- French G, et al. Impact of hospital strain on excess deaths during the COVID-19 pandemic United States, July 2020–July 2021. MMWR Morb Mortal Wkly Rep 70, 1613-1616 (2021).
- 21. United States Centers for Disease Control and Prevention. CDC Expands Eligibility for COVID-19 Booster Shots (2021).
- United States Centers for Disease Control and Prevention. Choosing Your COVID-19 Booster Shot. Vol. 2022 (2022).

The figure depicts the waning effectiveness of 2 doses of mRNA-1273 vaccine against omicron infection (red line) and delta infection (blue line) within 365 days after vaccination. The vertical bar associated with each point estimate represents the 95% confidence interval of the vaccine effectiveness.

The figure depicts the effectiveness of 3 doses of mRNA-1273 vaccine against delta infection (blue line) and omicron infection (red line), comparing effectiveness of third doses received on or after 10/21/2021 with third doses received before that date. The vertical bar associated with each point estimate represents the 95% confidence interval of the vaccine effectiveness.

			2	dose					3-	dose		
		Delta			Omicron	Delta Omic				Omicron		
	Test positive cases N = 4,117	Test negative controls N = 8,234	P value/A SD	Test positive cases N = 19,395	Test negative controls N = 38,790	P value/A SD	Test positive cases N = 3,021	Test negative controls N = 6,042	P value/A SD	Test positive cases N = 11,217	Test negative controls N = 22,434	P value/A SD
Age at specimen collection date, years			0.39 / 0.02		·	<0.01 / 0.04			0.04 / 0.05			<0.01 / 0.07
Mean (sd)	42.31 (14.64)	42.60 (14.67)		39.10 (13.77)	39.68 (13.94)		41.81 (14.67)	42.48 (14.58)		40.61 (15.08)	41.65 (15.15)	
Median	41	40		37	38		40	40		38	39	
Q1, Q3	31, 53	31, 53		28, 49	29, 50		31, 52	32, 53		29, 51	30, 52	
Min, max	18, 92	18, 97		18, 93	18, 101		18,90	18, 98		18, 99	18, 103	
Age at specimen collection date, years, n (%)	2.45.0	4.01.0	N/A	12017	26.024	N/A	1055	271.0	N/A	7011	14422	N/A
18-44	2,458 (59.7%) 1,339	4,916 (59.7%) 2,678		(67.1%) 5,519	26,034 (67.1%) 11,038		(61.4%) 933	(61.4%) 1866		(64.3%) 3067	(64.3%) 6134	
45-64	(32.5%) 242	(32.5%) 484		(28.5%)	(28.5%) 1,304		(30.9%) 177	(30.9%) 354		(27.3%)	(27.3%) 1382	
65–74	(5.9%)	(5.9%) 156		652 (3.4%)	(3.4%)		(5.9%)	(5.9%) 112		691 (6.2%)	(6.2%)	
≥75	78 (1.9%)	(1.9%)		207 (1.1%)	414 (1.1%)		56 (1.9%)	(1.9%)		248(2.2%)	496 (2.2%)	
Sex, n (%)	2 224	4 4 4 0	N/A	11 1 24	22.240	N/A	1504	21.0.0	N/A	C245	12600	N/A
Female	2,224 (54.0%) 1,893	4,448 (54.0%) 3,786		(57.4%) 8,271	22,248 (57.4%) 16,542		(52.8%) 1427	(52.8%) 2854		(56.6%) 4872	(56.6%) 9744	
Male	(46.0%)	(46.0%)		(42.6%)	(42.6%)		(47.2%)	(47.2%)		(43.4%)	(43.4%)	
Race/ethnicity, n (%)	1 575	2 1 5 0	N/A	4 962	9 9 2 4	N/A	11.02	2205	N/A	2240	6480	N/A
Non-Hispanic White	(38.3%) 235	(38.3%) 470		4,982 (25.6%) 1,750	(25.6%) 3,500		(39.5%) 186	(39.5%) 372		(28.9%) 1151	(28.9%) 2302	
Non-Hispanic Black	(5.7%) 1,812	(5.7%) 3,624		(9.0%) 9,482	(9.0%) 18,964		(6.2%) 1279	(6.2%) 2558		(10.3%) 5127	(10.3%) 10254	
Hispanic	(44.0%) 180	(44.0%) 360		(48.9%) 1,540	(48.9%) 3,080		(42.3%) 120	(42.3%) 240		(45.7%)	(45.7%) 1618	
Non-Hispanic Asian	(4.4%) 315	(4.4%) 630		(7.9%) 1,661	(7.9%) 3,322		(4.0%) 243	(4.0%) 486		809 (7.2%)	(7.2%) 1780	
Other/unknown	(7.7%)	(7.7%)		(8.6%)	(8.6%)		(8.0%)	(8.0%)		890 (7.9%)	(7.9%)	
Body mass index ^b , n (%)			<0.01 / 0.14			<0.01 / 0.08			<0.01 / 0.18			<0.01 / 0.11
<18.5	26 (0.6%) 744	82 (1.0%)		180 (0.9%) 3 854	430 (1.1%)		18 (0.6%) 567	64 (1.1%) 1355		129 (1.2%) 2312	250 (1.1%) 4829	
18.5 - <25	(18.1%)	(20.3%)		(19.9%)	(20.8%)		(18.8%)	(22.4%)		(20.6%)	(21.5%)	

