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1. Abstract 
 
The SARS-CoV-2 epidemic continues to have major impacts on children’s education, with schools 
required to implement infection control measures that have led to long periods of absence and 
classroom closures.  We have developed an agent-based epidemiological model of SARS-CoV-2 
transmission that allows us to quantify projected infection patterns within primary school classrooms, 
and related uncertainties; the basis of our approach is a contact model constructed using random 
networks, informed by structured expert judgement. The effectiveness of mitigation strategies are 
considered in terms of effectiveness at supressing infection outbreaks and limiting pupil absence.  
Covid-19 infections in schools in the UK in Autumn 2020 are re-examined and the model used for 
forecasting infection levels in autumn 2021, as the more infectious Delta-variant was emerging and 
school transmission thought likely to play a major role in an incipient new wave of the epidemic.  Our 
results were in good agreement with available data. These findings indicate that testing-based 
surveillance of infections in the classroom population with isolation of positive cases is a more effective 
mitigation measure than bubble quarantine, both for reducing transmission in primary schools and for 
avoiding pupil absence, even accounting for insensitivity of self-administered tests.  Bubble quarantine 
entails large numbers of pupils being absent from school, with only modest impact on classroom 
infection levels.  However, maintaining reduced contact rates within the classroom can have a major 
beneficial impact for managing Covid-19 in school settings.  
 

2. Introduction 
 
As an increasing proportion of people become vaccinated the spread of SARS-CoV-2 becomes 
concentrated mainly with unvaccinated persons. Children become of particular importance in these 
circumstances since the benefits, to the children themselves, of vaccination are moot. While, at the time 
of writing, the UK government has a vaccination programme for secondary age children, primary age 
children have not been mass vaccinated. Factors that influence these discussions include the 
observation that severe COVID-19 illness is very rare in children, while there are very small risks of 
adverse reactions to the vaccine. Thus, the efficacy of vaccination, from the point of view of an 
individuals’ protection against serious disease, is equivocal. On the other hand, schools with largely 
unvaccinated populations may act as environments for spreading SARS-CoV-2, with the potential for 
development of new variants. Thus, from a public health perspective, schools are, potentially, a 
significant reservoir of infection. Measures to mitigate transmission can be very disruptive to learning 
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and to the economy if large numbers of pupils and their families are required to self-isolate or have 
their work compromised by childcare responsibilities.  In the latter context there is an urgent need to 
understand which policies can be pursued that reduce transmission but at the same time minimise 
disruption of education and collateral effects. 
 
In this study we have developed a basic stochastic model for estimating the likelihood of the 
transmission of SARS-CoV-2 occurring in primary schools. There is emerging evidence that 
respiratory aerosols expelled by infected people are a significant mode of infection transmission [1], 
so indoor classrooms, which may be poorly ventilated, can represent environments with increased 
transmission risk. However, concentrations of virions in aerosols are substantially elevated near to an 
infected person, and close contacts between infected and susceptible individuals are likely to be 
responsible for most transmissions in many situations (see Supplementary Material Appendix A1).  
Our model is based on a discrete agent-based compartmental epidemiological model and involves an 
empirical representation of the probability of transmission due to close contacts within class-sized 
interactive networks. With this approach, sets of several classrooms collectively can be assessed as a 
way of quantifying transmission probabilities in individual schools. Statistical representation of close 
contacts between children and adults within school settings is derived from a study of 36 primary 
schools in England using teachers’ expert judgements, formally elicited in Spring/Summer 2020 [2]; 
in that study, close contact was defined to be a face-to-face contact within 1 metre for at least 5 minutes. 
It also included a comparison of anticipated contact rates in schools taking mitigation measures in the 
following September 2020, such as formation of bubbles, reduced class sizes and other social 
distancing rules, with previous, normal contact rates in ‘pre-Covid’ times.  
 
The model results are compared with data on school attendances, self-isolation of children who are 
sent home due to Covid outbreaks and prevalence of Covid in both schools and communities. These 
comparisons enable us to check that the model produces reasonable estimations of expected infection 
rates and absences. However, the main purpose of our modelling approach is to compare the effects of 
different mitigation strategies on infection transmission rates within schools, including sending 
‘bubbles’ or whole classes home for self-isolation periods, sending home only those pupils or adults 
thought to have become infected, or using testing to identify infections. 
 
At the centre of our approach is a time-stepping agent-based epidemiological model of SARS-CoV-2 
infection transmission in a classroom. The model we have developed combines a discrete 
compartmental epidemiological framework with a random network for daily person-to-person contacts 
within the classroom.  In the basis case, the classroom population consists of a single teacher, a set 
number of pupils, and a small number of classroom teaching assistants.  In relation to infection 
transmissions, the modelled classroom population is assumed to be isolated from other classes and 
persons within the school, so the present model does not include interactions with other people in the 
school.  This is a major assumption and is best suited to primary school settings where classroom 
groups can be most effectively separated from one another as a part of infection risk management; this 
was a mitigation instituted in March 2020 for primary schools in England that were open for vulnerable 
children and those of critical workers and, later, as other schools in England reopened to selected age 
groups in June 2020.  The simplifying assumption is also justified by evidence for limited mixing 
across different classes and year groups in UK primary schools [3]. 
 
As the model advances through time, it includes a daily chance of seeding infection within one or more 
of the classroom occupants from interactions with the outside community; this infection probability is 
a function of community incidence rate.  We describe this aspect of our model in more detail below. 
 
We then apply our model to the Autumn term (Term 1) in 2020 when UK schools first reopened to full 
classes.  Using estimates of SARS-CoV-2 infection prevalence and the incidence rate during Term 1 
2020, we illustrate the application of our model and show that it can simulate numbers of infections 
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that are in good agreement with available data.  We apply the model over this period with different 
mitigation measures applied and analyse the effect of these strategies on the transmission of SARS-
CoV-2 within schools.  We then apply our model to forecast infection in schools for Term 1 in 2021, 
where schools may play an important role in a third-wave of the SARS-CoV-2 epidemic, particularly 
in the face of the Delta variant and exclusion of children from vaccination programmes. 
 

3. Methods 
 
Epidemiological model 

We model SARS-CoV-2 transmission within a classroom of individuals using an agent-based network 
model, with each member of the classroom population having their own characteristics and attributes 
updating on interactions and over time.  We adopt a compartmental epidemiological model to simplify 
the states of agents, and to accommodate transmission from pre-symptomatic and asymptomatic 
individuals, the progression of infection is described using a variation of a stochastic compartmental 
epidemiological model, which includes explicit time variation in the transmissibility of SARS-CoV-2 
based on time since infection.  Specifically, we use a compartmental model with the following 
compartments: Susceptible (S), Exposed (E, which includes infectious individuals), Unwell (U, where 
an individual has symptoms), Quarantined (Q), and Recovered (R).  We adopt a discrete-time stochastic 
modelling framework, with updates to the compartmental model occurring each day.  Further details 
of the agent-based model are given in Supplementary Material Appendix A2. 
 
The Susceptible population are those who have not become infected with the SARS-CoV-2 virus.  On 
becoming infected, an individual moves to the Exposed compartment and begins a period of incubation 
during which there is no external indication of infection, but where there is a possibility of infection 
transmission in contacts. For symptomatic individuals the incubation period ends with the individual 
experiencing symptoms and moving into the Unwell compartment.  At this stage we assume that 
symptoms of infection would be recognized by the infected individual or observed by others and, if 
such symptoms are detected or confirmed, usually by testing, then an Unwell individual will be 
Quarantined.  Individuals remain quarantined for a minimum quarantine period, and for as long as they 
are unwell.  However, others may be asymptomatic or have symptoms so mild as to be unobserved, so 
these persons are not migrated to the Unwell category in the model. The Recovered compartment 
collects infected individuals following their period of being Unwell, or for the duration of the infectious 
period for asymptomatic cases, at the which stage they are assumed to have acquired immunity from 
further SARS-CoV-2 infection for the simulation period. 
 
Using evidence derived from large datasets on the timing of secondary infections with the onset of 
symptoms of primary cases [4], we model infectivity through time-dependent transmission probability 
of an index case with a contact.  The transmission probability increases during the incubation period 
from zero at the time of infection, peaks slightly before the time of symptom onset (for symptomatic 
cases), and subsequently decreases over time [4].  In [4] it is inferred from data that there is a 
distribution of the duration of incubation period of SARS-CoV-2 and that the duration of pre-
symptomatic infectious period is related to the duration of the incubation period, with individuals who 
have long incubation periods tending to have an earlier and longer lasting pre-symptomatic infectious 
period.  Future variants of the virus could alter these distributions. 
 
These time-dependencies are encoded in an expression for the relative probability of transmission in a 
contact within the class that is a function of time (𝑡, in days) since symptom onset [4], denoted here by 
𝑝!(𝑡|𝑡"), which depends on the incubation period of the infected individual (𝑡", in days).  For the 
distribution of the incubation period we use a log-Normal distribution, 𝑡"~log	𝑁(1.63, 0.5) [5].  For 
the relative probability of transmission, we adopt the parametric model determined from data by [4], 
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where the parameters 𝜇 = −4 days, 𝜎 = 1.85 days, 𝛼 = 5.85 are best-fit parameters as estimated by 
[3], and 𝜏 = 5.42 days is the mean incubation period [5].  Note, this function is not a probability density 
function, rather it is applied as a time-varying weighting to the transmission probability in a contact, 
and the pre-factor (𝛼(1 + 1 𝛼⁄ )#$%) is specified so that max

)
𝑝!(𝑡|𝑡") = 1.  

	
The time variation of the relative transmission probability is illustrated in Figure 1 for an unusually 
short (𝑡" = 2,  𝑃(𝑡" < 2) < 0.05), a typical (𝑡" = 5, 𝑃(𝑡" < 5) = 0.48) and an unusually long (𝑡"=12,  
𝑃(𝑡" > 12) < 0.05) incubation period. 
 
The absolute probability of transmission in a contact is found by scaling the relative probability of 
transmission 𝑝!(𝑡|𝑡") by a fixed peak transmission probability, denote by 𝑝/01, which differs for adults 
and children [6-8], for symptomatic or asymptomatic cases [9], reflects mitigation measures, and is 
altered to model differences in transmissibility for SARS-CoV-2 variants. 
 
The classroom population can comprise both symptomatic and asymptomatic individuals, 
distinguished as these who will (respectively, will not) develop identifiable symptoms if they are 
infected with SARS-CoV-2. The specification of symptomatic and asymptomatic individuals occurs 
on initialization of the model by random Bernoulli draws with a prescribed probability.  For 
asymptomatic cases, we adopt the same time-varying relative probability of transmission by specifying 
a notional incubation time (drawn from the log-Normal distribution), but the absolute probability of 
transmission in a contact is reduced relative to symptomatic cases by 30% (Table 1). 

 

 
Figure 1. Time variation of the relative probability of transmission from an infected individual with incubation period 𝑡!. Probability of 
transmission increases from the time of infection, peaks close to the time of onset of symptoms, and then decreases over the duration of 
infectivity.  Individuals with long incubation periods have longer pre-symptomatic infection periods, but following symptom onset the 
decrease in transmission probability is independent of  𝑡!.	

Symptomatic individuals become unwell following the incubation period.  The duration of symptoms 
varies for adults and children [e.g., 10, 11] with adults typically having longer lasting symptoms 
(median duration of 11 days) compared to children (median duration of 5 days for children aged 5—
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11 years [11]).  However, there is pronounced variation around the median duration which we model 
using a log-Normal distribution.  This is a two-parameter distribution, specified by using the reported 
proportion of people having symptoms extending beyond 28 days in [10, 11] (13.3% for adults and 
3.1% of primary school aged children). 
 
An additional ingredient of the population dynamics is that quarantined teachers must be replaced by 
a substitute teacher, drawn from outside the initial class group. 
 
Initialization of the model places the classroom members into the SEUQR compartments.  A Bernoulli 
trial is performed for each individual using a community infection prevalence, specified from 
observation or national scale model-based projections, with ‘failure’ resulting in the individual placed 
into the Susceptible compartment.  A ‘success’ in the Bernoulli trial corresponds to an individual with 
infection on initialization, so random draw is made to determine their elapsed time of infection and 
they are placed into the appropriate E, U or Q compartments on this basis.  We note that initialization 
may result in classrooms without an infected individual, particularly when community prevalence is 
low. Additionally, we can model pre-existing immunity, either through previous infection or 
vaccination, with Bernoulli trials that adopt the probability of an individual being vaccinated or 
previously infected. 
 
Transmission into the classroom 

In our model there are two pathways for susceptible members of the classroom to become exposed: 
contact with an infectious member of the classroom, or through interactions outside the classroom 
(referred to here as ‘community transmission’).  To model the infection from an out-of-classroom 
interaction, we begin each daily time step with a Bernoulli trial for each susceptible classroom member.  
The probability of any susceptible classroom individual being exposed to community transmission is 
specified using an estimate of the daily incidence rate of new infections at the appropriate time.  This 
approach overestimates community transmission as the individual is in school for much of the day, and 
classroom transmissions will contribute to the community incidence rate estimates.  However, without 
detailed estimates of incidence rates in different settings, it is difficult to deconvolve these effects, and 
our approach is a pragmatic comprise, recognizing that time in school represents approximately 26% 
of waking time in any school week, and our model does not explicitly include effects that might 
promote incidence of infection connected to schools (such as increased social mixing at the start and 
end of the school day). 
 
