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I. GENERATING PARTIALLY CORRELATED
DISTRIBUTIONS

In this section, we describe a numerical procedure
for generating two correlated distributions with specified
mean values µi and dispersion factors ki (understood in
a generalized sense as the square of the reciprocal coef-
ficient of variation, k = (µ/σ)2, with µ the mean value
and σ the standard deviation).
We shall refer to the two stochastic variables as activity
a and frequency f , since they represent social activity
levels and testing frequencies in the main text. The pop-
ulation size is taken to be N , and as such a distribution
of activities is realized as a vector a = (a1, . . . , aN ), and
likewise for the frequencies, f = (f1, . . . , fN ).
The first part of the algorithm consists of drawing initial
(uncorrelated) frequencies f and activities a, and then

creating a third distribution f̃ which has a partial corre-
lation with a (the magnitude of which is controlled by an
auxiliary parameter ξ):

• Draw a vector f from a Gamma distribution
Γ[f ;µf , kf ]

• Draw a vector a from a Gamma distribution
Γ[a;µa, ka]

• Let f̃ = (1− ξ)f + ξa, with ξ ∈ [0; 1].

The next part of the algorithm is iterative and proceeds
as follows. Note that CV (x) = ⟨x⟩ /

√
Var[x] is a func-

tion which computes the coefficient of variation of the
elements of a vector (or tuple) x.

• Let the desired coefficient of variation be χ =
1/
√
kf and the tolerance be dχ.

• While |CV (f̃)− χ| > dχ:

– Let z = sgn(CV (f̃)− χ)

– Let f̃ → f̃ − zε(f̃ − ⟨f̃⟩1) to increase or reduce
the spread of the distribution, depending on
the value of z = ±1. Here, 1 denotes the
vector (1, 1, . . . , 1) with N elements.

• Let f̃ → (µf/⟨f̃⟩)f̃ , to rescale f̃ to have the desired
mean value.
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Here, ε is a small quantity which sets the rate of con-
vergence. The tolerance dχ is the maximal acceptable
deviation from the desired coefficient of variation. This
procedure results in a distribution f̃ which has a mean
value µf , a dispersion factor kf and a partial correla-
tion with a. As the parameter ξ varies between 0 and 1,
the Pearson correlation coefficient between f̃ and a like-
wise varies between 0 and 1. The exact relation between
ξ and the correlation ρ can be derived as follows. The
joint distribution of f and a is simply

Paf (a, f) = Pa(a)Pf (f), (1)

since a and f are independent. To find instead the joint
distribution of a and f̃ , we express f in terms of a and
f̃ :

f(f̃ , a) =
f̃ − ξa

1− ξ
. (2)

Recalling that Paf (a, f) is a probability density, the in-
tegration measure must also change. That is (using the

above relation for f(f̃ , a)),

Paf (a, f(f̃ , a))dadf = Paf

(
a,

f̃ − ξa

1− ξ

)
dadf̃

1− ξ
(3)

≡ Paf̃ (a, f̃)dadf̃ . (4)

In other words, the joint distribution of a and f̃ is:

Paf̃ (a, f̃) =
1

1− ξ
Pa(a)Pf

(
f̃ − ξa

1− ξ

)
(5)

The correlation between a and f̃ can then directly be
computed as:

ρ =
Cov[a, f̃ ]√
Var[a]Var[f̃ ]

=

∫∫
(a− µa)(f̃ − µf̃ )Paf̃ (a, f̃)√∫∫

(a− µa)2Paf̃ (a, f̃)dadf̃
∫∫

(f̃ − µf̃ )
2Paf̃ (a, f̃)dadf̃

=
ξ√

1 + 2(ξ − 1)ξ
(6)

This relation can be inverted to yield ξ as a function of
the desired correlation ρ:

ξ(ρ) =
ρ2 −

√
ρ2 − ρ4

2ρ2 − 1
. (7)
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Using this relation, and the procedure just described,
partially correlated distributions of activity and test fre-
quency can be generated at any level of correlation de-
sired.