Table 1. Characteristics of SARS-CoV-2 cases and controls, by variant

35-<40	(10.0%)	(10.4%)		(10.0%)	(10.4%)		(10.1%)	(9.7%)		(9.4%)	(10.5%)	
40	168	387		044 (4 70()	1,834		117	248		477 (4 20()	1066	
40 - <45	(4.1%)	(4.7%)		914 (4.7%)	(4.7%)		(3.9%)	(4.1%)		4 / / (4.3%)	(4.8%)	
N/F	106	265		601 (2.1%)	1,255		67 (2 200)	1/3		277 (2 59/)	71 E (2, 207)	
245	(2.0%)	(5.2%)		3 0/15	(5.2%)		565	(2.9%) 789		277 (2.5%)	715 (5.2%)	
Unknown	(17.5%)	(13.2%)		(15.7%)	(13.0%)		(18.7%)	(131%)		(15.5%)	(12.2%)	
CIRCIOWIT	(17.370)	(13.2/0)	<0.01 /	(13.770)	(15.670)	<0.01 /	(10.770)	(10.170)	<0.01 /	(15.570)	(12.270)	<0.01 /
Smoking ^b , n (%)			0.12			0.08			0.16			0.10
	2,855	5,942		14,239	28,750		2037	4374		8172	16622	
No	(69.3%)	(72.2%)		(73.4%)	(74.1%)		(67.4%)	(72.4%)		(72.9%)	(74.1%)	
	672	1,425		2,709	6,018		510	1033		1647	3658	
Yes	(16.3%)	(17.3%)		(14.0%)	(15.5%)		(16.9%)	(17.1%)		(14.7%)	(16.3%)	
	590	867		2,447	4,022		474	635		1398	2154	
Unknown	(14.3%)	(10.5%)		(12.6%)	(10.4%)		(15.7%)	(10.5%)		(12.5%)	(9.6%)	
			<0.01 /			<0.01/			<0.01/			<0.01 /
Charlson comorbidity score , n (%)	2 27/	6 2 2 1	0.12	16140	20 956	0.11	24 71	1600	0.12	00.94	17074	0.12
0	(80.7%)	(76.8%)		(83.3%)	(79.5%)		(81.8%)	(77.6%)		(81.0%)	(76.1%)	
0	480	1.007		2.172	4.799		337	731		1254	3023	
1	(11.7%)	(12.2%)		(11.2%)	(12.4%)		(11.2%)	(12.1%)		(11.2%)	(13.5%)	
	313	906		1,074	3,135		213	622			2337	
≥2	(7.6%)	(11.0%)		(5.5%)	(8.1%)		(7.1%)	(10.3%)		879 (7.8%)	(10.4%)	
			<0.01/			<0.01/			<0.01/			<0.01/
Frailty index ^a , n (%)			0.17			0.12			0.19			0.14
	988	1,925		4,926	9,615		722	1451		2729	5490	