Classroom transmission network 

Transmission of infection within the classroom requires a more sophisticated model.  Potential 
pathways for SARS-CoV-2 transmission include physical contact, infection by virus contained in large 
respiratory droplets, contagiously from contaminated surfaces (fomites), and through inhalation of 
infectious aerosols (airborne transmission) that could act over long distances [12]. For all of these 
routes, close contacts are likely to substantially increase the probably of infection transmission (see 
Supplementary Materials Appendix A1 for a discussion of airborne transmission).  We therefore base 
our transmission model on close contacts between individuals, using a random network model of 
contacts within a classroom.  The number of contacts for each individual is specified from stochastic 
draws from the distribution of daily classroom contacts [2].  Thus, each class member has their own 
number of daily contacts with others in the classroom. 
 
It is known that contact patterns in classrooms can be highly variable, affected by both individual and 
classroom behaviours [2].  Additionally, behavioural mitigation measures were instituted in March 
2020 to reduce contacts within schools.  To model the number of contacts, we use the results of a 
Structured Expert Judgement (SEJ) elicitation study [2] conducted in spring/summer 2020 in the UK.  
SEJ uses the collective knowledge of experts (here school teachers) to estimate quantities of interest 
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and their uncertainties, and can be performed rapidly during crises to provide essential information to 
models and policy makers [13].  Experts’ responses to a set of test questions with knowable results are 
used to score experts in terms of their individual statistical performance and their target item 
judgements are then combined jointly, using these performance scores, to derive a pooled ‘Decision 
Maker’ [13];  the latter represents associated group-wise judgement uncertainties through empirical 
cumulative distribution functions (eCDFs) [14]. 
 
 
 

  
Figure 2. a) Empirical cumulative distribution functions (eCDFs) for the number of daily contacts in primary school classrooms.  The 
eCDF derived from Structured Expert Judgement for pupils (blue) and classroom staff (teachers and teaching assistants; red) are 
shown for pre-Covid times (dashed lines) and following opening of schools to small numbers of children in June—July 2020 (dotted 
lines).  The cumulative distribution function constructed from a weighted combination of the pre-Covid and small classes eCDFs are 
shown (solid lines) b) Box and whisker plots (with outliers removed) comparing the number of daily contacts for pupils and classroom 
staff in pre-Covid times, for small classes, and modelled for full classes under conditions to reduce contacts. 

In our model, empirical cumulative distribution functions for the number of contacts in classrooms are 
those derived from pooled expert responses in an elicitation for primary school pupils and classroom 
staff [2].  That study determined different contact rates in: (a) the pre-Covid classroom, and then (b) 
following implementation of bubbles and other measures to reduce the number of contacts [2].  The 
corresponding eCDFs are illustrated in Figure 2a, showing substantial reduction in the number of 
contacts once mitigation measures are imposed.  The mean number of contacts for pupils is reduced 
from 16.7 per day (std. dev. 16) in pre-Covid classrooms, to 6.4 per day (std. dev. 5.4) when there are 
small nunbers in the class.  We note that the mean daily pupils’ contact rate is similar to the value 
estimated by the POLYMOD social contact survey [15] (mean of 18.2 contacts per day, std. dev. 12.2 
for children aged 10—14 years). 
 
The contact data estimated by SEJ in [2] were obtained under the unique circumstances of June and 
July 2020 when between 30% and 40% of children had returned to school and the class sizes were 
greatly reduced, making social distancing measures much easier to implement. However, with full 
return to school we would not expect the same reduction in contact rates. In study [2] teachers were 
asked to estimate whether the contact numbers would be affected. Their collective view (Table 7 in 
reference [2]) is that the contact numbers would be between their estimates in normal pre-Covid times 
and in new normal times. 
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To model the reduction in the number of contacts in fully-opened schools, we construct a cumulative 
distribution function (denoted by 𝑃!(𝑁 = 𝑛))  as a weighted linear combination of the eCDF in pre-
Covid classrooms in normal times (denoted by 𝑃2(𝑁 = 𝑛)) and the eCDF in the small classrooms of 
June—July 2020 (denoted by 𝑃3(𝑁 = 𝑛)), with 𝑃!(𝑛) = 	𝑤𝑃2(𝑛) + (1 − 𝑤)𝑃3(𝑛) where 𝑤 is the 
weighting of the pre-Covid contact distribution. Contact rate distributions are constructed in this way 
for both pupils and teachers, with differing weights.  In [2] teachers expected that daily pupil contacts 
would be half-way between the small classroom and normal pre-Covid values when classrooms 
become more highly occupied, and we therefore take a weight 𝑤 = 0.5.  However, teachers considered 
that their own numbers of daily contacts could be more strongly reduced in the fully open schools, so 
we take 𝑤 = 0.4 to place greater weight on the small classroom distribution.  With these weightings, 
the mean number of contacts per day is 11.6 (std. dev. 10.9) for pupils and 15.1 (std. dev. 15.9) for 
treachers.  These summary values are similar to the contact rates for children estimated using surveys 
over Term 1 (September—December) of 2020 when schools fully reopened (mean number of 15.1 
contacts per day) [16], albeit with different definitions of a contact (in [2] face-to-face contact within 
1 m for 5 min or more is used, whereas [16] define direct contact as an interaction where “least a few 
words were exchanged or physical contact was made”). 
 
At the start of each school day in the modelled sequence, we build a stochastic network of contacts for 
each class member who is not quarantined.  The network is constructed using the ‘Configuration 
Model’ approach [e.g. 17], allowing multiple edges but removing self-loops through a sequence of 
random ‘rewirings’ (i.e. self-loop edges are randomly switched until a valid configuration is achieved).  
Preserving multiple edges allows us to model repeated contacts between individuals.  The 
Configuration Model produces a random graph with a specified degree distribution in which nodes of 
the network are linked randomly using specified numbers of edges.  This means that gregarious 
individuals with high numbers of contacts are more likely to be connected to other highly contacting 
individuals.  However, the contact network is rebuilt each day, to reflect changing contact patterns and 
the removal of class members into quarantine.  The Configuration Model requires an even number of 
connections; in cases where an odd number of edges is generated by the stochastic initialization of the 
degree distribution or from removal of nodes to quarantine, then the degree of a randomly selected 
node is increased by one. On non-school days, there are no classroom contacts, but community 
transmission can occur, and the agents continue to progress through the SEUQR compartments. 
 
We note that in realty contacts in a class are unlikely to be completely random.  Children for example 
form friendship groups which may mean that poorly connected networks may exist. While the 
Configuration Model with degrees specified by the contact rates distributions results in small groups 
with large numbers of interactions, the networks are typically connected. The Configuration Model 
does not exclude disconnected sub-graphs, but we find they are rare occurrences in our simulations. 
Addressing the detailed structure of classroom contact networks would make an interesting 
development of the model.  
 
Figure 3 shows examples of the contact networks, illustrated using the ‘adjacency matrix’ (i.e. the 
number of edges linking each pair of nodes, corresponding to the number of daily contacts between 
two individuals in the classroom).  An example of a randomly generated network is shown for both 
contacts rates drawn from the pre-Covid and reduced contacts distributions.  For pre-Covid contacts 
(Figure 3a) the most gregarious member of the class has 85 daily contacts, and there are four individuals 
with more than 50 contacts per day (pupils numbered 0, 6, 21 and 30).  These highly contacting 
individuals have many interactions within this subgroup, with e.g. pupils 21 and 30 having 11 contacts 
on this day.  When reduced contacts rates are employed (Figure 3b) the most contacts decreases to 48, 
and only a single individual has more than 23 contacts in the day, and the most contacts between pairs 
of individuals, between pupils numbered 22 and 28, occurs only 4 times on this day.  There are no 
disconnected sub-graphs in either of the examples shown. 
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Figure 3. Examples of adjacency matrices (illustrated with blue shades) for stochastic contact networks produced using the Configuration 
Model with the total number of contacts for each agent (the degrees of each node, shown in red shades on the leading diagonal) drawn 
from (a) pre-Covid contact rate distributions and (b) the reduced contacts rate distributions.  The thirty ‘agents’ in the classroom are 
numbered 0—30, with agent 30 corresponding to the teacher.  Note the same colour scales are applied for both pre-Covid and reduced 
contacts cases. 

If contact occurs between an infectious individual with another who is susceptible, there is the 
possibility of transmission.  This is modelled as a random Bernoulli trial, with differing probabilities 
of transmission depending on whether the infectious individual is symptomatic (higher transmission 
probability) or asymptomatic (lower transmission probability), and with transmission probability 
varying in time.  In a contact between a Susceptible person in the classroom with an infectious person, 
we determine the infection transmission probability as 

𝑝)!023/"33"42 = 𝑝𝑚𝑎𝑥𝑝!(𝑡|𝑡")𝑓𝑠𝑜𝑓𝑡𝑓𝑣𝑎𝑐𝑐𝑖𝑛𝑒	𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑖𝑜𝑛𝑓𝑣𝑎𝑐𝑐𝑖𝑛𝑒	𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦 

where 𝑓5678, 𝑓9:;;!<=	8>:<5?!5!6< and 𝑓9:;;!<=	5@5;=A8!B!C!8D are factors (discussed further below) that reduce 
transmission probability due to application of ‘soft’ mitigation measures. and effect of vaccination of 
infectivity and susceptibility. Note, this approach combines the infectiousness of the index case with 
the susceptibility of their contact into a single probability of transmission.  This is a simplifying 
assumption in the model, but includes individual susceptibility to SARS-CoV-2 for the population in 
the model.  The SEUQR compartments are updated at the end of daily timesteps, so transmission can 
occur before recovery. 
 
An additional requirement is that the classroom must have a teacher present.  If the teacher is 
quarantined due to illness or a positive test result, a temporary replacement is added to the classroom 
population.  The substitute teacher has their own number of daily contacts, drawn from the SEJ 
distribution, and their stage in the SEUQR progression is determined by Bernoulli trial with the 
infection prevalence at the time of replacement, noting that a valid substitute teacher cannot be showing 
symptoms (i.e., Unwell) nor in Quarantine, but could bring infection into the classroom population.  If 
the permanent teacher is released from Quarantine, or their time of illness elapses (i.e., they progress 
to Recovered), then they are returned to the classroom and the substitute teacher is removed.  Should 
the temporary teacher become Unwell or Quarantined, they are replaced by a different, substitute 
teacher. 
 
Examples of three random contact networks produced using the Configuration Model are illustrated in 
Figure 4 for a small classroom of ten pupils (enumerated from 1 to 10) and a single teacher (labelled 
as ‘T’), simulated over three days.  The degree distribution is fixed; pupils 1 and 2 are the most 
gregarious with five contacts each day, followed by pupil 5 with five contacts on days 1 and 3 but four 
contacts on day 2.  There are duplicated contacts (i.e., multiple edges) between pupils in each network, 
which present two opportunities for transmission between persons if one of the individuals is infectious 
and the other susceptible (which occurs in Figure 4c between pupils 1 and 2). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 17, 2022. ; https://doi.org/10.1101/2021.08.30.21262826doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.30.21262826
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 9 

 
Figure 4 also illustrates the transmission of infection across the network, with a daily progression from 
panels a to b to c.  Note that the parameters related to infection transmission in the example in Figure 
4 are taken to be much larger than reasonable to model SARS-CoV-2 and have been chosen simply to 
illustrate the way the model updates.  On the first day (Figure 4a), there are two exposed individuals 
(pupils 1 and 5), and their contacts represent potential pathways for infection, with actual transmission 
determined by Bernoulli trials.  In this example, the random trials result in no transmissions.  However, 
on the second day (Figure 4b) the two exposed pupils do transmit the infection across some of their 
contacts; of the five contacts with pupil 1, there is one transmission to pupil 3, whereas two contacts 
of pupil 5 result in transmission to pupils 4 and 6.  Therefore, on the third day, pupils 3, 4 and 6 are 
progressed from the Susceptible into the Exposed compartments.  Further infection transmission occurs 
on day 3, with two contacts of pupil 1, but, by chance and there is no infection transmission in contacts 
of the other exposed individuals.  Additionally, on day 3, the pupil 5 has developed symptoms and is 
progressed into the Unwell compartment.  In this example, the Unwell individual is Quarantined away 
from the classroom and has no connections with other members of the classroom. 
 

a 

 
 

b 

 

c 

 

Figure 4.  An example of infection transmission within a random updating contact network in a small classroom of ten pupils and one 
teacher.  The degree distribution is fixed, and the edges are determined using the Configuration Model with self-loops removed by 
random rewiring.  Multiple edges are allowed, as illustrated in a where e.g. there are two edges between nodes 1 and 10.  The panels 
represent a progression over three days.  Green nodes indicate Susceptible class members, orange nodes indicate Exposed members, 
and red nodes indicate Unwell individuals. Nodes that are boldly edged (node 5 in c) are quarantined.  Red coloured edges indicate 
infection transmission between infectious and susceptible members.  Note the parameters for infection transmission in this example are 
not representative of SARS-CoV-2. 

Vaccination uptake and effectiveness 

As vaccination programmes continue, there is a need to include the effects of vaccine on SARS-CoV-
2 infection, transmission and symptoms.  In the UK, vaccination began in October 2020 with high-risk 
groups and has proceeded downwards through age-groups.  Therefore, in modelling school infection 
in Term 1 2020, there are very low levels of vaccination for pupils and teachers.  However, vaccine 
uptake has been high, so that by the end of the 2020—2021 school year 80% of working age people 
are estimated to have received two vaccine doses [18].  Primary aged children are unlikely to have 
received vaccine unless they have additional risk factors.  To include vaccination in our model, on 
initialization of the class members, we perform Bernoulli trials using estimates of the vaccination 
uptake proportion. 
 
