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ABBREVIATION LIST 1 

 2 

AUC: Area under the curve 3 

BMI: Body mass index 4 

COPD: Chronic Obstructive Pulmonary Disease 5 

COPDGene study: Genetic Epidemiology of COPD study 6 

∆FEV1: Annualized five-year changes in FEV1 7 

FEV1: Forced expiratory volume in one second 8 

FVC: Forced vital capacity 9 

GOLD: Global Initiative for Chronic Obstructive Lung Disease spirometric grading system 10 

HU: Hounsfield units  11 

IQR: Interquartile range 12 

%LAA-950: Percent of CT scan low attenuation area below -950 HU at end-inspiration  13 

MMRC: Modified Medical Research Council 14 

NHW: Non-Hispanic White  15 

RF: Random forest  16 

RMSE: Root mean squared error 17 

ROC: Receiver operator characteristic  18 

SGRQ: St. George’s Respiratory Questionnaire 19 

 20 
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ABSTRACT 1 

 2 

Background: The heterogeneous nature of COPD complicates the identification of the 3 

predictors of disease progression and consequently the development of effective therapies. 4 

We aimed to improve the prediction of disease progression in COPD by using machine 5 

learning and incorporating a rich dataset of phenotypic features. 6 

Methods: We included 4,496 smokers with available data from their enrollment and 5-year 7 

follow-up visits in the Genetic Epidemiology of COPD (COPDGene) study. We constructed 8 

supervised random forest models to predict 5-year progression in FEV1 from 46 baseline 9 

demographic, clinical, physiologic, and imaging features. Using cross-validation, we 10 

randomly partitioned participants into training and testing samples. We also validated the 11 

results in the COPDGene 10-year follow-up visit.  12 

Results: Predicting the change in FEV1 over time is more challenging than simply predicting 13 

the future absolute FEV1 level. Nevertheless, the area under the ROC curves for the 14 

prediction of subjects in the top quartile of observed disease progression was 0.70 in the 10-15 

year follow-up data. The model performance accuracy was best for GOLD1-2 subjects and it 16 

was harder to achieve accurate prediction in advanced stages of the disease. Predictive 17 

variables differed in their relative importance as well as for the predictions by GOLD grade.  18 

Conclusion: This state-of-the art approach along with deep phenotyping predicts FEV1 19 

progression with reasonable accuracy. There is significant room for improvement in future 20 

models. This prediction model facilitates the identification of smokers at increased risk for 21 

rapid disease progression. Such findings may be useful in the selection of patient populations 22 

for targeted clinical trials.  23 

 24 
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INTRODUCTION 1 

Chronic obstructive pulmonary disease (COPD) is the second leading cause of 2 

disability, the third leading cause of death, and the only major chronic disease continuing to 3 

increase in mortality 1-4. Novel therapies that slow disease progression could result in an 4 

improvement in COPD patients’ health status and have a substantial impact on healthcare 5 

utilization. The development of such therapies will be aided by improved tools for predicting 6 

disease progression, enabling the selection of high-risk groups for targeted treatment.  7 

Predictive models incorporate multiple sources of information to make patient-8 

specific predictions and are widely used in multiple areas of medical practice. Existing 9 

models of disease progression in COPD have been limited in the scope of variables assessed 10 

5-9. COPD exhibits significant variation in clinical and radiographic presentation as well as 11 

disease progression 6,10-12. This disease heterogeneity complicates the identification of the 12 

predictors of COPD progression and limits the accuracy of predictive models. Furthermore, 13 

COPD often progresses slowly over decades and true disease progression over short time 14 

periods can be difficult to detect with existing measurements. 15 

In this study, we aimed to improve the prediction of COPD progression by applying 16 

machine learning to a rich dataset of clinical, demographic, patient-reported variables, and 17 

imaging features in the COPDGene study. We hypothesized that deep phenotyping at the 18 

initial study visit along with random forest modelling, which exploits complex non-linear 19 

relationships and interactions among the risk factors, would facilitate the prediction of the 20 

rates of disease progression as measured by FEV1, a key aspect of COPD.  21 

 22 

MATERIALS AND METHODS 23 

 24 

Study populations 25 
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Derivation cohort - COPDGene Study Visit 1 and Visit 2: We analyzed 4,496 1 

smokers with complete CT scans and relevant covariate data at the baseline visit (Visit 1) and 2 