Quartile 1	(24.0%)	(23.4%)		(25.4%)	(24.8%)		(23.9%)	(24.0%)		(24.3%)	(24.5%)	
Output la D	1,249	2,013		5,284	9,158		935	1418		3234	53/1	
Quartile 2	(30.3%)	(24.4%)		(27.2%)	(23.6%)		(31.0%)	(Z3.5%) 1527		(28.8%)	(23.9%)	
Quartile 3	(24.6%)	(25.2%)		(25.5%)	(25.0%)		(24.3%)	(25.4%)		(25.2%)	(24.9%)	
	866	2 2 2 2 5		4 233	10 317		629	1636		2423	5989	
Quartile 4 (most frail)	(21.0%)	(27.0%)		(21.8%)	(26.6%)		(20.8%)	(27.1%)		(21.6%)	(26.7%)	
$(hronic discosses^3 n (%))$												
chionic diseases, in (%)		252	<0.01 /			<0.01 /		175	<0.01 /			<0.01 /
Kidney disease	78 (1.9%)	(3.1%)	0.08	205 (1.1%)	823 (2.1%)	0.09	56 (1.9%)	(2.9%)	0.07	227 (2.0%)	613 (2.7%)	0.05
	, e (11070)	180	<0.01 /	200 (212/0)	010 (21170)	<0.01 /	55 (21576)	119	0.04 /	227 (21070)	010 (21770)	<0.01 /
Heart disease	52 (1.3%)	(2.2%)	0.07	160 (0.8%)	612 (1.6%)	0.07	41 (1.4%)	(2.0%)	0.05	140 (1.2%)	386 (1.7%)	0.04
	284	713	<0.01/	1,217	3,148	<0.01/	205	530	<0.01/		2053	<0.01/
Lung disease	(6.9%)	(8.7%)	0.07	(6.3%)	(8.1%)	0.07	(6.8%)	(8.8%)	0.07	774 (6.9%)	(9.2%)	0.08
	111	311	<0.01/		1,161	<0.01/		195	0.04 /			<0.01/
Liver disease	(2.7%)	(3.8%)	0.06	461 (2.4%)	(3.0%)	0.04	74 (2.4%)	(3.2%)	0.05	271 (2.4%)	730 (3.3%)	0.05
	310	761	<0.01/	1,318	3,112	<0.01/	190	492	<0.01/		2152	<0.01/
Diabetes	(7.5%)	(9.2%)	0.06	(6.8%)	(8.0%)	0.05	(6.3%)	(8.1%)	0.07	831 (7.4%)	(9.6%)	0.08
	C7 (4, C2()	267	<0.01 /	222 (4 761)	1,068	<0.01 /	AC (4 500)	245	<0.01 /	274 (2.460)	000 (0 70()	<0.01 /
immunocompromised, n (%)	67 (1.6%)	(3.2%)	0.10	332 (1.7%)	(2.8%)	0.07	46(1.5%)	(4.1%)	0.15	//4 (/ 4%)	837137%)	0.07
				. ,	(/	0.07		(,		27.1 (21.7.0)	002 (01770)	