We model three effects of the vaccine: (i) a reduction of the probability of a vaccinated individual 
becoming infected; (ii) a reduction of the probability of an infected vaccinated individual transmitting 
the infection in a contact; (iii) a reduction of the probability of an infected vaccinated individual 
developing symptoms.  The different available vaccines have different effectiveness in each of these 
[19, 20].  Here we use fixed values for scaling factors applied for the reduction in probability of 
infection, reduction in probability of transmission, and reduction in probability of symptoms for 
vaccinated members of the population.  Therefore, for susceptible vaccinated individuals, their 
probability of becoming infected by both community transmission and classroom contact is reduced 
by a ‘Vaccine Susceptibility Factor’.  For an infected vaccinated individual, their probability of onward 
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transmission in a contact is reduced by a ‘Vaccine Transmission Factor’, and their probability of 
developing symptoms is reduced by a ‘Vaccine Symptoms Factor’.  These are assigned plausible values 
based on [19-21] (Table 1). 
 

Mitigations 

To understand the effectiveness of mitigation measures in reducing SARS-CoV-2 transmission and 
infection prevalence within the classroom population, we consider several ‘hard’ and ‘soft’ approaches.  
Soft measures include enhanced cleaning and hygiene, as well as the reduction of mixing of separate 
classrooms (e.g., through staggered entry, breaks and lunch times; multiple and separated entry points 
to the school, etc.).  We do not model these explicitly as the efficacy of some of these measures is 
limited [22] and is not well known and would substantially increase the complexity of the model and 
its interpretation.  Instead, we apply soft mitigation factors that reduce the absolute probability of 
transmission in a contact by a fixed factor and specify different values for adults and children. 
 
Hard mitigations correspond to isolation of classroom members away from the school and result either 
from the identification of symptoms or from testing surveillance to detect pre-symptomatic infection 
or their contacts.  We have discussed above the removal of symptomatic individuals from the classroom 
as they reach the Unwell stage of the SEUQR progression.  In our model, we also allow for two other 
hard mitigations: ‘bubble quarantine’ of the entire class, and ‘regular rapid testing’ of all individuals. 
 
The ‘bubble quarantine’ approach is severe, with the entire class placed into Quarantine for a specified 
time period if there is a confirmed infection case in the class (e.g., if a classroom member becomes 
unwell).  During this time, there are no classroom contacts.  However, classroom members may still 
acquire infection through community transmission and continue to progress through the S, E, U, R 
compartments.  For Susceptible members in quarantine, the probability of becoming infected through 
community transmission is likely to be reduced as their contacts will be substantially reduced.  
However, the as infection transmission within households is the primary pathway for infection [23], 
the reduction in community transmission is likely to be small, and for simplicity we do not include in 
our model as it would introduce a further highly uncertain parameter.  Any individual who becomes 
Unwell during Quarantine restarts their quarantine period.  On completion of Quarantine all classroom 
members (except those who are Unwell) are returned to the classroom.  A individual in Quarantine can 
become Unwell if they are infected, and then remain in Quarantine until they move to the Recovered 
compartment and return to the classroom.  Note, there may be asymptomatic or pre-symptomatic 
infected individuals returned to the classroom following bubble quarantine. 
 
An alternative and less severe approach is ‘regular rapid testing’.  This surveillance method adopts the 
regular lateral flow testing of all the classroom population on specified days.  The rapid testing is 
capable of identifying asymptomatic and pre-symptomatic infection, allowing early quarantine by 
advancing members from the Exposed compartment to Quarantine.  However, all tests have the 
potential to return misleading results, which may be particularly acute when administered by untrained 
people [24].  Therefore, we model the application of rapid testing using a stochastic approach.  On each 
test day, each classroom member undergoes a Bernoulli trial: for Exposed individuals who have the 
infection, the trial adopts the rapid test sensitivity (the true positive rate, i.e., the test probability of 
correctly detecting infection in an infected subject); for Susceptible individuals who are not infected, 
the trail adopts the rapid test false positive rate (i.e., the test probability of incorrectly detecting 
infection in an uninfected subject = 1 − specificity).  A ‘success’ in each trial corresponds to a positive 
test result and leads to the individual moving into Quarantine.  However, for uninfected individuals 
this is an incorrect test result, and the Susceptible member is unnecessarily removed from the 
classroom. 
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The sensitivity of rapid testing in the UK can be high if administered correctly [24].  However, in 
studies of lateral flow tests self-administered by untrained members of the public, the sensitivity can 
be as low as 0.58 [25].  We adopt this value here.  We have not found similar values for the test 
specificity for self-administered lateral flow tests, so adopt the reported value of 0.9968 despite our 
expectation that this value is inflated. 
 
We consider a further approach to reduce the number of classroom members unnecessarily quarantined 
by false positive rapid tests through the use of confirmatory PCR testing. In our model system we only 
include PCR tests as confirmatory to a lateral flow test.  The PCR tests are more accurate (high 
sensitivity and high specificity) and can detect infection sooner after transmission, but require 
laboratory analysis, so are not well suited for regular testing of large populations.  Here we allow for 
them to be used to confirm (or overturn) a positive rapid test result.  The PCR test results do not appear 
immediately; rather, there is a lag while the test is processed, during which time the test-positive subject 
remains in Quarantine.  The sensitivity and specificity of the PCR tests are reported to be much higher 
than rapid lateral flow tests [26]. 
 
Model parameters and stochastic ensemble 

The parameters in the model are presented in Table 1. Many of them are uncertain; where possible we 
have adopted published values as noted in Table 1 (although many studies have not completed peer-
review at the time of writing), and otherwise we have taken reasonable values.  We have not attempted 
to ‘fit’ parameters to data, but such a study would be valuable.  Therefore, our reported values are best 
used as comparison between the different scenarios we simulate rather than detailed hind- or forecasts 
of absolute numbers of infections, although, as we show below, our results are broadly comparable to 
observed infection levels. 
 
There are several stochastic components in the model, which we also summarise in Table 1, and 
therefore we must perform stochastic ensemble simulations of sufficient size to explore the space of 
possible trajectories of the infection dynamics within a classroom.  In this study, we take ensembles 
with 100,000 realizations of isolated classrooms.  Note, in school year 2020—2021 there are 156,843 
state primary school classrooms and 4.18 million pupils in England [27] (see also [28]).  Ensembles of 
100,000 samples of our hypothetical class of 30 pupils provide indicative traits and trends in 
distributional variability; if we invoke the ergodicity assumption, while admitting national schools 
classes, en masse, will have a variety of pupil numbers and will have other factors in play (inner city -
v- rural; economic differences, etc), then our 30-pupil class infection distributional profile can be 
adopted as first order representative of all real classes faute de mieux. On this basis, we expect that 
findings from the realizations will scale to transmission at a national level. 
 

4. Retrospective analysis 
 
The beginning of the 2020—2021 school year in September was the first time that there was ‘full’ 
attendance in schools since the start of the SARS-CoV-2 epidemic in the UK.  The prevalence of 
infection in the UK in September 2020 was relatively low after the aggressive mitigation measures put 
in place in spring and early summer, but relaxation of restrictions over the traditional school summer 
holiday period in August resulted in increasing incidence of infection across the UK as schools 
reopened in September, a trend that persisted through Term 1 (Tuesday 1 September to Friday 23 
October 2020) as shown in Figure 5.  Data from the Office for National Statistics [29] gives infection 
prevalence of 0.09% in England for all ages,  and 0.11% for children (age 2 to school year 6) on 1 
September 2020, increasing by about an order of magnitude, to 1.10% for all ages and 0.87% for 
children, by 23 October 2020.  The incidence rate (per 10,000 population per day) was 0.74 on 1 
September, peaked at 8.44 on 21 October 2020, falling slightly to 8.41 on 23 October 2020.  At this 
time, vaccine uptake was low (the national vaccination programme had not started in September and 
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was targeted at high-risk groups through October 2020) so we do not include vaccination in our 
simulations. 
 
Table 1.  Stochastic and fixed parameters of the model. 

Parameter Distribution Update 
Initial infection in each class member Bernoulli with community prevalence 

of infection 
Set on initialization for class 
members using estimates of 
community prevalence. 
Updates on change of teacher 
using community prevalence 
time series. 

Probability of infection from 
community 

Bernoulli with community incidence 
rate 

Daily, using time series of 
community incidence rate from 
observations or large-scale 
forecast models 

Number of daily contacts for each 
class member 

Non-parametric CDFs derived from 
SEJ for pupils and classroom staff. 
 
CDFs for pre-Covid and ‘new normal’ 
reduced contacts 

Set on initialization for pupils. 
Updates on change of teacher. 
 
Contact network altered daily. 

Symptomatic status Bernoulli with specified probabilities 
symptomatic adults and children.  
Default value of 0.8 for both. 

Set on initialization. 
Updates on change of teacher. 

Duration of incubation period, 
𝑡!	(note, asymptomatic cases have a 
notional 𝑡!) 

Drawn from log-Normal distribution 
[5]; 𝑡!~log	𝑁(1.63, 0.5)  

Set on initialization. 

Duration of unwell period, 𝑡@ (note, 
asymptomatic cases have a notional 
𝑡@) 

Drawn from log-Normal distributions 
for children and adults [10, 11]; 
adults: 𝑡@~log	𝑁(2.40, 0.840) 
children: 𝑡@~log	𝑁(1.61, 0.923) 

Set on initialization. 
Updates on change of teacher. 

Probability of contact transmission 
(base values for original wildtype 
SARS-CoV-2), 𝑝?:E 
 

 Adults Children 
Symptomatic 0.035 0.0175 

Asymptomatic 0.0245 0.01225 
 

Fixed values. 
50% reduction for children 
relative to adults [6, 7]; 
30% reduction for asymptomatic 
relative to symptomatic 
infection. 

Soft mitigation factor, 𝑓5678 
 

Pupils: 0.75 
Adults: 0.6 

Fixed values 

Rapid testing Values from [25]. 
Sensitivity: 0.58 
Specificity: 0.9968 

Fixed values 

PCR testing Values from [26]. 
Sensitivity: 0.90 
Specificity: 0.999 

Fixed values 

Weighting of pre-Covid contact rates 
to small classes contact rates, 𝑤  Pupils Classroom 

staff 
Pre-covid 1 1 
Reduced 
contacts 0.5 0.4 

Small classes 0 0 
 

Fixed values 

Probability of vaccinated adult Term 1 2020: 0 
Term 1 2021: 95% [18] 

Fixed values 

Probability of vaccinated child Term 1 2020: 0 
Term 1 2021: 1% [18] 

Fixed values 

Vaccine transmission factor, 
𝑓9:;;!<=	8>:<5?!5!6< 

0.60 [19-21] Fixed values 

Vaccine susceptibility factor, 
𝑓9:;;!<=	5@5;=A8!B!C!8D 

0.40  [19-21] Fixed values 

Vaccine symptomatic factor 0.20  [19-21] Fixed values 
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Figure 5. Time series of Covid-19 infection prevalence for adults (blue line) and children (age 2 to school year 6; orange line) and the 
community incidence rate (red line) over Term 1 (Tuesday 1 September to Friday 23 October 2020).  Data from Office for National 
Statistics [29]. 

School collections 

Although we model SARS-CoV-2 in a single isolated classroom, the level of infection in larger 
collections of classrooms (e.g., classes in a school, and schools together in a local authority area) are 
often the most pertinent issues for decision makers.  We therefore model a school as a collection of 
classrooms, and several schools collected together, through sampling with replacement from a 
stochastic ensemble of simulations of independent individual classes.  Specifically, we generate an 
ensemble of simulations and randomly select realizations from this ensemble to produce a collection 
of classrooms to represent a single school, and a collection of such schools to model e.g., a local 
authority area or academy network.  An ensemble of such classroom collections is readily derived by 
resampling with replacement from the single-classroom ensemble so that statistically meaningful 
metrics can be derived. We take this approach when comparing mitigation strategies. 
 
We model a ‘typical’ primary school classroom, consisting of 30 pupils and a teacher, over Term 1 in 
an ensemble with 100,000 realizations. At this time there were no ‘hard’ mitigation measures, and 
pupils were only asked to self-isolate if they (or a close contact) developed symptoms.  However, soft 
mitigations including enhanced cleaning and reduction of classroom contacts were in place. We 
therefore do not incorporate hard mitigation measures in the model simulations but build our contact 
networks using the reduced contacts eCDFs from SEJ, while presuming pupils are quarantined if they 
become unwell. 
 
In Figure 6 we illustrate the dynamics of classroom transmission over Term 1 by plotting the timeseries 
of the number of infected pupils in a classroom for each of the ensemble realizations.  The ensemble 
members have been ordered by the maximum number of infected pupils, which peaks at 14 across all 
ensemble members.  A slight majority of realizations (54%) have no infected pupils across the whole 
of Term 1. The numbers of infected pupils increase towards the end of Term 1, following the trend in 
the community incidence rate and, we infer, reflects seeding of infection in the classroom largely from 
outside community transmission.  Figure 7 shows the number of infections within the ensemble that 
results from either community (Figure 7a) or classroom transmission (Figure 7b), and their correlation 
with the total number of infections. 
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Figure 6.  Time series of the number of infected pupils for each realization in an ensemble of 100,000 stochastic simulations of an 
isolated classroom in Term 1 of 2020.  Each row of the heatmap corresponds to an ensemble member, with colours denoting the 
number of pupils in the classroom with Covid-19 infection on each day. The ensemble realizations have been sorted by the sum of the 
number of infected pupils over all days. (Upper panel) All ensemble realizations are shown.  (Lower panel) The ten ensemble 
realizations with the most infections are shown, illustrating the dynamics of large outbreaks that occur with a frequency of 1/10,000.  
Colours denote the number of infected pupils in the classroom for each day of the simulation. 