5-year follow-up visit (Visit 2) in the COPDGene cohort (NCT00608764, 3 

www.copdgene.org).  4 

Temporal validation cohort - COPDGene Study Visit 3: During the Phase 3 of the 5 

COPDGene Study, enrolled subjects returned for their 10-year follow-up visit. At the time of 6 

this analysis, 1,833 smokers had completed their 10-year follow-up visit and had available 7 

10-year spirometric and radiographic data. To predict their outcome values at Year 10 (Visit 8 

3), we entered their 5-year (Visit 2) predictor data into the models trained in the derivation 9 

cohort.  10 

The COPDGene study design, subject enrollment, and phenotype measurements have 11 

been previously reported 13 and additional information is included in the Supplement. 12 

 13 

Outcome variables 14 

We constructed models to predict annualized follow-up FEV1 and five-year changes 15 

in FEV1 (∆FEV1). ∆FEV1 (mL/year) was calculated by subtracting the Visit 1 value from the 16 

Visit 2 value and dividing by the time between Visit 1 and Visit 2. Negative values represent 17 

a lower value of the outcome at Visit 2 (i.e. worsening of the disease over the 5-year period 18 

with greater loss of FEV1).  19 

 20 

Feature selection  21 

Candidate predictors consisted of 46 baseline demographic, clinical, physiologic, and 22 

imaging variables that were available in the COPDGene population at Visit 1 and had 23 

correlation coefficients of less than 0.90 with the other variables.  24 

 25 
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Training, testing, and validation samples 1 

 We trained a prediction model for ∆FEV1 in 4,496 subjects with data from 2 

COPDGene Visit 1 and Visit 2 using a nested, 10-fold cross validation (CV) procedure. The 3 

inner fold of CV was used for parameter tuning. In the outer fold, our studied derivation 4 

cohort was randomly partitioned into ten mutually exclusive subsets (folds) of approximately 5 

equal size, using nine folds for training and one fold for testing each time for ten times. This 6 

entire procedure was repeated five times to account for the random variability of the 7 

partitioning procedure and provide more accurate estimates of the performance. This repeated 8 

resampling procedure created an ensemble of fifty models over which we averaged the 9 

predictions, and we then validated the performance of this model using data from COPDGene 10 

Visit 3 that had not been used in any aspect of the model training process (temporal 11 

validation).  12 

 13 

Random forest supervised machine learning 14 

Supervised random forest is an ensemble learning method that predicts outcomes by 15 

fitting a series of decision trees and aggregating the results across trees. This method can 16 

capture non-linear dependencies and has been shown to perform well for a range of tasks 14. 17 

It begins building each tree by randomly selecting participants for the tree with replacement 18 

(bootstrap samples). Participants not selected in bootstrapping represent the out-of-bag set. For 19 

each bootstrap sample, a decision tree is trained by recursive binary partition of the data until 20 

the minimum node size is reached. At each node split, an optimal feature (and its split-point) 21 

is identified from a randomly selected subset of features by minimizing a loss measure. The 22 

random selection of features reduces the correlation between trees, leading to variance 23 

reduction and improved generalization performance. It also allows a moderately informative 24 

feature to assert its importance to the prediction. Once an ensemble of trees are grown, the 25 
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prediction for a new sample is made by aggregating predictions (e.g. averaging for regression 1 

and majority vote for classification) from individual trees. In our study, we fixed the number 2 

of trees at 500 and tuned the hyperparameters (the bootstrap sampling fraction, the minimal 3 

node size and the number of features to use at each split) by minimizing root mean squared 4 

error (RMSE) using a nested 10-fold cross-validation within the training data.  5 