II. A POISSON PROCESS MODEL OF TESTING

In the main text, we have assumed that testing occurs
at perfectly regular intervals, such that the time of each
test follows deterministically from the previous one. An
alternative assumption is that there is, at each instant of
time, a constant probability rate for undergoing testing.
In such a constant-rate scheme, testing is described by a
Poisson process, which in turn leads to an exponentially
distributed waiting time. In this section, we explore such
a model of heterogeneous testing, in which the underlying
testing rate of each individual is given by the frequency
f .
We first derive a few analytical results for the cases of
(i) heterogeneous testing (no correlation) and (ii) het-
erogeneous testing and activity, perfectly correlated. We
then show, by means of computer simulation, that the
constant-rate model qualitatively agrees with the per-
fectly regular testing model used in the main text. The
constant-rate approximation is often a convenient as-
sumption in computer models, since it has the property
of being memory-free; the probability of testing is inde-
pendent of the time that has elapsed since the last test
was performed.

A. Heterogeneous testing, homogeneous activity

We assume a test with perfect sensitivity and further-
more that

• The testing rate f in the population is distributed
according to a (Gamma) distribution Pf [f ; k, µ]

• As described above, testing itself is assumed to be
a constant-rate process. It follows that the time
of testing is then distributed according to the ex-
ponential distribution Pt[t, f ], with f the rate con-
stant (as drawn above).

As in the main text, it is assumed that the level of in-
fectiousness is constant throughout the infectious period.
For a single individual i who is tested at time ti during
their infectious period (of unit total duration), the pre-
vented fraction of infections is then ∆Si = 1 − ti. The
average prevented fraction of infections is thus given by:

⟨∆S⟩ =
∫ ∞

f=0

∫ 1

t=0

Pf [f ; k, µ]Pt[t; f ](1− t) df dt (8)

When Pf is taken to be a Gamma distribution with dis-
persion parameter k and mean µ, the above expression
can be evaluated in closed form to yield:

⟨∆S⟩ = k(µ− 1) + kk(k + µ)1−k − µ

µ(k − 1)
(9)

While this expression has a singularity at k = 1, it is
removable, and the limit is well defined:

lim
k→1

⟨∆S⟩ = 1− 1

µ
log(1 + µ) (10)

B. Heterogeneous and (perfectly) correlated test +
activity

Here, we assume that the activity levels (contact rates)
a of individuals are heterogeneous and given by a Gamma
distribution Pa[a; k, µ]. Since the contact rate determines
the risk of becoming infected as well as the risk of passing
on infection, the infectious potential of an individual is
proportional to a2.
Under these assumptions, the mean prevented infectious
load can again be computed analytically:

⟨∆S⟩ =
∫ ∞

a=0

∫ 1

t=0

Pa[a; k, µ]Pt[t; f(a)]a
2(1− t) da dt×

[∫ ∞

a=0

Pa[a; k, µ] a
2 da

]−1

=
1

Γ[2 + k]
e−fmaxkµ−2−k(k + µ)−1−k{(k + µ)(fmaxk(k + µ))k

(
µ+ kµ+ efmax(fmaxk − (1 + k)µ)

)
E−k[fmaxk/µ]

+ µ
(
− e−fmaxk/µ(efmax − 1)(k + µ)(fmaxk(k + µ))k + efmaxµk

(
(k + µ)1+k(k(µ− 1) + µ)Γ[k]

+ k1+k(Γ[1 + k]− Γ[1 + k, (fmax(k + µ))/µ])
))

} (11)

where Γ[a, z] is the incomplete Gamma function:

Γ[a, z] =

∫ ∞

z

ta−1e−tdt

and En[z] is the exponential integral function:

En[z] =

∫ ∞

1

e−zt/tndt. (12)
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In Figure S1, we show the results of numerical simula-
tions of a Poisson process model for testing with hetero-
geneity, echoing the plots of Figures 3a and 4a in the main
text. The model is implemented in an agent based fash-
ion, in the sense that each individual is equipped with
an activity level and test rate f and then participates
in a regular testing scheme. However, no interaction be-
tween agents is modeled, and thus the model is extremely
simple. The activity and frequency distributions are gen-
erated using the procedure described in the previous sec-
tion, and may thus be either uncorrelated (panel a), fully
correlated (panel b), or even partially correlated. The
trends observed in Figure S1 are very similar to those
obtained in the main test with a fixed-interval testing
model. Our results regarding the impact of heterogene-
ity and correlation are thus quite robust and not tied to
any particular model of the underlying testing scheme.

III. ANALYTICAL TREATMENT OF
HOMOGENOUS TESTING

In this section, we present an alternative derivation of
the basic equations of regular testing. In the main text,
we developed a framework in which we made use of
Dirac’s delta function to compute the expected reduc-
tion in reproductive number. Here we present an alter-
native derivation which, while not as brief, may be more
intuitive.

A. The regular screening

The total duration of infectiousness is TI . In order to
compute the expected number of tests performed during
the infectious period, we define the following auxiliary
quantities:

f =
TI

TR
, q = ⌊f⌋ , r = f mod 1

where ⌊x⌋ denotes the floor function and d < 1 the result
delay in units of TI . The quantity f is thus frequency of
testing in units of the T−1

I . f can be decomposed into
its integer part q and remainder r as f = q + r.
The number of tests being performed during an in-

fectious period can then be expressed in terms of the
quantities defined above. The probability of being tested
with q tests over the infectious period TI is (1 − r) and
the probability of getting q + 1 tests is r.
Letm denote the number of tests being performed during
the infectious period. This number implicitly depends on
f . The maximum number of tests possible during the in-
fectious period, can be expressed as:

P (m = q) = (1− r)

P (m = q + 1) = r

The expected number of tests during the infections pe-
riod is thus given by

⟨m⟩ = rq + (1− r)(q + 1) = 1 + q − r

since only the last two terms contribute to this sum.

B. Probability of detection

One can now calculate the probability of being tested
positive in the infectious period, given that a person is
actually infectious. This requires the additional insight
that a person is tested positive on either first test, 2. test,
etc. until the last test (q or (q + 1)) is performed.
Let D denote the outcome, that the infected person

is detected and ¬D the negation. I (for infectious) de-
notes the true state of the individual is infectious and its
negation ¬I
Introducing the sensitivity of the test s, then:

s =P (D|I, n = 1)

(1− s) =P (¬D|I, n = 1)

where n here is introduced as the test number; the n =
1 in the expression above means that we only consider
a single test event. These probabilities corresponds to
respectively the true positive and false negative rates of
the test.
Now the probability of being detected during the entire

infectious period an be calculated, from considering the
negation;

P (¬D|I) = 1− P (D|I)

With probability (1− r), a maximum of q tests are per-
formed and with probability r, a maximum of q+1 tests
are preformed. Negating the probability of no detection,
results in:

P (D|I) = 1−
(
(1− r)(1− s)q + r(1− s)q+1

)
= 1− (1− rs)(1− s)q

C. Time of detection

The first test, t0, is assumed distributed in time as a
uniform distribution t0 ∼ 1

TR
and will therefore have an

average value of TR

2 . Thus the (average) time at which
the n’th test is performed, tn = nTR+ t0, must therefore
be:

1

TR

∫ TR

0

(tn)dt0 = (n+ 1
2 )TR (13)

for n ≤ q. Special care need to be taken in regard to the
(potentially) last test (test q+1). Since the last test will
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FIG. S1. A Poisson (constant-rate of testing) model of heterogeneous, regular testing performs qualitatively similarly to the
fixed-interval model of the main text. a) Uncorrelated test frequency and activity distributions b) Perfectly correlated test
frequency and activity distributions.