When the total number of infections is up to six, we find that most infection occurs due to community 
transmission (Figure 7a), but beyond six infections this correlation is broken and in all these 
simulations (with infections >5) the number of classroom infections significantly exceeds the number 
of infections expected in the community. These cases could pragmatically be defined as ‘clusters’ or 
‘outbreaks’ due to in-class transmission being dominant. Current Department for Education (DfE) 
contingency operational guidance for schools [30] defines two thresholds for “extra action” under 
specific setting conditions and in relation to ‘close mixing’ groups within schools: “5 children, pupils, 
students or staff, who are likely to have mixed closely, test positive for COVID-19 within a 10-day 
period; or 10% of children, pupils, students or staff who are likely to have mixed closely test positive 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 17, 2022. ; https://doi.org/10.1101/2021.08.30.21262826doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.30.21262826
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 15 

for COVID-19 within a 10-day period”.  These criteria relate to two completed rounds of tests in an 
‘asymptomatic test sites’ regime, initiated only following full return to school; it is not clear if there 
are criteria for similar actions due to in-school outbreaks under other circumstances.  
 
In our ensemble there are relatively few realizations (approximately 1%) with total infections 
exceeding six, suggesting such outbreaks are relatively uncommon.  Larger outbreaks of ten infected 
pupils, do not occur in our ensemble unless classroom transmission occurs.  We find outbreaks with 
ten or more infected pupils occur in ~0.3% of the simulations, while very large outbreaks of 15 or more 
pupils (i.e., at least half of our simulated class are infected) occur in only 25 (0.025%) of the 
realizations.  
 
Open data on which to compare our results is scarce, but some summary statistics on school attendance 
have been published through the pandemic by the UK Department for Education (DfE) [31].  These 
statistics report that on 22 October 2020, about 20% of state-funded primary schools reported one or 
more pupils who were self-isolating.  While it is difficult to compare this summary statistic with our 
stochastic simulations, as we do not know how many classes had pupils in self-isolation, the value 
compares favourably with our ensemble which has 18,028 (18%) of the realizations having one or more 
pupils quarantined on this day of the simulation. Based on the simulations we also expect about 2665 
outbreaks. 
 

 
Figure 7. The number of infections caused by community transmissions and classroom contact transmissions in the ensemble 
simulations as functions of the total number of infections.  The intensity of colour of the points indicates the frequency of occurrence 
within the ensemble on a logarithmic scale, and the ensemble has 100,000 members..  Note, stochastic variations are apparent for low 
frequencies. 

Assessing effectiveness of mitigation approaches 

To examine the effectiveness of mitigation approaches, we perform stochastic ensemble simulations 
with different infection control measures imposed.  We model a collection of 10 primary schools, each 
consisting of four classrooms with 30 pupils and one teacher.  The Term 1 variation in community 
prevalence and incidence rate is adopted to model the changes over time in the external community 
epidemic and allows us to provide a comparison with the simulations above where there are no hard 
mitigation measures included. 
 
In Figure 8 we compare the effect of the contact rates in classrooms and the mitigation approaches on 
the total number of pupils infected over the Term1 period within the 40 classrooms consisting of 1200 
pupils in total.  The box plots show the median, 25th and 75th percentiles, with the interquartile range 
(IQR) being their difference, the lower (25th percentile – 1.5 × IQR) and upper (75th percentile +	1.5 × 
IQR) Tukey fences, and outliers. 
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Figure 8. Comparison of the number of infected pupils in 40 primary classrooms with different mitigation measures applied.  The total 
number includes those initially infected and those infected from community transmission. Box and whisker plots illustrate median, 
interquartile range, Tukey fences and outliers. Contact rate distributions for pre-Covid times and in small classes are derived from SEJ 
and used to construct distributions of expected contact rates for schools during Term 1 in September—October 2020.  Mitigation 
measures simulated are: (i) ‘No hard mitigations’ where only individuals who are unwell are quarantined (blue); (ii) ‘Bubble 
quarantine’ where an unwell individual results in quarantine of the whole class (orange); (iii) ‘Twice weekly rapid test (no PCR)’ 
where each individual is tested with a rapid lateral flow test twice each week, with positive test results resulting in quarantine of the 
individual (green); (iv) ‘Twice weekly rapid test (with PCR)’ where each individual is tested with a rapid lateral flow test twice each 
week, with positive test results resulting in quarantine of the individual and a confirmatory PCR test is applied after a two-day interval 
(red); (v) ‘Daily rapid test (no PCR)’ where each individual is tested with a rapid lateral flow test daily, with positive test results 
resulting in quarantine of the individual (purple); (vi) ‘Daily rapid test (with PCR)’ where each individual is tested with a rapid lateral 
flow test daily, with positive test results resulting in quarantine of the individual and a confirmatory PCR test is applied after a two-day 
interval (brown). 
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We consider first the simulations where no ‘hard’ mitigation measures are applied (blue boxes in Figure 
8).  Here, the contacts rate distributions have a strong influence on the number of infections.  With the 
contact rates of pre-Covid classrooms, the median number of pupils infected is 41 (75th percentile: 50).  
With reduced contacts, the median number of infections is reduced by 17% to 34, with decreases also 
in the spread of values, particularly on the upper tail (75th percentile: 40). 
 
Each of the mitigation measures reduces the number of infected pupils, but they are generally less 
effective than the changes in the contact rates.  Where contact rates are highest (i.e., using the pre-
Covid contact rate distributions) the mitigation measures each substantially reduce the number of 
infections, as seen in the decrease in the quartiles, Tukey fences and outliers.  The extent of the decrease 
in these statistics diminishes as contact rates decrease. 
 
We compare each of the mitigation measures using the reduced contacts rates adopted for primary 
schools in Term 1 of 2020.  Bubble quarantine lowers the upper quartile and upper fence values but 
does not substantially change the median number of infected pupils across the ensemble (Figure 8), 
lowering the median slightly from 34 to 31.  This result is expected as bubble quarantine is not very 
effective in guarding against the seeding of infection carried into the classrooms from the community, 
and the spreading of this infection in the incubation period before an infected individual has symptoms 
that trigger the quarantine period.  However, the reduction of the upper tail of the distribution (Figure 
9) shows that bubble quarantine can produce a decrease in the occurrence of outbreaks.  For example, 
small outbreaks of six of more infected pupils occur in 0.60% of isolated classroom ensemble 
realizations (reduced from 1.7% with no hard mitigations), outbreaks of ten or more occur in 0.03% of 
realizations (c.f. 0.3% with no hard mitigations), and large outbreaks of 15 or more infections occur in 
only 0.002% of the realizations (c.f. 0.025% with no hard mitigations) (Table 2). 
 
Table 2. Proportion of realizations in ensemble of 100,000 isolated classroom simulations that produce outbreak with more than six 
infected pupils, large outbreaks with ten or more infected pupils, and very large outbreaks with 15 or more infected pupils.  Six 
mitigation measures are simulated, as detailed in the main text.  Zero value indicate no realizations occur in the ensemble.  
Simulations were conducted using the reduced contact rates distribution. 

Mitigation measure Proportion of 
outbreaks (>6 

infected) 

Proportion of large 
outbreaks (≥ 10 

infected) 

Proportion of very 
large outbreaks (≥ 15 

infected) 
No hard mitigations 1.06% 0.28% 0.025% 
Bubble quarantine 0.28% 0.028% 0.002% 
Twice weekly rapid test (no PCR) 0.08% 0.007% 0 
Twice weekly rapid test (with PCR) 0.093% 0.01% 0 
Daily rapid test (no PCR) 0.003% 0 0 
Daily rapid test (with PCR) 0.007% 0 0 

 
Considering next the use of rapid testing, we simulate approaches where each member of the 
classrooms is tested at regular intervals.  Specifically, we model a twice weekly testing regime, such 
as that used in summer 2021, and a daily test regime.  Further, we simulate each with and without 
confirmatory PCR testing, with a two-day time lag for conducting the PCR test. 
 
With twice weekly testing without PCR testing, there is a decrease in the median number of infections 
to 27, a narrowing of the interquartile range with a pronounced reduction in the upper quartile to 31 
infections, and a reduction in the upper fence value to 43 infections (Figure 8).  This suggests that a 
test-based surveillance approach is effective in reducing infections within school through the disruption 
of contact networks.  Large outbreaks, in particular, are less common, occurring in approximately 
0.007% of ensemble realizations (Table 2), and very large outbreak did not occur in the simulations.    
Confirmatory PCR testing has minor effects on the distribution of the number of infections, increasing 
only the maximum value in this sample to 62 (noting that the outliers are rare events and fluctuate 
when resampling).  This result can be rationalized as there is a small non-zero probability of a ‘false 
negative’ PCR test overturning a ‘true positive’ rapid test and thus returning an infectious individual 
into the class.  The frequency of outbreaks slightly increases in the ensemble. 
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Figure 9. Comparison of the number of infected pupils in 40 primary classrooms with different mitigation measures applied. Estimates 
of the cumulative distribution functions (left) and probability density functions (right) using Kernel Density Estimation for each of the 
mitigation strategies are shown. 

Implementing daily rapid lateral flow testing frequency further shifts the distribution of the number of 
infections to lower values (Figure 8 and Figure 9), although the change is modest (median: 25; 75th-
percentile: 28 for simulations both with and without PCR testing), representing a change of only 7% 
in the median and 10% in the upper quartile values compared to the twice-weekly rapid testing 
ensembles. Outbreaks are further reduced (albeit from small values for twice-weekly testing), and no 
large outbreaks of ten or more infected pupils occur in the ensemble (Table 2).  In this case the effect 
of confirmatory PCR testing is barely discernible in the numbers of infected pupils, with only far 
outliers differing (the interpretation of which should be made cautiously without larger ensembles).  
This can also be explained: daily testing ensures that ‘false negative’ test results are rapidly re-tested, 
and sequences of repeated false negatives are unlikely even for the low sensitivity rapid test.  There is 
an increase in the number of outbreaks within the ensemble, although the proportion remains small. 
 
Where infection occurs in the ensemble realizations, we track the number of secondary infections 
within the classroom from each infected individual over the duration of the simulation.  The mitigation 
measures shrink the number of secondary infections by reducing contact transmission. This is 
illustrated in Figure 10 which shows box and whisker plots for the proportion of infections that occur 
due to classroom transmissions.  The reduction of contact rates, without additional mitigation measures, 
has a substantial effect on the proportion of classroom transmissions, reducing the median from 0.41 
with pre-Covid contacts to 0.28 with reduced contacts (a ~30% reduction), and similar relative 
reduction in the quartile values.  The mitigation measures further reduce the proportion of classroom 
transmissions, with the testing-based approaches having greater effect than the bubble quarantine.  
Indeed, with reduced contacts rates and daily rapid testing, the median proportion of classroom 
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transmissions is zero, and the 99th percentile value is 0.12 when there is no confirmatory PCR testing 
(which increases to 0.15 when PCR testing is applied). 
 

 
Figure 10. Box and whisker plots comparing the proportion of infections resulting from classroom transmission in 40 primary 
classrooms with different mitigation measures applied in schools during Term 1 in September—October 2020.  Box and whisker plots 
illustrate median, interquartile range, Tukey fences and outliers. Contact rate distributions for and mitigation measures are as for 
Figure 8. 

The ensemble results can be used to estimate the secondary infection rate in the classrom as the 
expected number of in-classroom infection transmissions. Figure 11 shows two summary statistics (the 
mean and 99th-percentile values) to characterize the distribution of the number of secondary infections 
that occur in the ensemble simulations.  To highlight the trends when curtailing contact rates, for Figure 
11 have conducted simulations here with the contact rate distributions derived from SEJ for small 
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classes and applied these rates to full classroom attendance; it is unlikely that such low contact rates 
could be maintained in a fully occupied classroom, but the simulations are illustrative hypothetical 
scenarios.  
 
The mean value of the number of secondary infections is less than unity in all cases, indicating that the 
infection is not transmitted in the classroom contacts of most primary cases.  Each mitigation measure 
reduces the mean value of the number of secondary infections, with more pronounced effects when the 
contact rate is high. 
 

 
Figure 11.  The number of secondary infections in classroom simulations with different contact rates distributions and mitigation 
measures applied.  Two summary statistics to characterize the distributions are shown, with the 99th percentile value (upper panel) and 
mean value (lower panel) of the number of secondary infections in all 100,000 ensemble simulations calculated.  ‘Small classes 
contacts’ refers to simulations that adopt contact rate distributions derived from SEJ for small classes that are applied to full 
classroom attendance. Note, most of infections in the simulations are not transmitted in classroom contacts, so mean values are below 
1.0 in all cases. 

Outbreaks in the classroom can be driven by relatively rare ‘super-spreaders’.  Our model includes the 
influence of having some very gregarious individuals in a mixing group, as reported in the contact in 
[2]. Here we illustrate the impact of mitigation measures on super-spreaders by calculating the 99th 
percentile value for the number of secondary infections (i.e., 1% of infected individuals in the 
simulations have a secondary infection number larger than the 99th percentile value).  The mitigation 
measures are again seen to reduce the 99th percentile values, although the ‘bubble quarantine’ approach 
has only modest (if any) affect. The testing-based surveillance approaches are more effective in 
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eliminating super-spreading, reducing the 99th percentile value of the number of secondary infections 
to unity (or smaller) if daily testing is implemented. 
 