Leukemia/lymphoma, congenital and other immunodeficiencies, asplenia/hyposplenia	28	86		102	325		17	84		94	255	
Organ transplant	6	22		15	75		4	25		29	84	
Immunosuppressant medications	38	168	018/	212	736	-0.01 /	29	158	0.02.(173	560	-0.01 (
Autoimmune conditions ^a , n (%)	94 (2.3%)	(2.7%)	0.03	351 (1.8%)	841 (2.2%)	0.03	66 (2.2%)	(3.0%)	0.027	253 (2.3%)	659 (2.9%)	0.017
Rheumatoid arthritis	29	107		125	350		19	77		100	282	
Inflammatory bowel disease	22	52		77	206		17	52		63	157	
Psoriasis and psoriatic arthritis	37	56		129	241		25	5		74	197	
Multiple sclerosis	7	13		23	57		5	9		19	34	
Systemic lupus erythematosus	5	21 244	<0.01 /	32	98 1213	<0.01 /	3	25 187	<0.01 /	33	88	<0.01 /
Pregnant at specimen collection date, n (%)	70 (1.7%)	(3.0%)	0.08	343 (1.8%)	(3.1%)	0.09	58 (1.9%)	(3.1%)	0.08	224 (2.0%)	691 (3.1%)	0.07
1st trimester	20	29		68	175		16	32		40	78	
2nd trimester	22	67		133	308		20	51		80	149	
3rd trimester	28 103	148 1,637	<0.01 /	142 2,639	730 7,866	<0.01 /	22	104 1200	<0.01 /	104 1731	464 4062	<0.01 /
History of COVID-19 ^c , n (%)	(2.5%) 2,722	(19.9%) 6,456	0.57 <0.01 /	(13.6%) 13,994	(20.3%) 28,950	0.18 <0.01 /	92 (3.0%) 1954	(19.9%) 4824	0.55 <0.01 /	(15.4%) 8199	(18.1%) 16894	0.07 <0.01 /
History of SARS-CoV-2 molecular test ^c , n (%)	(66.1%)	(78.4%)	0.28 <0.01 /	(72.2%)	(74.6%)	0.06 <0.01 /	(64.7%)	(79.8%)	0.34 <0.01 /	(73.1%)	(75.3%)	0.05 <0.01 /
Number of outpatient and virtual visits", n (%)	501	571	0.31	1 624	2 510	0.19	453	491	0.38	1202	1434	0.27
0	(12.2%)	(6.9%)		(8.4%)	(6.5%)		(15.0%)	(8.1%)		(10.7%)	(6.4%)	
1-4	(35.2%)	(27.0%) 2.401		(34.4%) 5 91 5	(29.2%)		(37.1%)	(27.0%)		(33.6%) 3.060	(26.2%)	
5–10	(26.9%) 1,057	(29.2%) 3,042		(30.5%) 5176	(29.7%) 13422		(24.2%) 716	(27.4%) 2,265		(27.3%) 3,181	(28.6%) 8,696	
≥11	(25.7%)	(36.9%)	<0.01 /	(26.7%)	(34.6%)	<0.01 /	(23.7%)	(37.5%)	<0.01/	(28.4%)	(38.8%)	<0.01/
Number of Emergency Department visits ^a , n (%)	2 502	6 500	0.16	46.270	24.252	0.13	2 5 2 2	4 070	0.13	0.000	10100	0.09
0	3,503 (85.1%) 443	6,528 (79.3%) 1 1 3 9		16,378 (84.4%) 2.270	31,250 (80.6%) 5.066		2,580 (85.4%) 316	4,878 (80.7%) 817		9,362 (83.5%) 1,366	18,132 (80.8%) 2,903	
1	(10.8%) 171	(13.8%) 567		(11.7%)	(13.1%) 2.474		(10.5%) 125	(13.5%) 347		(12.2%)	(12.9%) 1.399	
≥2	(4.2%)	(6.9%)	-0.01 (747 (3.9%)	(6.4%)		(4.1%)	(5.7%)	0.01./	489 (4.4%)	(6.2%)	-0.01 (
Number of hospitalizations ^a , n (%)	2 02 2	7 6 9 7	<0.01 / 0.09	40.675	26.624	<0.017 0.10	2 072	5 670	0.017	40 740	24.477	<0.017 0.08
0	3,923 (95.3%)	7,697 (93.5%)		18,675 (96.3%)	36,624 (94.4%)		2,873 (95.1%)	5,670 (93.8%)		10,743 (95.8%)	21,177 (94.4%)	
1	(3.9%)	411 (5.0%) 126		630 (3.2%)	(4.4%)		(4.1%)	280 (4.6%)		416 (3.7%)	(4.5%)	
≥2	32 (0.8%)	(1.5%)		90 (0.5%)	459 (1.2%)		25 (0.8%)	92 (1.5%)		58 (0.5%)	252 (1.1%)	