be taken at time tq = qTR + t0 where this time t0 ∼ 1
rTR

uniformly distributed, we have that:

1

rTR

∫ rTR

0

(tq)dt0 =
1

rTR

∫ rTR

0

(qTR + t0)dt0 =
(
q +

r

2

)
TR

The expectation value of time before detection, tD,
when a detection is actually occurring, is thus:

E[tD, D|I](f, s) =

[
θ(q − 1

2
)

q−1∑
m=0

(
(m+

1

2
)(1− s)m

)
+ r(q +

r

2
)(1− s)q

]
sTR

The expression can be simplified into a closed form by
considering the following function (calculated via meth-
ods from generating functions):

F (x, f) =

q−1∑
m=0

(
1

2
+ k)xm =

1− xq

1− x

(
1

2
+

x

1− x

)
− q

xq

1− x

Identifying x = 1− s, we get:

F (1− s, f) =
1− (1− s)q

s

(
1

2
+

1− s

s

)
− q

(1− s)q

s

Since there is now no ambiguity for q = 0, the expectation
value can now be written as:

E[tD, D|I] =
(
F (1− s, f) + r(q +

r

2
)(1− s)q

)
sTR

= G(1− s, f)TR

where

G(x, f) = (1− xq)(
1

2
+

x

1− x
) + (r(q +

r

2
)(1− x)− q)xq

D. Reduction of infection

Since the time of detection is a measure for the spread
of infection, the reduction of infectiousness compared
with no intervention for asymptomatic individuals can
be calculated as:

ρ(f, s) =
TI − E[tD|I](f, s)

TI
= 1− E[tD|I](f, s)

TI
(14)

where tD is the time of detection after onset of infectious-
ness. The extra arguments (f, s) in the expectation value
above, is just to make the dependency of detection time
on sensitivity and frequency clear. The expression that
give the reduction is thus:

E[tD|I] = E[tD, D|I] + E[tD,¬D|I]
= E[tD, D|I] + E[tD|¬D, I]P (¬D|I)
= E[tD, D|I] + TIP (¬D|I)

due to TI being the time attributed to undetected indi-
viduals w.r.t. a reduction perspective; the maximal time
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one can infect. Using the relation found earlier:

E[tD|I](f, s)
TI

= G(1− s, f)
TR

TI
+ P (¬D|I)

whereby the reduction is now found as:

ρ(f, s) = 1−
(
G(1− s, f)

1

f
+ (1− rs)(1− s)q

)

E. Impact of test frequency and result delay

Using the same argument as in the main text or con-
sidering a scaling of the frequency to accommodate the
delay of the test-result yields the same expression. Here
We give the second argument. when the results are de-
layed the effective frequency fd is scaled such that the
frequency in relation to the reduced period in which one
can receive the test-results (and thus play the same game
as for the no-delay test):

fd =
TI − dTI

TR
= (1− d)f

Furthermore, a fraction d of the infectious period is re-
served for result delay (one cannot receive a result before

the time dTI), we therefore find that, when taking into
account the result-delay, the reduction becomes:

ρ(f, s, d) = 1−
(
E[tD|I](fd, s) + TId

TI

)
= (1− d)− E[tD|I](fd, s)

TI

= (1− d)

(
1− E[tD|I](fd, s)

TI(1− d)

)
= (1− d)ρ((1− d)f, s)

Applying the analytical result found for ρ(f) and find-
ing (numerically) the derived function (wrt. f), we can
gain a visualization of the measure ”reduction-per-test”
from the resulting figure S2 as seen below:

From these curves, we see that the ”diminishing return
effect” starts to have effect only after the condition f(1−
d) = 1 is met, since this is the effective frequency at
which a single individual is ensured to receive the result
of the first test, within the infectious period. Thus the
maximal reduction possible under the constraint that we
should also maximize the ”reduction-per-test”-measure
happens at f = 1

1−d .
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