The mitigation measures have consequences on pupil absences.  The ‘bubble quarantine’ is particularly 
severe, with whole classes being quarantined for a period of 10 days if there is a single symptomatic 
case.  However, the testing-based surveillance approaches leads to self-isolation of individual cases, 
so the impact on absences is greatly reduced.  In Figure 12 we illustrate the effects of the mitigation 
measures on the number of pupils present in the classroom on one day, 23 October 2020 which we 
took as the last day of Term 1 in 2020. As the majority of the realizations in the ensemble have no 
infections, there is typically full attendance in each of the scenarios simulated.  However, when ‘bubble 
quarantine’ is employed, there is full-class quarantine on this day in greater than 15% of the ensemble 
members.  If this is result is applied to all classrooms in England, this would suggest approximately 
25,000 classrooms in quarantine on this day and, with an average class size of 27 in England [27], 
approximately 675,000 pupils absent from school.  For the testing-based surveillance, there are fewer 
absences, with only ~0.1% of the ensemble simulations having more than five pupils in quarantine on 
the last day of the school term.  The contact rate distribution is again seen to play a prominent role, 
with reduced contacts leading to reduced absences as there are fewer infections to trigger quarantine. 
 
To assess the impact of the testing strategies, we focus here on the ‘Reduced contacts’ distribution 
(lower panel in Figure 12). Twice weekly rapid testing has similar proportions absent from the 
classroom as the simulations with no hard mitigations applied. Without confirmatory PCR testing, 
twice weekly rapid testing slightly increases the number of ensemble members for which there is a 
single pupil absent, while the application of a confirmatory PCR test returns this proportion to close to 
that found when no hard mitigations measures are applied.  In contrast, daily testing without PCR 
confirmation has a substantially elevated proportion of simulations with classroom absences, with more 
than ~1% of simulations having five pupils absent.  Confirmatory PCR testing reduces the absentee 
proportions to below that when no mitigation measures are applied.  This confirms that many of those 
quarantined by daily rapid testing are done so unnecessarily and are promptly returned to the classroom 
when a PCR test overturns a false-positive rapid test.  However, the disruption to education by missing 
some days at school is significant and the benefit from a public health perspective is negligible. 
 

 
Figure 12. Number of pupils absent from school on 23 October 2020 (the last day of Term 1 in 2020) in an ensemble of 100,000 
simulations of a class of 30 pupils.  Two contact rates are applied: pre-Covid contact rates (top panel) and reduced contact rates 
(bottom panel). Six mitigation measures are modelled.  Colours indicate the proportion of ensemble realizations on a logarithmic scale 
(white indicating no occurrence in the ensemble).  Apparent gaps in some of the rows occur due to the probability events which may 
not occur in the finite ensemble. 

We estimate the numbers absent on a national scale by performing a bootstrap resampling of our 
ensemble to produce a sample of 156,843 classes, matching the number of state primary schools in 
2020—2021 [27].  As our nominal class size is 30 pupils, this gives a total number of pupils of 
4,705,290 which is comparable to the national state-primary pupil count of 4,177,058 [27] (a different 
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of -13% in the simulated classes).  The bootstrap ensemble is recomputed 10,000 times to construct a 
median value for the number of pupils absent on 23 October 2020 and confidence intervals on our 
estimates, which are reported in Table 3. 
 
Table 3. Estimated national number of pupils absent from school on 23 October 2020 from ensemble simulations with bootstrap 
resampling.  Isolated classes are simulated with six mitigation strategies and two contact rate distributions.  Ensembles of 100,000 
classes are simulated and collections of 156,843 classes are formed by bootstrap resampling from the ensembles.  Each bootstrap is 
constructed 10,000 times to obtain distributions on the number of absences, and we report the median, 5th and 95th percentile values.  
The percentage of the school pupil population is estimated assuming each class has 30 pupils, giving a school population of 4,705,290. 

  Number of pupils absent Percentage of pupils absent 
 Mitigation measure median 5th; 95th percentiles median 5th; 95th percentiles 

Pr
e-

C
ov

id
 

co
nt

ac
ts

 

No hard mitigation 48,384 47,861; 48,908 1.03 1.02; 1.04 
Bubble quarantine 762,605 755,422; 769, 729 16.21 16.05; 16.35 
Twice weekly rapid test (no PCR) 95,529 94,977; 96,069 2.03 2.02; 2.04 
Twice weekly rapid test (with PCR) 45995 45,592; 46,416 0.98 0.97; 0.99 
Daily rapid test (no PCR) 202,887 202,152; 203,617 4.31 4.30; 4.33 
Daily rapid test (with PCR) 81,329 80855; 81,811 1.73 1.72; 1.74 

      

Re
du

ce
d 

co
nt

ac
ts

 

No hard mitigation 40,734 40,312; 41,174 0.87  0.86, 0.88 
Bubble quarantine 748,469 741,461; 755,625 15.9  15.8, 16.1 
Twice weekly rapid test (no PCR) 93,517 92,980; 94,053 1.99  1.98, 2.00 
Twice weekly rapid test (with PCR) 42,991 42,615; 43,374 0.91 0.91, 0.92 
Daily rapid test (no PCR) 203,566 202,836; 204,305 4.35 4.31, 4.34 
Daily rapid test (with PCR) 80,725 80,248; 81,199 1.72  1.71, 1.73 

 
Table 3 shows that the different mitigation strategies have a strong effect on school absence, with the 
model adopting bubble quarantine resulting in more than 15% of pupils absent from school on 23 
October 2020.  The use of rapid testing reduces the numbers of absent pupils substantially, decreasing 
the median value to 2% of the national primary school pupil population for twice weekly testing with 
no PCR confirmation.  This is further decreased to around 1% of the pupil population if confirmatory 
PCR testing is used to return pupils with false-positive rapid test results to the classroom.  However, 
daily rapid testing produces many more false-positive results, so that the number of absent pupils 
increased markedly to over 200,000 (approximately 4% of the pupil population) when there is no 
confirmatory follow-up PCR test.  With a PCR test to identify false-positive cases of daily rapid tests, 
the number of absent pupils decreases to approximately 80,000 (1.7% of the pupil population) which 
is comparable to the number absent with twice-weekly rapid testing with no PCR follow-up. 
 

5. Forecasting SARS-CoV-2 in schools in 2021 
 
In August 2021, the safe return of pupils to schools was a national concern, with increasing prevalence 
over the summer holidays and emerging predominance of the more-transmissibly Delta variant.  To 
estimate SARS-CoV-2 infection transmission and assess the effectiveness of mitigation measures, we 
performed simulations in a ‘forecasting’ capacity in August 2021, applying our model to the first seven 
weeks of the new school year (i.e., assumed here to be Thursday 2 September to Friday 22 October 
2021 of Term 1).    
 
Amendments to the model 

To apply our model to forecasting SARS-CoV-2 in Term 1 of 2021, we alter our model parameters 
from those used for Term 1 2020.  In particular, we include the impact of population vaccination by 
September 2021.  Here we assume that there is 95% uptake amongst classroom staff, and that 1% of 
children have been vaccinated. 
 
Another crucial difference is the high prevalence of the Delta (B.1.617.2) variant in the UK population.  
Genomic surveillance [32] and modelling studies [19-21] indicate that the Delta variant is expected to 
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be predominant in the UK in September 2021, accounting for more than 95% of Covid-19 infection 
cases [19-21]. 
 
The Delta variant has two major impacts on our updated model.  Firstly, it has substantial transmission 
advantage over the original wildtype SARS-CoV-2 [33, 34].  This is estimated as 61% transmission 
advantage over the Alpha (B.1.1.7) variant in [33], from which we estimate as a transmission advantage 
of 140% over the original wildtype.  We therefore increase our values of the probability of contact 
transmission from original wildtype SARS-CoV-2 values using this scaling factor.  The probabilities 
of contact transmission we adopt for the Delta variant are given in Table 4 (again assuming, as before, 
that adults are twice as likely as children to transmit infection [6-8]). 
 
Table 4. Probability of transmission of Delta variant SARS-CoV-2. 

Delta-variant transmission 
probability Adults Children 

Symptomatic 0.084 0.042 
Asymptomatic 0.059 0.029 

 
An additional characteristic of the Delta variant, which drives increased infection, is a shortening of 
the incubation period for infected individuals [35].  Delta-variant infection is detectable (by PCR 
testing) in cases approximately two-days earlier than for original wildtype SARS-CoV-2 infection [35].  
We adopt this shorter interval in our model by reducing the median duration of the incubation period 
by two days.  Thus, for each individual in our population, we assign an incubation time drawn from 
log-Normal distribution [5] with 𝑡"~log	𝑁(1.10, 0.5).  In principle, the variance of the log-Normal 
distribution could also be amended, but in the absence of detailed information, we retain the previous 
value.  The reduced incubation period affects the time-dependence of the relative transmission 
probability, with a more rapid increase to peak-infectiousness for the Delta-variant model parameters.  
Therefore, the probability of infection transmission from pre-symptomatic individuals is enhanced 
when considering the Delta-variant. 
	
Forecast scenarios 

At the time our forecast simulations were performed there was significant uncertainty in the trajectory 
of the epidemic into the new school year.  Projections from national-scale epidemiological models 
fitted to observations [19-21] provide a basis for forecast scenarios.  Typically, the projections in [19-
21] suggested a third wave of the epidemic was likely in late-summer as the effects of easing of 
restrictions on 19 July on infection transmission were realized.  The model projections also indicated 
that infection amongst younger age-groups would become dominant [19].  The magnitude of a third 
wave varies across models and with model assumptions, particularly regarding social mixing over the 
summer, and peak incidence rates (per 10,000 population per day) range from ~12 [19] to ~300 [20] 
across the models, spanning values substantially higher than those for September 2020 (Figure 5; [18]). 
 
To model the community incidence rate of new infections over Term 1 of 2021, we digitize projection 
graphics produced by a national scale epidemiological model in [19] (Figure 13).  This provides two 
time series of incidence rate which differ in the magnitude and timing of the peak depending on how 
rapidly societal contacts returned to pre-Covid levels  which we refer to as the ‘gradual-relaxation’ and 
‘rapid-relaxation’ incidence rates (Figure 13).  For the gradual-relaxation scenario, a peak incidence 
rate of approximately 67,000 new infections per day was projected to occur in late July, with a gradual 
decrease through August and September, to approximately 20,000 per day on 1 October 2021, with 
incidence slightly increasing subsequently [19].  In this scenario, our simulations of the school term 
begin in a period of relatively steady incidence.  In contrast, if societal contact rates rapidly return to 
pre-pandemic levels in summer 2021, then the projected peak incidence rate was approximately 
145,000 new infections per day and occurs on 12 August 2021, with incidence rates elevated with 
respect to the gradual-relaxation until 1 October 2021, from when the incidence rate gradually 
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decreases to low levels through October and November [19].  The incidence of new infection was not 
expected to be evenly distributed through the population, but rather skewed to lower age groups who 
were unvaccinated. Here, we adopt the values reported in [19] that attribute 27% and 25% of new 
infections to age groups 0—9 and 10—19, respectively, for the gradual-relaxation scenario, and 
combine these to produce a child-incidence rate.  These proportions change but slightly for the rapid-
relaxation scenario to 26% and 24% for age groups 0—9 and 10—19, respectively. 
 
At the time the forecast simulations were performed (mid-August 2021), the projections of community 
incidence rate were tracking well the estimates derived from the national Coronavirus Infection Survey 
compiled by the Office for National Statistics [29] (noting that the national scale projections were made 
in early July 2021), with the gradual-relaxation scenario in particular predicting quite well the timing 
and magnitude of the early summer ‘peak’ in incidence.  Subsequently, however, observed incidence 
rates did not fall as substantially as the projections anticipated, and there are significant and increasing 
deviations in the projectioned incidence rate from observations from mid-September and into October.  
Therefore, as our classroom transmission model adopts the projected incidence rate for community-
transmission seeding of infection into schools, we expect our forecasts should differ from observed 
infection rates in schools. 
 
Our model also requires the community prevalence.  This is not reported in the projections, so we 
estimate prevalence using a simple rescaling of incidence rates with comparison to the available data 
(Figure 13), as described in the supplementary material Appendix A3.  The prevalence has less 
importance in our model than the incidence rate (as it is used only as a seeding of infection on model 
initiation and in cases where substitute teachers are added to the simulated classroom) and we judge 
that the estimate from incidence rate is sufficient in our forecasts.  However, we note that, as with the 
incidence rate, from mid-September there are substantial deviations of the projection-derived 
prevalence from those observed subsequently observed. 
 
Guidance from the Department for Education issued in summer 2021 [36] removed many of the SARS-
CoV-2 mitigation measures in school settings, but recommends ‘soft mitigation’ measures  continue to 
be applied, such as enhanced cleaning and classroom ventilation. Therefore, in our forecast 
simulations, we do not model any of the possible hard mitigations that might be activated under certain 
conditions. Additionally, schools were able to reconvene in large groups, such as during lunch and 
break times and for school assemblies.  This may increase transmission rates within school settings and 
particularly between classes.  However, school managers were responsible for deciding whether to 
continue to ‘bubble’ classes to minimize interactions. As teachers and school leaders could also decide 
to continue to implement measures that reduce contacts within the classroom, we adopt the two contact 
rates distributions from [2] that model contact rates for pre-Covid classrooms and reduced contact rates 
during the epidemic. 
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Figure 13. Projections of the incidence rate (upper panel) and prevalence (lower panel) in the UK from June to December 2021.  

Incidence rates are obtained from a national scale epidemiological model [19] with scenarios modelling a gradual or rapid 
return to pre-pandemic societal contact rates.  The prevalence is modelled assuming 𝑅F = 5 and infection duration of 40 days 
(see supplementary material).  Data from the Office for National Statistics Coronavirus Infection Survey [29] for the modelled 
incidence and prevalence with credible intervals are illustrated for the data available at the time of writing (early December 
2021, orange) and the data available at the time simulations were conducted (late-August 2021, yellow).	

	
Classroom transmission modelling results 

We perform stochastic simulations for an isolated school classroom over the 50 days of Term 1 in 
2021, adopting the ‘reduced contacts’ distribution of contact rates (i.e., we assume that in this time 
period, schools will continue to enact measures to reduce the number of contacts in classrooms). 
 