	2,186	4,909	<0.01 /	10,773	23,352	<0.01/	1,450	3,660	<0.01 /	6,114	14,617	<0.01/
Preventive care ^a , n(%)	(53.1%)	(59.6%)	0.13	(55.5%)	(60.2%)	0.09	(48.0%)	(60.6%)	0.25	(54.5%)	(65.2%)	0.22
	391	844	0.19/	1,897	4,461	<0.01/	310	581	0.33 /	1,187	2,425	0.53/
Medicaid, n (%)	(9.5%)	(10.3%)	0.03	(9.8%)	(11.5%)	0.06	(10.3%)	(9.6%)	0.02	(10.6%)	(10.8%)	0.01
			0.05 /			<0.01/			<0.01 /			0.03/
Neighborhood median household income, n(%)			0.06			0.05			0.09			0.04
	179	402			1,902		129	243			1070	
< \$40,000	(4.3%)	(4.9%)		812 (4.2%)	(4.9%)		(4.3%)	(4.0%)		458(4.1%)	(4.8%)	
	712	1,580		3,856	8,082		494	1171		2,175	4,392	
\$40,000-\$59,999	(17.3%)	(19.2%)		(19.9%)	(20.8%)		(16.4%)	(19.4%)		(19.4%)	(19.6%)	
	1,097	2,121		5,146	9,948		817	1,483		2,931	5,740	
\$60,000-\$79,999	(26.6%)	(25.8%)		(26.5%)	(25.6%)		(27.0%)	(24.5%)		(26.1%)	(25.6%)	
	2,126	4,123		9,563	18,817		1,579	3,141		5,636	11,211	
\$80,000+	(51.6%)	(50.1%)		(49.3%)	(48.5%)		(52.3%)	(52.0%)		(50.2%)	(50.0%)	
Unknown	3 (0.1%)	8 (0.1%)		18 (0.1%)	41 (0.1%)		2 (0.1%)	4 (0.1%)		17 (0.2%)	21 (0.1%)	
	129	609	<0.01 /		1759	0.04 /		558	<0.01 /		1,176	<0.01/
KPSC physician/employee, n (%)	(3.1%)	(7.4%)	0.19	806 (4.2%)	(4.5%)	0.02	85 (2.8%)	(9.2%)	0.27	480 (4.3%)	(5.2%)	0.05
			<0.01 /			<0.01/			<0.01 /			<0.01/
Specimen type, n (%)			0.39			0.21			0.47			0.17
	3,627	5,990		17,162	31,379		2,607	4,042		9,513	17,523	
Nasopharyngeal/oropharyngeal swab	(88.1%)	(72.7%)		(88.5%)	(80.9%)		(86.3%)	(66.9%)		(84.8%)	(78.1%)	
	490	2,244		2,233	7,411		414	2,000		1,704	4,911	
Saliva	(11.9%)	(27.3%)		(11.5%)	(19.1%)		(13.7%)	(33.1%)		(15.2%)	(21.9%)	

^a Defined in the one year prior to specimen collection date

^b Defined in the 2 years prior to specimen collection date

^c Defined based on all available medical records from March 1, 2020, to specimen collection date

Medical center area not shown. There were differences in the distribution of the vaccinated and unvaccinated individuals across the 19 medical center areas.