 6 

Random forest variable importance and their effects on the prediction  7 

We calculated variable importance scores as the aggregated increase in the mean 8 

squared errors (IncMSE) of predictions estimated with out-of-bag samples when the values of 9 

a given variable are randomly permuted 15,16. The larger the increase in prediction error when 10 

permuted, the higher the variable importance score (IncMSE), and the more important the 11 

variable is to the prediction. Since the “raw” permutation importance has better statistical 12 

properties, the importance values were not normalized 17. Therefore, they cannot be used to 13 

compare variable importance across prediction tasks, but they can be used within the same 14 

prediction task to rank variables by their contribution to the accuracy of the final model.  15 

 16 

Prediction performance 17 

We assessed the accuracy of each prediction model using the RMSE and R-squared 18 

metrics, indicators of the goodness of fit of a set of predictions to the observed values. For the 19 

prediction of ∆FEV1, we also assessed the ability of the models to correctly identify subjects 20 

in the top quartile of disease progression (i.e., greatest decline in FEV1) as quantified by the 21 

AUCs (areas under the receiver operator characteristic (ROC) curves).  22 

 23 

Statistical analyses 24 
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We performed a complete case analysis. Descriptive characteristics were reported 1 

respectively as percentages and medians with interquartile ranges for categorical and 2 

continuous variables. Variables were analyzed using the t-test for normally distributed 3 

variables, the Wilcoxon rank sum test for non-normally distributed variables, and chi-square 4 

tests for categorical variables. To identify differences in the quality of prediction and variable 5 

importance in subjects with different levels of COPD severity, we also constructed prediction 6 

models separately in various GOLD subgroups. All tests of significance were two-tailed with 7 

a significance threshold of P-value < 0.05. 8 

 9 

RESULTS 10 

 11 

Subject characteristics  12 

In total, 4,496 COPDGene subjects (median age: 60; 51% men; 73% NHW) had 13 

complete phenotypic data and were included in the analysis. The participant flow diagram is 14 

shown in Figure 1.  15 

 16 

Characteristics of “rapid FEV1 progressors” in COPDGene 17 

To determine the characteristics of subjects who were “rapid FEV1 progressors” in 18 

COPDGene, we examined the characteristics of subjects in the top quartile of progression to 19 

those in the bottom quartile (Table 1). Compared to subjects in the bottom quartile of ∆FEV1, 20 

those in the top quartile (“rapid FEV1 progressors”) had a higher proportion of males with 21 

less severe spirometric impairment at baseline but with higher exposure to smoking (pack-22 

years and percent of current smoking), more advanced radiographic disease (total 23 

emphysema and gas trapping), more bronchodilator responsiveness, more dyspnea and 24 

chronic bronchitis symptoms, and a lower rate of obesity and metabolic syndrome.  25 
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The median change in FEV1 was -37 (IQR: -66, -9) mL/year (Figure 3). Fifty-seven 1 

percent of the studied subjects had a rate of decline in FEV1 of more than 30 mL/year over 2 

the 5-year period and 7% had an increase in FEV1 of more than 30 mL/year. Rapid FEV1 3 

progressors had a median change of -91 mL/year compared to 11 mL/year for slow 4 

spirometric progressors (Table 1). When assessed according to the severity of airflow 5 

limitation, the rate of FEV1 decline was inversely related to the GOLD grade, with medians 6 

of ∆FEV1 of -46, -38, -31, -16 mL/year for GOLD 1-4, respectively.  7 

 8 

Prediction performance for follow-up FEV1 and 5-year change in FEV1 9 

We constructed the prediction models using a nested cross-validation procedure and 10 

we assessed the prediction performance in the COPDGene 10-year follow-up visit. A 11 

schematic representation of our model is shown in Figure 2. The list of candidate predictors 12 

is provided in Table 2. In the cross-validation testing samples, on average, 89.6% of the 13 

variance in follow-up FEV1 values were explained and the area under the ROC curves for the 14 

prediction of subjects in the top quartile of observed disease progression was 0.97 (Table 3 15 