Figure 14 illustrates the result when for the ‘gradual-relaxation’ scenario, showing time series of the 
number of infected pupils in each realization from an ensemble of 100,000 stochastic simulations in 
which no hard mitigation measures are applied.  Therefore, Figure 14 is directly comparable to Figure 
6, and shows there is potential for substantially increased infection within school classrooms in Term 
1 of 2021 when compared with Term 1 of 2020.  We find both (i) a potential substantial increase in the 
proportion of ensemble realizations that have infected pupils (62% for 2021, compared to 46% for 
2020) and (ii) the maximum number of simultaneously infected pupils in a realization could be 
increased (22 in 2021, compared to 14 in 2020).  There are also more realizations in the ensemble that 
have several simultaneously infected pupils, although most frequently there is only a single infected 
pupils in the class, as we found in the Term 1 2020 simulations. 
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Figure 14. Time series of the number of infected pupils for each realization in an ensemble of 100,000 stochastic simulations of an 
isolated classroom in Term 1 of 2021 under the gradual-relaxation scenario. Each row of the heatmap corresponds to an ensemble 
member, with colours denoting the number of pupils in the classroom with Covid-19 infection on each day.  The ensemble realizations 
have been sorted by the sum of the number of infected pupils over all days. (Upper panel) All ensemble realizations are shown.  (Lower 
panel) The ten ensemble realizations with the most infections are shown, illustrating the dynamics of large outbreaks that occur with a 
frequency of 1/10,000.  Colours denote the number of infected pupils in the classroom for each day of the simulation. 

The gradual-relaxation scenario can also be compared to forecasts under the rapid-relaxation scenario 
(Figure 15) where the incidence rate is approximately three times larger at the start of Term 1.  In this 
case, there are infected pupils in more than 89% of the ensemble realizations, and more realizations 
have substantial numbers of pupils simultaneously infected.  This is confirmed in Figure 16 where 
histograms (empirical pdfs) of the total number of infected pupils in each realization are shown for 
both scenarios for Term 1 2021 and the equivalent simulation for Term 1 2020.   
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Figure 15.  Time series of the number of infected pupils for each realization in an ensemble of 100,000 stochastic simulations of an 
isolated classroom in Term 1 of 2021 under the rapid-relaxation scenario. Each row of the heatmap corresponds to an ensemble member, 
with colours denoting the number of pupils in the classroom with Covid-19 infection on each day.  The ensemble realizations have been 
sorted by the sum of the number of infected pupils over all days.  Colours denote the number of infected pupils in the classroom for each 
day of the simulation. (Upper panel) All ensemble realizations are shown.  (Lower panel) The ten ensemble realizations with the most 
infections are shown, illustrating the dynamics of large outbreaks that occur with a frequency of 1/10,000. 
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Figure 16.  Histograms (empirical pdfs) of the total number of infected pupils in ensembles of 100,000 simulation of the rapid-relaxation 
and, gradual-relaxation scenarios for Term 1 in 2021 and the ‘no hard mitigations’ simulation with reduced contacts for Term 1 in 2020.  
Note the logarithmic scale on the proportion in the ensemble.  

The results in Figure 16 show that for both scenarios for Term 1 of 2021, there is a probability of 
greater than 0.01 of classes having 10 or more infected pupils over the course of the term. Indeed, the 
number of infected pupils at the 1% probability level increases from 5 for the 2020 simulation, to 7 for 
the gradual-relaxation scenario for 2021, and to 13 under the rapid-relaxation scenario.  The change in 
the upper tail values from Term 1 2020 (with no hard mitigations) to the 2021 scenarios is even more 
pronounced: the 99.9 percentile values on the numbers of infected pupils are 12 for 2020 and 22 for 
the 2021 scenarios.  Thus, the simulations indicate a much greater potential for substantial outbreaks 
in Term 1 of 2021. 
 
Simulations have also been performed for Term 1 of 2021 scenarios assuming the classroom contacts 
rates return to pre-Covid levels.  To compare these simulations with those above, we consider again 
the collection of ten schools each with four classrooms of 30 pupils.  This better illustrates the level of 
infection that local authorities, city boroughs or academy networks may have needed to respond to in 
Term 1 of 2021. 
 
In Figure 17 we illustrate the differences that may occur in these scenarios by plotting histograms that 
show the probability that a given number of classes in the collection experiences infection at different 
levels.  We find that the probabilities of classes having no infections (Figure 17a) is independent of the 
classroom contact rates, but strongly depends on the assumed societal contact relaxation scenario, with 
a rapid-relaxation to pre-Covid societal contacts substantially reducing the number of classes with no 
infections.  Similarly, the number of classes experiencing a single infection (Figure 17b) has only slight 
variations with the classroom contact rates, but differ substantially under the two societal contacts 
forecast scenarios. 
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Figure 17. Histograms of the number of classes in a collection of ten schools each with four classes of 30 pupils that are forecast to 
experience SARS-CoV-2 infections in Term 1 of 2021 under different scenarios: gradual- and rapid-relaxation to pre-Covid societal 
contacts, and reduced or pre-Covid contact rates in the classroom.  Six different infection levels are considered: (a) classes with no 
infections; (b) classes with a single infection; (c) classes with at least one infection; (d) classes with more than six infections; (e) 
classes with ten or more infections; and (f) classes with 15 or more infections.  Note, in (f) the reduced contacts gradual-relaxation 
scenario has a probability of no classes with 15 or more infections of 0.66 and is curtailed in these plots to better illustrate the lower 
probability by high consequence outbreaks 
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The effects of in-classroom contact rates increase if we consider outbreaks. Small clusters of three or 
more infections (Figure 17c), which would be likely to trigger ‘extra action’ under DfE guidelines [30], 
are more likely for high (pre-Covid) in-class contact rates of than for reduced contacts.  However, 
differences in the community incidence rate in the two forecast scenarios have the greater effect; three 
or more infections are likely in around half of the 40 classes in the collection under the rapid-relaxation 
scenario, but in only 5—8 classes for the gradual-relaxation scenario. 
 
For outbreaks of more than six infections in a class (Figure 17d), our model suggests 16 classes in the 
collection are likely to experience such infection levels with pre-Covid classroom contact rates under 
the rapid-relaxation scenario, reducing to 12 classes under the gradual-relaxation scenario.  Outbreaks 
of ten or more infections (Figure 17e) are less likely in all simulated conditions, but in the worst-case 
modelled (pre-Covid classroom contact rates under a rapid-relaxation of societal contacts) it remains 
likely that 8 classes in the collection would experience an outbreak of this size.  Additionally, the 
number of classes with ten or more infections is similar for reduced classroom contacts in the rapid-
relaxation scenario and the pre-Covid contacts in the gradual-relaxation scenario. 
 
Considering a large outbreak of 15 or more pupils (i.e., at least half of the pupils being infected), we 
find that this is likely in three classes, and may occur in more than ten classes, under the worst case 
modelled, but becomes unlikely in the gradual-relaxation scenario.  However, even in the best case 
modelled (reduced classroom contact rates and gradual-relaxation of societal contacts) there is an 
appreciable probability (approximately 0.0075) of three classes experiencing a large outbreak. 
 
Finally, we estimate the proportion of pupils absent through Term 1 of 2021 and compare with 
estimates of pupil absences from reports to the Department of Education [31].  Table 5 collates the 
proportions of absences over six weeks in September and October 2021 as found from model ensemble 
simulations within the rapid- and gradual relaxation scenarios and adopting pre-Covid or reduced 
contact rates.  We model a twice weekly rapid testing regime, both with and without confirmatory PCR 
testing, as well as simulations with no hard mitigations applied for comparison.  We note that regular 
testing of primary aged children was not mandated by the UK Government during this time, although 
staff were required to self-administer tests twice weekly and households of pupils were recommended 
to carry out tests.  However, an internet search has found several examples of primary schools advising 
regular testing of children at home, so it is likely that ad-hoc arrangements were in place in many 
schools. 
 
Table 5 indicates an increasing level of reported absence over the first three weeks of Term 1, almost 
doubling from ~1% of pupils on 9th September 2021 to 2% on 23rd September 2021.  Subsequently, the 
absence rate fluctuates at around 2% of pupils for the remaining weeks of Term 1.  Our modelling 
results are broadly consistent with these reported values.   There are differences observed in the 
absences between the two community prevalence scenarios, which increase over time, with 
approximately twice as many absences under the rapid-relaxation scenario on 14th October 2021 than 
the gradual-relaxation scenario.  As expected, reduced contact rates result in lower numbers absent. 
 
In the first week of Term 1 (9th September 2021), our modelled values are substantially lower than 
reported (Table 5), except in the case where twice weekly rapid testing without PCR confirmation is 
applied.  We note here that pupils were asked to perform two self-administered lateral flow tests in the 
week prior to returning to school in September.  This requirement was introduced after our simulations 
were performed, so was not included in our model, and is likely to result in model simulations under-
estimating absences in the first week, but is somewhat corrected where we have modelled twice weekly 
rapid testing. 
 
The modelled absences generally increase monotonically over the weeks of Term 1 under the rapid-
relaxation scenario, but with gradual-relaxation the absence level shows a similar fluctuation for the 
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final three weeks of Term 1 as seen in the reported absences (Table 5).  The simulation results under 
the gradual-relaxation scenario with reduced contact rates and twice weekly rapid testing (with no 
confirmatory PCR tests) show particularly good matches to the observed rates. 
 
Table 5. Comparison of reported pupil absences in state-funded primary schools in England with modelled pupil absences under 
rapid-relaxation and gradual relazation scenarios over term 1 of 2021.  Model ensemble simulations with 100,000 realizations are 
performed adopting pre-Covid and reduced contacts distributions.  Reported absences obtained from [31]. 

  
Date 09/09 16/09 23/09 30/09 07/10 14/10 

  Reported absences 1.1% 1.4% 2.0% 1.9% 1.8% 2.2% 
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ts
 

No hard mitigations 0.2% 0.6% 1.3% 2.2% 3.4% 4.8% 

Twice weekly rapid 
test (no PCR) 

0.9% 1.5% 2.1% 2.8% 3.7% 4.6% 

Twice weekly rapid 
test (with PCR) 

0.2% 0.5% 1.1% 1.8% 2.6% 3.5% 

Re
du

ce
d 

co
nt

ac
ts

 No hard mitigations 0.2% 0.4% 1.0% 1.7% 2.6% 3.6% 

Twice weekly rapid 
test (no PCR) 

0.9% 1.5% 2.0% 2.6% 3.4% 4.2% 

Twice weekly rapid 
test (with PCR) 

0.2% 0.45% 0.9% 1.6% 2.3% 3.1% 

 
G
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sc
en

ar
io

 

p r
e-

C
ov

id
 

co
nt
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ts

 

No hard mitigations 0.2% 0.6% 1.3% 2.2% 2.6% 2.3% 

Twice weekly rapid 
test (no PCR) 

0.9% 1.5% 2.1% 2.6% 2.7% 2.3% 

Twice weekly rapid 
test (with PCR) 

0.2% 0.5% 1.1% 1.6% 1.6% 1.2% 

Re
du

ce
d 

co
nt

ac
ts

 No hard mitigations 0.2% 0.4% 1.0% 1.6% 1.8% 1.5% 

Twice weekly rapid 
test (no PCR) 

0.9% 1.4% 1.9% 2.4% 2.5% 2.1% 

Twice weekly rapid 
test (with PCR) 

0.2% 0.5% 1.0% 1.4% 1.4% 1.1% 

 
 

6. Discussion 
 
Main results 

We have developed a stochastic discrete compartmental model of SARS-CoV-2 transmission in 
primary school classrooms and applied this to analyse infections over Term 1 of 2020, and to forecast 
Term 1 of 2021.  The model takes account of the known large variations in the contact patterns of 
individual pupils in primary schools [2].  This includes allowing for the possibility of having one or 
more very gregarious individuals in a mixing group, who may drive major in-class outbreaks, and 
allows the potential impact of such pupils to be investigated quantitatively. Our basic model is for 
transmission within a class, but individual schools can be modelled as collections of such classes such 
that the results can be applied to local authority areas and academy networks and provide estimates on 
a national scale.  
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Our analysis of model findings for Term 1 of 2020 has focussed on assessing alternative mitigation 
measures that have been proposed to manage infection risk in schools.  While there are limited data 
with which to test our model, the reanalysis broadly aligns quantitatively with observations from 2020.  
Furthermore, in comparing mitigation measures, our model parameters are not varied, allowing relative 
changes to be compared and reducing the impact of uncertainties on parameters. 
 
We find the dynamics of infection in the classroom follow the external community incidence rates 
through the seeding of infection.  Typically, there are few instances of classroom transmission and, in 
the majority of ensemble realizations, there are either no infections or a single pupil is infected.   
 
Our model results support the notion that outbreaks can be defined as infections exceeding about 5 
persons in a class-sized mixing group. Below 5 cases, we find that the infections are largely driven by 
community prevalence, but this connection is broken for realizations numbering more than 5 infections 
with large outbreaks driven by classroom transmission. Our forecasts indicate that outbreaks may be 
substantially larger and more frequent in Term 1 of 2021 compared to Term 1 of 2020.  This is due to 
the higher transmission rates with variant Delta SARS-CoV-2 and its more rapid onset of infectivity.  
In the worst-case scenario, the modelling indicates that almost all school classes will experience at 
least one infection case in Term 1 of 2021. 
 