N/A = not applicable

		SARS-CoV-2	Test Positive	SARS-CoV-2	Test Negative	VE (95% CI)		
	Variant	Vaccinated (%)	Unvaccinate d (%)	Vaccinated (%)	Unvaccinated (%)	Unadjusted ^ª	Adjusted	
Infection ^b								
meetion			2.883			47.0% (29.0%,		
1-dose	Delta	59 (2.0%)	(98.0%) 8.590	218 (3.7%)	5,666 (96.3%) 1.7051	60.4%)	55.6% (38.8%, 67.8%)	
	Omicron	357 (4.0%)	(96.0%)	843 (4.7%)	(95.3%)	15.8% (4.5%, 25.8%)	20.0% (8.9%, 29.8%)	
		. ,	2,883	. ,	. ,	57.0% (53.3%,		
	Delta	1,234 (30.0%)	(70.0%) 2,883	4,031 (49.0%)	4,203 (51.0%)	60.4%) 79.7% (67.9%,	60.7% (56.6%, 64.3%)	
	14-90 days	21(0.7%)	(99.3%)	151(3.5%)	4,203 (96.5%)	87.2%)	79.8% (67.4%, 87.5%)	
			2,883			62.9% (52.9%,		
	91-180 days	87 (2.9%)	(97.1%)	342 (7.5%)	4,203 (92.5%)	70.8%)	66.3% (56.6%, 73.8%)	
			2,883			54.9% (50.6%,		
	181-270 days	824 (22.2%)	(77.8%)	2,663 (38.8%)	4,203 (61.2%)	58.8%)	61.2% (56.9%, 65.0%)	
			2,883			49.7% (42.2%,		
2-dose	>270 days	302 (9.5%)	(90.5%)	875 (17.2%)	4,203 (82.8%)	56.2%)	57.5% (50.4%, 63.6%)	
2 0030		10,795	8,600	22,679	16,111			
	Omicron	(55.7%)	(44.3%)	(58.5%)	(41.5%)	11.2% (8.0%, 14.3%)	15.5% (12.2%, 18.7%)	
			8,600		16,111	45.1% (36.5%,		
	14-90 days	245 (2.8%)	(97.2%)	836 (4.9%)	(95.1%)	52.5%)	42.8% (33.8%, 50.7%)	
			8,600		16,111	21.4% (14.3%,		
	91-180 days	783 (8.3%)	(91.7%)	1,867 (10.4%)	(89.6%)	28.0%)	23.0% (15.8%, 29.6%)	
			8,600	14,759	16,111			
	181-270 days	7,015 (44.9%)	(55.1%)	(47.8%)	(52.2%)	11.0% (7.5%, 14.3%)	15.6% (12.1%, 19.1%)	
			8,600		16,111			
	>270 days	2,752 (24.2%)	(75.8%)	5,217 (24.5%)	(75.5%)	1.2% (0.0%, 6.3%)	8.6% (3.3%, 13.6%)	
			2,883			93.6% (92.0%,		
	Delta	138 (4.6%)	(95.4%)	1,836 (30.4%)	4,206 (69.6%)	95.0%)	94.0% (92.3%, 95.4%)	
	3rd dose on or after		2,883			89.5% (87.3%,		
	10/21/2021	122 (4.1%)	(95.9%)	1,701 (28.8%)	4,206 (71.2%)	91.3%)	92.9% (91.2%, 94.3%)	
	3rd dose on or prior to		2,883			82.7% (70.9%,		
3-dose	10/20/2021	16 (0.6%)	(99.4%)	135 (3.1%)	4,206 (96.9%)	89.7%)	87.8% (78.5%, 93.1%)	
			8,600	10,203	12,231	71.5% (69.7%,		
	Omicron	2,617 (23.3%)	(76.7%)	(45.5%)	(54.5%)	73.1%)	67.7% (65.5%, 69.7%)	
	3rd dose on or after		8,600		12,231	64.8% (62.8%,		
	10/21/2021	2,383 (21.7%)	(78.3%)	9,616 (44.0%)	(56.0%)	66.6%)	67.9% (65.8%, 69.9%)	
	3rd dose on or prior to	234 (2.6%)	8,600	587 (4.6%)	12,231	43.3% (33.9%,	49.5% (40.4%, 57.3%)	

Table 2. Vaccine effectiveness of mRNA-1273 against infection and hospitalization with delta or omicron variants