and Figure 4). This high performance was maintained in the temporal validation with an R-16 

squared value of 0.91 and AUC of 0.98 (Table 3). For the prediction of the change in FEV1 17 

over time (∆FEV1), the average R-squared value was 0.15 and AUC was 0.71 in the testing 18 

samples and respectively, 0.10 and 0.70 in the validation cohort.  19 

 20 

Analysis of signal to noise ratio for 5-year change in FEV1 21 

Changes in spirometric measures are more commonly used endpoints in COPD 22 

clinical trials. Predicting future FEV1 values is not the same as predicting the changes of 23 

FEV1 over the same period, since the ∆FEV1 over a fixed time period generally contributes a 24 

relatively small amount to the overall variance of FEV1 at a given time point. Given the often 25 
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gradual rate of progression of COPD, five-years is a relatively short observation period, and 1 

one of the concerns is that the signal to noise ratio in our progression variables is insufficient 2 

for reliable prediction. To determine the signal-to-noise characteristics of our progression 3 

variables, we calculated the expected signal-to-noise ratio using previously published values 4 

of measurement error for FEV1 
18. An important parameter in these calculations is the extent 5 

of correlation in errors between the two study measurements. Since empiric data were 6 

unavailable, we assumed independence between these errors; therefore, these estimates likely 7 

represent a lower bound on the proportion of noise in these measures. We estimated that 8 

measurement error accounted for at least 22% of the variance of ∆FEV1 (calculations are 9 

included in the supplement). Thus, the theoretical upper bound for prediction performance of 10 

∆FEV1 was 78%.  11 

 12 

Important predictors and their effects on prediction  13 

Figure 5 shows the ranking of the top-20 predictors based on their importance scores 14 

in the random forest models. Several of the known COPD disease progression risk factors 15 

were present as top-ranked risk factors in our models and other new predictors were 16 

identified. The most important variables for FEV1 progression included baseline spirometry, 17 

CT-measured total lung volume, bronchodilator responsiveness, gas trapping, total 18 

emphysema, and smoking exposure. Variables like the number of COPD exacerbations in the 19 

prior year, selected comorbidities, and dyspnea scores were of less importance.  20 

 21 

Prediction of COPD progression stratified by GOLD grade  22 

To determine whether progression was determined by different variables at different 23 

GOLD spirometric grades, we examined the performance of random forest prediction models 24 

for pre-specified subgroups of smokers stratified by GOLD grade (n= 4,496 (Overall), 499 25 
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(PRISm), 2,116 (GOLD 0), 1,318 (GOLD 1-2), and 563 (GOLD 3-4)). We observed 1 

significant differences in predictive performance across these subgroups. The model 2 

performance accuracy was best for GOLD 1-2 subjects and it was harder to achieve accurate 3 

prediction in advanced stages of the disease. The area under the ROC curves for the 4 

prediction of subjects in the top quartile of disease progression was 0.66 (GOLD 0), 0.73 5 

(GOLD 1-2), and 0.58 (GOLD 3-4). The predictors of disease progression were also different 6 

by GOLD grade (Figure 5). For instance, bronchodilator responsiveness seems to be less 7 

important and emphysema and airway disease more important in the prediction of ∆FEV1 in 8 

subjects at more advanced stages of the disease.    9 

 10 

DISCUSSION 11 

This current study showed that the prediction of change in FEV1, which is more 12 

relevant for disease progression, is more challenging than predicting absolute FEV1 level. 13 

Our prediction models for ∆FEV1 represent the current state of the art for prediction of 14 

prospective change in FEV1, but there is significant room for improvement in future models. 15 