A prominent result of our modelling is the essential role of contact rates within the classroom on 
infection transmission.  In this study, we have compared two different contact rate distributions, 
derived from an elicitation of teachers in May 2020 [2], using our new agent-based stochastic 
transmission model.  The reduction of contact rates from pre-Covid levels is shown to have a 
comparable reduction on pupils’ infection as implementing bubble quarantine with pre-Covid contacts.  
The reduction of contacts also shrinks in-class secondary infections to a similar extent as the application 
of bubble quarantine. 
 
Following on from these retrospective analyses, we have applied the new model to forecasting infection 
in schools for Term 1 2021. Here the model assumptions and parameters have been changed from the 
September 2020 situation to include a largely vaccinated adult population and the more virulent Delta 
variant of SARS-CoV-2. We have contrasted two different contact patterns, namely pre-Covid with no 
mitigation and then reduced contact levels, as ascribed to primary schools in Term 1 of 2020. We then 
contrasted two different modelling projections, concerning community prevalence and incidence rate 
of infection, making different assumptions about how quickly the public would alter their community 
contact patterns back to pre-Covid rates. In comparing these two incipient scenarios for September--
October 2021, we conclude, commensurate with [6], that prevalence levels in the community will 
remain the dominant control on infection in primary schools. 
 
Adopting ’soft’ mitigation measures to reduce transmission has a modest effect compared to 
differences in projected community prevalence but significantly suppresses occurrence of larger 
outbreaks. 
 
Implications for managing Covid-19 in schools 

Our results have implications for the management of SARS-CoV-2 infection transmission in primary 
schools. We find that mitigation steps that reduce contacts between pupils have a tangible benefit in 
disrupting transmission. Schools are already experienced in organising classrooms and other social 
interactions to reduce pupil-to-pupil and pupil-to-teacher contacts.  Our model results suggest that, 
given practicalities of managing contacts within schools, continuation of these practices can serve to 
reduce in-school transmission by up to 30%. 
 
Of greater significance is the comparison of different strategies to deal with infection occurrences. The 
exclusion of whole classrooms and bubbles has led to self-isolation of large numbers of pupils from 
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primary schools in the recent past, with major adverse effects on education. In addition, such absences 
have significant and unwelcome knock-on effects on families and the economy. Our model results 
show that, in terms of infection numbers and transmissions, there are no tangible benefits of this policy 
in comparison to a policy of simply removing a pupil who has been infected from school. Thus, 
excluding whole classes or bubbles is hard to justify from a public health perspective and in the context 
if its highly disruptive effects on education and society.  
 
Our modelling also shows that a regular rapid lateral flow testing regime has significant benefits in 
reducing transmission and is more effective than bubble or class exclusion. This results in much lower 
absence numbers, so is manifestly superior from an educational and societal perspective. Contrasts 
between different testing regimes with respect to frequency of testing and whether lateral flow testing 
is augmented by PCR tests are marginal. Our model results indeed suggest that augmented PCR tests 
have little benefit since a positive lateral flow result will, in most cases, simply be confirmed by a PCR 
test. Thus, a testing regime which meets criteria of practicality and cost should be chosen. In the context 
of our modelling, the findings suggest two lateral flow tests per week is a suitable regime, with little 
or no need for PCR tests. 
 
Our models have limited ability to forecast, and rely on data for community incidence rates and 
prevalence. At the time of conducting our simulations for the return to school in autumn 20201 there 
were very large uncertainties in future projections of incidence rate and prevalence. Projections over 
long timescales (several weeks) are unreliable. In particular they are sensitive to changes in model 
parameters that are influenced by external forcings (e.g., weather conditions influencing the extent of 
indoor mixing in the summer) and changes in the characteristics of the virus that affect its tranmissivity, 
as is being demonstrated by the arrival of the Omicron variant. Subsequent observations are 
substantially different from projected community infection levels (Figure 13).  Community incidence 
is the main driver of infection in school, seeding infection in the classroom. In our simulations, this 
remains the case even with a large proportion of the adult population vaccinated. We caution though 
that - to some extent - community prevalence control is built into our models (see next section for fuller 
discussion). 
 
Caveats, limitations and further developments 

Our model makes a number of assumptions and has some limitations. We are considering only close 
contacts (for clarity, define here as per [2]) as an infection transmission pathway. Unavoidably, the 
contact pattern data we have used, derived from teacher elicitation [2], are an approximation of 
complex varying patterns of human interactions. Our model also assumes each classroom is isolated 
and independent of other classrooms, as far as transmission likelihood is concerned. Clearly there are 
interactions between pupils and adult staff from different classes and across age groups, but we judge 
this simplification is justified from evidence of limited cross age mixing, e.g. [7]. Our model also 
simplifies the complex social interactions by assuming that contacts are randomly distributed amoungst 
all members of a class, whereas there will be friendship groups resulting in variations in the connectness 
of the individuals with one another. 
 
The in-classroom transmission of infection in our model is assumed to be predominantly through close 
contacts.  This neglects the possibility of long-range airborne transmission by dispersed aerosol, which 
may be a contribution in situations where there are several infected people in the classroom, thereby 
elevating the background aerosol concentration to comparable levels to those near infectious 
individuals.  While a model of such transmission [e.g., 37] could be incorporated in addition to the 
close-contact model, we note, however, that such embellishment of the model will introduce additional 
uncertain parameters that vary widely between schools, and is unlikely to alter the relative effectiveness 
of the mitigation measures. 
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Our model does not consider other measures to mitigate transmission (e.g., masks, cleaning and 
ventilation) in detail (only adopting a lumped parameter to represent these ‘soft’ mitigations). Some or 
all of these might be taken into account in development of a more sophisticated, more complicated 
model; this said, we doubt there would be much benefit for such additional complexities, given they 
would all introduce uncertainties and, it can be argued, would only introduce second order factors and 
effects. 
 
We have not performed extensive calibration of our model, in part due to a lack of detail in published 
data with which to compare our model.  While calibration is likely to improve our predictions of 
infection levels and resulting pupils absences, there is also a danger of over-fitting models as there are 
a number of parameters that can be tuned and data is scarse and uncertain.  We have adopted published 
values of epidemiological parameters, where available, and have demonstrated that the model is able 
to reproduce observed levels of pupil absence.  Even without detailed calibration, the model provides 
a useful tool with which to simulate potential scenarios and provide evidence to judge the effectiveness 
of alternative mitigation measures and the tension between controlling infection level and pupil 
absence. 
 
One major issue is that the model does not explicitly distinguish between community-related infection 
transmission outside and inside school. Thus, to a large extent, the current model is predicated 
intrinsically on community prevalence being dominant. The model is, however, able to identify 
transmission clusters and larger outbreaks of in-school infections. We think this aspect of modelling 
could be usefully developed to allow it to detect differences between infection rates inside and outside 
school separately. With much of the adult population vaccinated, it could be that schools become 
important reservoirs and drivers of overall community infection.  
 
In terms of ‘outbreaks’ of infection, at this stage we have concentrated on projections for six or more 
infections in a class because this breakpoint clearly emerges from the data. In this regard, in Section 4 
we mention current DfE contingency operational guidance for schools [30] where two thresholds are 
defined for “extra action” under specific setting conditions and in relation to ‘close mixing’ groups 
within schools. If we take the second of these, i.e., “10% of children, pupils, students or staff who are 
likely to have mixed closely test positive for COVID-19 within a 10-day period”, for our hypothetical 
class of thirty this equates to 3 or more positives. En passant, in Figure 15c, we present projected 
number of classes - in a collection of ten schools with four classes each - that could match this 
concentration of infections, under two mitigation scenarios.  There is, therefore, a need to focus our 
modelling specifically on these stated DfE criteria, and to develop such projections – and, critically, 
their associated uncertainties - in more detail than has been possible thus far.  
 
Another useful potential development relates to forecasting. Forecast reliability in such models is 
strongly influenced by associated uncertainties. Our example of using established models of 
community transmission (Figure 13) indicates that their forecasting skill is limited to no more than 
than a few weeks. Nonetheless our modelling might usefully be combined with near real-time data 
assimilation of observed incidence to generate useful short-term forecasts that could be reasonably 
dependable, out to a few weeks ahead. 
 

7. Conclusions 
 
Substantive implications for the relative efficacies of different mitigation measures in primary schools 
are indicated by our agent-based contact transmission modelling results, reported above. For instance, 
our modelling adduces evidence that, with the emergence of the Delta variant and other changing 
factors, there could be a distinct contrast between the efficacies of bubbles and testing when it to comes 
to projected numbers of future Covid-19 infections in school and consequent absences. We contend 
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this is a key finding for policy considerations. In addition, our results indicate potential benefits from 
refocusing on social distancing in schools, as well as enhanced ventilation and good hygiene. 
 
These, and related arguments from our modelling, suggest that - in forecast mode - our stochastic 
contact network framework modelling should be of value to Directors of Public Health and Education 
Authorities charged with responsibility for prompt assessment and managing of infection transmission 
dynamics in school classes and in multiple schools in a given area. In terms of current or future DfE 
action criteria [e.g. 30, 36], our model could be tailored straightforwardly to schools’ demographics 
and to the relevant local community incidence level.   
 
The numerical modelling code has been fine-tuned for rapid analytical computation and, therefore, 
could be used on a frequent, real-time basis under rapidly changing Covid-19 infection conditions – 
e.g. for the new, emerging Omicron variant; with suitable resources, daily data-adaptive updating of 
projections should be feasible for a group of schools in a region. 
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Supplementary Material 
 

A1. The role of airbourne transmission in close contact 
transmission of SARS-CoV-2 

 
One of the emerging ideas on the spread of SARS-CoV-2 is that it occurs by airborne transmission of 
aerosols carrying the virus [12]. This concept has gained currency as evidence emerges for transmission 
in settings which require long distance transport of fine aerosols, away from an infected source, as 
recently summarized in [1]. The specific principles and issues related to airborne transmission in 
classrooms and factors related to ventilation in schools have been reviewed by Ding et al. (2022) [38].  
Transmission and risk models have been developed [e.g., 37, 39, 40] which frame transmission risk in 
terms of long-range dispersal of aerosols within closed and open spaces. The transmission risk is a 
function of many parameters but, at its basic level, is controlled by the balance between recharge of a 
closed space with aerosols from infected persons and their removal by fresh air or ventilation. Exposure 
risk increases as viral concentration within the aerosols increases and is also as a function of exposure 
time. Aerosol size is also likely to play a role as size affects buoyancy and  persistence in suspension.  
 
In contrast, many epidemiological models, including the agent-based model in our paper, identify close 
contact with an infected person as the main circumstance for viral transmission to a susceptible person.  
This justifies social distancing as a primary approach to mitigation.  Long-range and short-range 
exposure models to airborne aerosols are not mutually exclusive. Indeed, both kinds of process will 
occur concurrently in many settings [12, 38]. The question then is in what circumstances does one or 
the other become dominant?  
 
Here we consider the case that short range airborne exposure is likely to be dominant in many 
classroom settings, supporting the development and validity of agent-based close contact models. The 
main concept is that various kinds of exhalation (e.g., normal breathing, talking, singing, laughing, 
coughing and sneezing) lead to high concentrations of virus in airborne aerosol in the immediate 
vicinity of an infected person [41]. Thus, the risk of being infected when close to or face-to-face with 
a person is greatly increased compared to the background exposure due to long range dispersal. 
Exhalations from an infected person create virus-laden jet plumes that involve turbulent entrainment 
of air, so the aerosol becomes diluted as the plume disperses. Relevant research has been recently 
reviewed in Burridge et al. [42]. Abkarian et al. (2020) [41] and Chen et al. (2020) [43] provide 
quantification of typical dilution rates as a function of distance in exhalations. As examples, the 
concentration of aerosols in a turbulent jet produced by speech reduces to 6% at 1m and 3% at 2m from 
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its initial value [41].   Concentrations of fine aerosols significantly above background are calculated at 
up to 0.3 m for speech (counting) and up to 1 m for coughing [43]. Substantial distances, greater than 
typical classroom sizes, are required for concentrations in the respiratory jet to reach background levels 
[37]. Because proximity (~	1 m) to an infected person is now a recognised major risk factor, these 
results, and the illustration below, support our model choice of close contact as the predominant 
mechanism in a school classroom.  
 
In order to appraise the relative risk of infection to pupils in the room, away from close contacts, we 
can compare the background concentration of infected aerosol with the local concentration close to an 
infected person. Let us take 6 litres per minute of air inhaled as typical of both an adult female and a 
primary age child (with adult males 50% higher) [44] and assume the concentration of virus-bearing 
aerosol of an infected child is some unknown value X. Taking a classroom of 8 x 6 m as the minimum 
in UK Primary schools with height 3 m we have a volume of 144,000 litres. We now need a suitable 
time scale and choose 3 hours, noting that this is the duration of a school half day and that the half-life 
of the virus is 1.1 hours [45]. Thus, the room cannot have a concentration more than 0.0075X. However, 
the concentration will be very much less if there is ventilation. According to [38] a classroom of 30 
children should have a room ventilation rate of at least 120 litres per minute, meaning that it would 
take only 20 minutes to replace the air in a classroom.  Here the background concentration of infected 
aerosol would be approximately 10-3 X. Thus, concentrations of virus in aerosols, and therefore risk of 
infection, can be tens to hundreds of times greater than background within a metre of an infected 
person. We conclude that, in most circumstances, close contacts will dominate transmission in a 
primary school classroom, and so justifies our choice of model. We acknowledge that risk from long 
range airborne transmission could become much more significant in situations of poorly ventilated 
classrooms and with multiple infected pupils during an outbreak. 

 
A2. Details of the agent-based classroom transmission model 
 
Agent-based models (ABMs) are a convenient, powerful and flexible approach to simulation of 
infectious diseases [46].  Of particular relevance to our application, ABM are useful in small 
populations where there is heteorogeneity in population characteristics.  Furthermore, ABMs can be 
easily combined with network models, including where the network evolves over time [e.g. 47]. 
 