	10/20/2021		(97.4%)		(95.4%)	51.4%)	
			2,851			89.6% (87.4%,	
	Delta	124 (4.2%)	(95.8%)	1,708 (29.5%)	4,089 (70.5%)	91.4%)	93.2% (91.6%, 94.5%)
	3rd dose on or after		2,851			89.9% (87.7%,	
	10/21/2021	114 (3.8%)	(96.2%)	1,623 (28.4%)	4,089 (71.6%)	91.7%)	93.3% (91.7%, 94.7%)
3-dose excluding immunocompromise d individuals	3rd dose on or prior to		2,851			83.1% (67.5%,	
	10/20/2021	10 (0.3%)	(99.7%)	85 (2.0%)	4,089 (98.0%)	91.3%)	91.2% (82.3%, 95.6%)
			8,479		11,925	64.2% (62.3%,	
	Omicron	2,464 (22.5%)	(77.5%)	9,677 (44.8%)	(55.2%)	66.0%)	68.2% (66.1%, 70.2%)
	3rd dose on or after		8,479		11,925	65.1% (63.1%,	
	10/21/2021	2,306 (21.4%)	(78.6%)	9,282 (43.8%)	(56.2%)	66.9%)	68.6% (66.5%, 70.6%)
	3rd dose on or prior to		8,479		11,925	43.7% (32.2%,	
	10/20/2021	158 (1.8%)	(98.2%)	395 (3.2%)	(96.8%)	53.3%)	54.8% (44.9%, 62.9%)
Hospitalization ^c							
1-dose	Delta	1(1.3%)	79 (98.8%)	10 (6.3%)	150 (93.8%)	82.2% (0.0%, 97.8%)	76.1% (0.0%, 98.2%)
	Omicron	0 (0.0%)	14 (100.0%)	2 (7.1%)	26 (92.9%)	100.0% (N/A)	N/A
						95.9% (86.9%,	
2-dose	Delta	4 (4.8%)	79 (95.2%)	94 (56.6%)	72 (43.4%)	98.7%)	98.5% (92.0%, 99.7%)
2-0036						81.1% (29.8%,	
	Omicron	7 (33.3%)	14 (66.7%)	28 (66.7%)	14 (33.3%)	94.9%)	74.8% (2.4%, 93.5%)
						98.3% (87.7%,	99.6% (95.7%,
2 doco	Delta	1(1.3%)	79 (98.8%)	69 (43.1%)	91 (56.9%)	99.8%)	100.0%)
3-0056						89.0% (58.5%,	99.7% (82.2%,
	Omicron	4 (22.2%)	14 (77.8%)	26 (72.2%)	10 (27.8%)	97.1%)	100.0%)

^a Models for time since vaccination analyses and 3-dose hospitalization analyses are unconditional logistic models, and the rest are conditional logistic models conditioned on matched pairs.

^b Model adjustment – Refer to Supplementary Table 1 for list of the covariates:

Model for 1-dose delta variant adjusted for covariates: 4, 5, 7, 13, 16, 17, 18, 19, 24, 25, 26.

Model for 2-dose delta variant adjusted for covariates: 4, 5, 6, 7, 13, 16, 17, 18, 19, 21, 24, 25, 26.

Model for 3-dose delta variant adjusted for covariates: 4, 5, 6, 7, 13, 16, 17, 18, 19, 21, 24, 25, 26.

Model for 1-dose omicron variant adjusted for covariates: 6, 15, 16, 18, 19, 20, 25, 26.

Model for 2-dose omicron variant adjusted for covariates 6, 7, 16, 18, 19, 20, 25, 26.

Model for 3-dose omicron variant adjusted for covariates: 4, 6, 7, 18, 21, 25, 26.

Models for time since vaccination analyses are unconditional logistic models, and are adjusted for matching variables age groups, sex, and race/ethnicity in addition to the covariates adjusted in conditional models.

^c Model adjustment:

Model for 1-dose delta variant adjusted for covariates: 4, 12, 16, 17, 21.

Model for 2-dose delta variant adjusted for covariates: 4, 12, 16, 17, 21.

Model for 3-dose delta variant is unconditional model and adjusted for covariates: 1, 2, 3, 4, 12, 16, 17, 21.

Model for 2-dose omicron variant adjusted for covariates: 16 and 22.

Model for 3-dose omicron variant is unconditional model and adjusted for covariates: 1, 2, 3, 5, 19.