The most important predictive variables came from a wide range of clinical, spirometric, and 16 

imaging features. Baseline spirometry, CT-measured total lung volumes, and bronchodilator 17 

responsiveness dominated the prediction. In addition, the predictive performance and the 18 

relative importance of predictors differed by GOLD grade.  19 

Several screening tools are available to identify patients with undiagnosed COPD and 20 

to predict outcomes in patients with COPD 1,8,9,19-24. While Zafari et al. and Chen et al. 21 

developed and validated risk models to accurately predict lung function trajectory 8,9, our 22 

study is the first to apply advanced machine learning methods, use an extensive set of 23 

phenotypic measurements and comorbidities, predict not only the follow-up values but also 24 

the more relevant “change” variables, and identify the relative importance of the predictors at 25 
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various stages of the disease. With respect to the outcomes evaluated in these two papers, our 1 

predictive models gave similar performance for the prediction of future values of FEV1. Our 2 

study added the prediction of prospective changes in FEV1 that were not reported in these 3 

previously published studies. Predicting the change over time is more challenging than 4 

simply predicting the future value, since the change typically represents a small proportion of 5 

the overall variance in a given pair of FEV1 measurements separated by five years or less. 6 

However, it is important to assess the ability of models to predict prospective changes since 7 

this is an important outcome for clinical trials. 8 

The predictive accuracy of our models may potentially be further improved by 9 

including additional predictors (such as DLCO, pulmonary vascular measures, and relevant 10 

molecular biomarkers) and exploring other machine learning algorithms (such as deep 11 

learning). At present, these models are not ready for clinical use but could be useful in the 12 

design of COPD clinical trials to enrich the study populations by patients who are most likely 13 

to experience rapid disease progression and benefit from therapeutic interventions. For 14 

clinical use, better performing models that have been more extensively validated in multiple 15 

additional and relevant target populations are necessary.  16 

Rapid decline in lung function has previously been associated with a range of factors 17 

such as smoking exposure, bronchodilator reversibility, higher baseline FEV1, higher baseline 18 

FVC, exacerbations in the prior year, low BMI, African American race, female sex, 19 

emphysema, upper lobe emphysema predominance, and CT-detected small airway 20 

abnormalities 5,6,8,25-30. Our study detected several of these known COPD disease progression 21 

risk factors and identified other new predictors for FEV1 decline. Our study is the first to our 22 

knowledge to demonstrate that the patterns of predictors vary by GOLD spirometric grade. 23 

The intriguing variations in the importance of different risk factors depending on the studied 24 
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subgroup may help inform further exploration of predictive risk factors and future 1 

development of new risk prediction algorithms.  2 

The relative unimportance of certain traditional risk factors such as COPD 3 

exacerbations in the prior year, selected comorbidities, race, and sex in our machine learning 4 

predictive models may be consistent with the disparate results from previous studies. For 5 

example, although some publications have suggested a significant excess loss of FEV1 for 6 

each COPD exacerbation 26,31,32, others have reported minimal 6 or no relationship 33. Such 7 

discrepancy may also result from differences in methodology between studies as well as 8 

differences sample size, study duration, study population, and variable definitions. The 9 

relative unimportance of certain traditional risk factors in our models may also indicate that, 10 

while these risk factors may attain statistical significance in some models, they do not 11 

provide much additional predictive value after considering more important risk factors.  12 

This study has a number of strengths. Analyses were performed within a well-13 

characterized cohort that included subjects at all stages of disease severity. In addition, by 14 

focusing on prediction rather than the study of individual risk factors, our results provide 15 

useful context regarding the relative importance of specific predictors. By constructing 16 

models in subjects stratified by GOLD spirometric grade, we demonstrated that patterns of 17 

optimal predictors vary by specific disease outcome and GOLD grade. Validation of our 18 

findings in the temporal cohort represents another strength of our paper.  19 

Our study also has limitations. We only used two measurements of lung function 20 

separated by approximately 5 years. The large sample size available helped to overcome 21 

some of the inherent challenges in low signal-to-noise ratio with studies of COPD 22 

progression over a relatively short period of time. However, with longer follow-up and more 23 

measurements, we will be better able to isolate measurement noise from real disease 24 

progression which will result in greater predictive accuracy. Our analysis was based on 25 
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subjects who had completed their second study visit, and it is possible that patients who were 1 