We develop a simple, bespoke ABM to model SARS-CoV-2 transmission in contacts between people 
in a school classroom.  Our agents are individuals in the classroom, which include pupils and a teacher, 
and could be extended to include teaching assistants and other school staff members.  Each agent has 
their own characteristics, drawn from specified probability distributions. 
 
In our current application, we consider only pupils and teachers in the classroom, and therefore there 
are two classes of agents.  The characteristics of the two classes are similar, except that teachers can 
be permanent or temporary, but the parameters and distributions vary between pupils and teachers, 
reflecting differences between adults and children. 
 
Steps in modelling an isolated classroom 

1. Initialize classroom 
i. Specify size of class, 𝑁565"73 

ii. Initialize  𝑁565"73 agents in pupil class using SEUQR Initialization routine 
iii. Initialize single agent in teacher class using SEUQR Initialization routine 
iv. If Teacher is in Quarantine on initialization then replace teacher with Temporary Teacher 

2. For each day of simulation, do 
i. Update community infections in classroom: for each Susceptible agent in the classroom, 

do: 
a. set community transmission probability from time series of community incidence 

rate at current time step; 
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b. if agent is vaccinated then reduce transmission probability using Vaccine 
susceptibility factor; 

c. perform Bernoulli trail using transmission probability – agent is infected if trail is 
successful; 

d. if agent is infected, start infection time counters. 
ii. If rapid testing is implemented and current day is a test day then, for each agent, do: 

a. if agent is not Unwell and agent has not tested positive in PCR test, then perform a 
rapid lateral flow test as a Bernoulli trial with probability of success given by: 

• rapid test sensitivity if agent is infected; 
• 1 – rapid test specificity if agent is not infected. 

Rapid test is positive if Bernoulli trial is ‘success’. 
b. If Bernoulli trial is success, then: 

• if Bubble Quarantine is applied on positive rapid test, then more all 
agents to Quarantine, otherwise move agent to Quarantine; 

• start quarantine counter 
• if agent is Teacher, replace with temporary teacher; 
• if agent is Temporary teacher, replace with a new temporary teacher. 

iii. If confirmatory PCR testing is implemented then, for each agent, do: 
a. if agent has retuned a positive rapid test and current time step is two days after day 

of agents’ latest positive rapid test, then perform a PCR test as a Bernoulli trial 
with probability of success given by: 

• PCR test sensitivity if agent is infected; 
• 1 – PCR test specificity if agent is not infected. 

PCR test is positive if agent is ‘success’. 
b. If Bernouilli trial is ‘success’, then: 

• if Bubble Quaratine is applied on positive PCR test, then move all agents 
to Quarantine, 

c. If Bernoulli trial is ‘fail’, then return agent to classroom and reset Quarantine 
counters.  If agent is permanent teacher, remove temporary teacher. 

iv. If class is not currently in Bubble Quarantine and current time step is a school day, then 
model contact transmissions in the classroom.  If at least one agent in the classroom is 
currently infected, then for each agent current not in Quarantine, do: 

a. build contact network graph using daily contacts of each agent as the degrees of 
the graph nodes; 

b. loop through the edges of the contact network; 
c. if neither of the agents is infected, then skip edge; 
d. if both agents are infected, then skip edge; 
e. if one agent is infected and the other is Susceptible, then: 

• get probability of transmission from infected agent, evaluating from their 
relative transmissibility function at the current time step, multiplying by 
the agents’ transmission probability and the agents’ Soft mitigation 
factor; 

• if Susceptible agent is vaccinated, then reduce probability of transmission 
by Vaccine susceptibility factor; 

• perform Bernoulli trial for transmission in contact using the probability 
of transmission in this contact, with ‘success’ corresponding to infection 
transmission to Susceptible agent; 

• if Bernoulli trial is a ‘success’ then move Susceptible agent to Exposed 
and update counters. 

v. Update SEUQR compartments using SEUQR update routine. 
vi. Update Quaratine counters. 

vii. Update current day. 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 17, 2022. ; https://doi.org/10.1101/2021.08.30.21262826doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.30.21262826
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 41 

Classrom agents 
Characteristic Initialization Update 

Number of daily contacts Draw from empirical contact rate 
distribution for adults or children 

- 

Vaccinated? Bernoulli trial using adult/child vaccination 
data. 

- 

Vaccine susceptibility factor Specifed value - 
Currently infected? Bernoulli trial using adult/child prevalence 

data, modulated if vaccinated. 
Bernoulli trial when contact occurs 
with exposed agents. 

Symptomatic on infection? Bernoulli trial using proportion of 
adult/child population who are symptomatic, 
modulated if vaccinated. 

- 

Probability of detection of 
symptoms 

Specified value - 

Transmission probability Specified values for symptomatic and 
asymptomatic individuals. 
Reduced if vaccinated. 

- 

Infection incubation time, 𝑡" Draw from log-Normal distribution  
𝑡"~log	𝑁(1.63, 0.5) [5]. 

- 

Duration of illness, 𝑡# Draw from log-Normal distribution 
𝑡#~𝑙𝑜𝑔	𝑁(1.61,0.923) 

- 

Infection clearing time, 𝑡$ Specified as 𝑡$ = 𝑡" + 𝑡# - 
Time from onset of 
symptoms to transmission, 
𝑡%&' 

Draw from Student’s t-distribution 
𝑡%&'~	𝑡((𝜇, 𝜎) with 𝜈 = 3.3454 degrees-of-
freedom, location 𝜇 = −0.0747, and scale 
𝜎 = 1.8567 [4]. 

- 

Number of days infected, 
𝑡)*+&	"-./$'/) 

If currently infected on initialization, draw 
from uniform distribution, 
𝑡)*+&	"-./$'/) 	~	𝑈(0, 𝑡$), 
otherwise specify 𝑡)*+&	"-./$'/) = 0. 

Counter updates until 
𝑡)*+&	"-./$'/) = 𝑡$ 

Relative transmissibility, 𝑝0 - Updating function using equation 
(1) with incubation time 𝑡" and 𝑡 =
𝑡)*+&	"-./$'/) − 𝑡" − 𝑡%&' [4]. 

Soft mitigation factor Specified value of 0.75 for pupils and 0.6 for 
adults 

- 

Compartment of disease 
progression model (SEUQR) 

Initialized based on infection status and 
other characteristics using SEUQR 
initialization routine. 
 

Advanced through compartments 
using SEUQR update routine. 
 
Infection by contact or community 
transmission moves agent from 
Susceptible to Exposed 
compartments. 

Temporary teacher? No, unless teacher is infected, symptomatic 
and unwell on initialization. 

Yes if permanent teacher is 
quarantined, to be replaced by a 
temporary teacher 

Has returned a positive rapid 
test? 

- Bernoulli trial on rapid test days 

Time step of latest positive 
rapid test 

- Set on day positive rapid test is 
found 

Has returned a positive PCR 
test? 

- Bernoulli trial two days after 
positive rapid test 

 
SEUQR Initialization routine 
 
if agent is not Infected 
    compartment := Susceptible 
 
else 
    if agent is Symptomatic 
        if t89:;	=>?@AB@8 < t= then 
            compartment := Exposed 
        else  
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            if t89:;	=>?@AB@8 < tA then 
                compartment := Unwell 
            else 
                compartment := Recovered 
 
        for d = −t89:;	=>?@AB@8 + 𝑡" …0 do 
            draw p := Bernoulli(detection_probability) 
            if p = 1 then 
                compartment := Quarantined 
                days_quarantined := -d 
                break 
             
    else 
        compartment := Exposed 
 

 
SEUQR update routine 

 
if compartment = Exposed then 
    if agent is Symptomatic then 
        if t89:;	=>?@AB@8 > t" then 
            compartment := Unwell 
 
    else 
        if t89:;	=>?@AB@8 > tC then 
            compartment := Recovered 
 
else if compartment = Unwell then 
    if t89:;	=>?@AB@8 > tC then 
        compartment := Recovered 
    else 
        draw p := Bernoulli(detection_probability) 
        if p = 1 then 
                compartment := Quarantined 
 
 

 
A3. Linking prevalence to incidence rate 
 
The roadmap projections [19-21] that we use to forecast potential future infections in schools contain 
trajectories for the incidence rates through Term 1 of 2021, but our model also requires time series for 
the community prevalence.  Here we adopt a simple relationship between incidence rate and 
prevalence, as described here. 
 
Our relationship is based on the SIR compartmental epidemiological model [48] that relates the 
numbers of susceptible (S), infected (I) and recovered (R) people in the population.  New infections 
occur at a rate depending on the number of contacts between susceptible and infected people, with a 
parameter 𝛽 (given by the product of the contact rate and probability of transmission in a contact). 
Infected people recover (or are otherwise removed) with probability of recovery in time interval dt 
given by 𝛾dt (which is equivalent to assuming duration of infection is drawn from an exponential 
distribution, with mean duration 𝐷 = 1 𝛾⁄ ). 
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The movement of people between compartments is encoded in a system of differential equations [48], 
given by 

𝑑𝑆
𝑑𝑡 = −𝛽

𝑆𝐼
𝑁 , 		

𝑑𝐼
𝑑𝑡 = 𝛽

𝑆𝐼
𝑁 − 𝛾𝐼, 		

𝑑𝑅
𝑑𝑡 = 𝛾𝐼 

where 𝑁 = 𝑆 + 𝐼 + 𝑅 is the total population (here assumed constant).  The second of these equations 
is pertinent to understanding the link between incidence rate and prevalence.  Indeed, this equation can 
be written in the form 

𝑑𝐼
𝑑𝑡 = W𝑅D

𝑆
𝑁 − 1X 𝛾𝐼, 

where 𝑅D is the basis reproduction number, and where 𝐼 is the community prevalence and 𝑑𝐼/𝑑𝑡 is the 
incidence rate of new infections in the population.  For SARS-CoV-2, we simplify this expression 
further by noting that the data suggests that the infected population at any time is a relatively small 
proportion of the total population in the UK, and that recovery does not appear to prevent reinfection.  
Therefore we can make the approximation that 𝑆/𝑁 ≈ 1, so that   

𝑑𝐼
𝑑𝑡 ≈

(𝑅D − 1)𝛾𝐼. 
If the incidence rate 𝑑𝐼/𝑑𝑡 is known, and there are estimates of 𝑅D and 𝛾 = 1/𝐷 then we can directly 
estimate the prevalence as 

𝐼 =
𝑑𝐼 𝑑𝑡⁄

(𝑅D − 1)𝛾
. 

This relationship is a simple rescaling of incidence rate to obtain prevalence and suggests that high 
incidence rates occur for large values of the reproduction number 𝑅D for a given prevalence (as 
expected), and that high prevalence occurs at a given incidence rate if the duration of infection is 
increased (as expected). 
 
In using the expression derived above, we assume that 𝑅D and 𝛾 are constants.  This means that contact 
rates are unchanged, so in analysis of past data we must take periods where social contact restrictions 
are unchanged.  Additionally, the probability of transmission in a contact must be constant, so it is 
unlikely to apply in periods where there are multiple variants of SARS-CoV-2 competing within a 
population. 
 
We test this relationship using data from the Office for National Statistics Coronavirus Infection Survey 
[29], adopting daily estimates of the infection prevalence and incidence rate.  The methods used for 
the estimate in this dataset have changed over the course of the epidemic, and therefore the 
interpretation of the parameter 𝛾 may change.  In 2020, the incidence and prevalence estimates were 
mainly derived from random PCR testing surveys, and therefore the duration of infection 𝐷 = 1 𝛾⁄  is 
likely to refer to the duration for which PCR testing detects virus in a sample.  This may be substantially 
longer than the duration of symptoms or the duration of infectivity.  Figure 18 shows the relationship 
between prevalence and incidence over the period 1 September to 22 November 2020.  In the early part 
of this period (up to early-October 2020), incidence and prevalence increased and a clear linear 
relationship is observed.  In this time, some social mixing restrictions were introduced, but do not 
substantially alter the trend.  However, from early October 2020, there was a marked increase in the 
prevalence with only small changes in the incidence rate which continued until a second national 
lockdown was announced on 31 October 2020 and enacted on 5 November 2020.  While this increased 
prevalence could be explained by reductions in 𝑅D while the incidence rate remained steady, this seems 
unlikely, and may be better explained by a breakdown of the simple modelling assumptions during a 
period of change in social behaviour, e.g., a lag between prevalence and incidence that is not included 
in the simple SIR model.  Additionally, the Alpha variant (B.1.1.7) was known to be circulating in the 
UK in this time.  
 
Despite these limitations, the rescaling relationship is a pragmatic and practical tool for estimating 
prevalence from incidence during periods where social contacts are not changing substantially.  We 
therefore adopt this for estimating prevalence from projections of incidence rate for our forecasts in 
Term 1 of 2021.  However, this requires estimation of the 𝑅D and 𝛾 parameters.  While a Bayesian 
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approach would be valuable to quantify uncertainties, for our purposes we are content using a simple 
manual fitting procedure, using estimates of 𝑅D for the dominant Delta variant (given in the range 5—
7 in [20]) and noting that increases in this value can be compensated by decreases in 𝛾.  This approach 
produces Figure 13 from ONS data for June—August 2021 and the incidence rate forecasts of [19]. 
 

  
Figure 18.  Estimates of the UK SARS-CoV-2 prevalence as a function of incidence rate for 1 September 2020 to 22 November 2020 
(date from [29]).  The colour of points indicates progression through time.  Key dates for changes in social contact rates are indicated.  
Note, the Alpha variant (B.1.1.7) was first detected in a PCR sample taken in mid-September 2020 and may have been spreading 
rapidly in this time. 
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