	SARS-CoV-2	Test Positive	SARS-CoV-2	Test Negative	VE (95% CI)		
Variant ^a	Vaccinated (%)	Unvaccinated (%)	Vaccinated (%)	Unvaccinated (%)	Unadjusted ^a	Adjusted ^b	
Delta							
Age at specimen collection date							
		2,694	1,470				
<65	94 (3.4%)	(96.6%)	(26.4%)	4,106 (73.6%)	93.3% (91.3%, 94.8%)	93.6% (91.5%, 95.2%)	
≥65	44 (18.9%)	189 (81.1%)	366 (78.5%)	100 (21.5%)	95.0% (91.1%, 97.1%)	97.3% (94.2%, 98.7%)	
Sex							
		1,519					
Female	75 (4.7%)	(95.3%)	969 (30.4%)	2,219 (69.6%)	93.2% (90.7%, 95.0%)	94.0% (91.6%, 95.8%)	
		1,364					
Male	63 (4.4%)	(95.6%)	867 (30.4%)	1,987 (69.6%)	94.2% (91.7%, 95.9%)	94.2% (91.3%, 96.1%)	
Race/ethnicity							
		1,240					
Hispanic	39 (3.0%)	(97.0%)	577 (22.6%)	1,981 (77.4%)	92.4% (88.7%, 94.8%)	92.2% (88.0%, 94.9%)	
		1,643	1,259	<i>i</i>			
Non-Hispanic and others	99 (5.7%)	(94.3%)	(36.1%)	2,225 (63.9%)	94.2% (92.2%, 95.7%)	94.8% (92.8%, 96.2%)	
Immunocompromised status							
Yes	14 (30.4%)	32 (69 6%)	128 (52 2%)	117 (47 8%)	60.0% (21.4% 79.7%)	75 0% (38 3% 89 9%)	
	21 (0011/07	2 851	1 708	11, (1,10,0)			
No	124 (4.2%)	(95.8%)	(29.5%)	4,089 (70.5%)	89.6% (87.4%, 91.4%)	93.2% (91.6%, 94.5%)	
Omicron							
Ago at specimon collection date							
Age at specifien conection date	1 943	8 335	8 573	11 983			
<65	(18.9%)	(81 1%)	(41 7%)	(58.3%)	72 2% (70 4% 73 9%)	68 6% (66 3% 70 7%)	
	(101070)	(01.1/0)	1.630	(301370)	721270 (701170) 701070)		
≥65	674 (71.8%)	265 (28.2%)	(86.8%)	248 (13.2%)	61.7% (53.2%, 68.6%)	63.6% (53.8%, 71.4%)	
Sex							
	1,529	4,816	5,862				
Female	(24.1%)	(75.9%)	(46.2%)	6,828 (53.8%)	70.4% (67.9%, 72.6%)	67.4% (64.6%, 70.1%)	
	1,088	3,784	4,341				
Male	(22.3%)	(77.7%)	(44.6%)	5,403 (55.4%)	72.9% (70.3%, 75.3%)	68.0% (64.5%, 71.2%)	
Race/ethnicity							

Table 3. Vaccine effectiveness of 3 doses of mRNA-1273 against infection with delta or omicron variants by subgroup

Hispanic	970 (18.9%)	4,157 (81.1%)	3,976 (38.8%)	6,278 (61.2%)	69.6% (66.7%, 72.2%)	65.4% (61.7%, 68.7%)
	1,647	4,443	6,227			
Non-Hispanic and others	(27.0%)	(73.0%)	(51.1%)	5,953 (48.9%)	72.8% (70.5%, 74.9%)	69.3% (66.5%, 71.9%)
Immunocompromised status						
Yes	153 (55.8%)	121 (44.2%)	526 (63.2%)	306 (36.8%)	26.4% (3.0%, 44.2%)	21.7% (0.0%, 45.0%)
	2,464	8,479	9,677	11,925		
No	(22.5%)	(77.5%)	(44.8%)	(55.2%)	64.2% (62.3%, 66.0%)	68.2% (66.1%, 70.2%)

^a Models for immunocompromised status subgroup analyses are unconditional logistic models, and the rest are conditional logistic models conditioned on matched pairs.

^b Model adjustment - Refer to Supplementary Table 1 for list of the covariates:

Models for delta variant adjusted for covariates: 4, 5, 6, 7, 13, 16, 17, 18, 19, 21, 24, 25, 26.

Models for omicron variant adjusted for covariates: 4, 6, 7, 18, 21, 25, 26.

Models for immunocompromised status analyses are adjusted for matching variables age groups, sex, and race/ethnicity in addition to the covariates adjusted in conditional models.

Model for delta variant in immunocompromised subgroup adjusted for covariates: 1, 2, 3, 4, 5, 6, 7, 13, 16, 17, 18, 19, 21, 24, 25.