lost to follow-up differed from those available for analysis. Many of the patients with airflow 2 

obstruction were receiving therapy for their disease. Although no existing pharmacotherapy 3 

has been conclusively shown to affect the rates of disease progression, this still may have 4 

influenced our results. However, we chose not to include pharmacotherapy data in these 5 

analyses in order to reduce biases likely present in patient-reported pharmaco-epidemiologic 6 

data 34,35. Lastly, it is recognized that as the number of potential risk factors increases, the 7 

complexity of the models can cause overfitting. We addressed this by appropriate 8 

hyperparameter tuning and by evaluating the performance of our predictive models in cross-9 

validation and in the temporal cohort.  10 

Random forest machine learning in conjunction with deep phenotyping improves the 11 

prediction accuracy of COPD progression. The present study improves our ability to identify 12 

patients at risk for rapid disease progression, and these models may be useful for the 13 

development of targeted disease-modifying therapies. 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 
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FIGURE LEGENDS 1 

 2 

Figure 1. Participants’ flow diagram and general framework of the study.  3 

Figure 2. Random forest modeling framework.  4 

Figure 3. Histograms of change in FEV1 (∆FEV1; mL/year) between Visit 1 and Visit 2 and 5 

between Visit 2 and Visit 3. 6 

Figure 4. Receiver operator characteristic (ROC) curves of the performance of the random 7 

forest follow-up FEV1 and 5-year change in FEV1 models in correctly identifying subjects in 8 

the top quartiles of spirometric progression in the COPDGene Visit 1 / Visit 2 cross-9 

validation testing samples. Solid lines represent the average performance, and colored dots 10 

represent the performance in each of the sampling iterations.  11 

Figure 5. Heatmaps of the top-20 predictors of Visit 2 FEV1 (mL) (A) and change in FEV1 12 

(mL/year) (B). The x-axis contains the group assignments (All, PRISm, GOLD0, GOLD 1-2, 13 

and GOLD 3-4). The y-axis includes the top-20 predictors ranked by their importance scores 14 

in the predictive models built in the “All” group (decreasing order with the best predictors on 15 

top). Darker shades of blue indicate a higher rank of the predictor. White cells indicate 16 

variables that do not fall within the top-20 ranks. The sample sizes were (n= 4,496 (All), 499 17 

(PRISm), 2,116 (GOLD 0), 1,318 (GOLD 1-2), and 563 (GOLD 3-4)). Abbreviations: BMI: 18 

Body mass index; FEV1: Forced expiratory volume in 1 second; FEF25-75: Forced 19 

expiratory flow at 25–75% of forced vital capacity (FVC); Bronchodilator responsiveness 20 

(%) FEV1: Percentage of subjects with post-bronchodilator increase in FEV1 of at least 12% 21 

from baseline; Bronchodilator responsiveness (%) FVC: Percentage of subjects with post-22 

bronchodilator increase in FVC of at least 12% from baseline; GOLD: Global Initiative for 23 

Chronic Obstructive Lung Disease; SGRQ: St. George’s Respiratory Questionnaire; MMRC: 24 

Modified Medical Research Council; Adjusted Perc15 density: Cut off value in Hounsfield 25 
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units (HU) below which 15% of all voxels are distributed on a lung CT scan (per convention, 1 

adjusted Perc15 density values are reported as the HU + 1000); Gas trapping (%): Percentage 2 

of lung voxels with a density less than -856 HU at end exhalation; Pi10: Square root of the 3 

wall area of a hypothetical airway of a 10-mm internal perimeter; % Segmental airway wall 4 

thickness: Percentage of the wall relative to the total bronchial area for the segmental 5 

airways.  6 
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Table 1. Characteristics of the rapid spirometric progressors.   

 

Top quartile progressors 

(n = 1,124) 

Bottom quartile progressors 

(n = 1,124) 

P-value 

 

Age (years) 58.3 [51.9, 65.0] 59.7 [52.3, 66.6] <0.001 

Male (%) 66.0% 51.2% <0.001 

Non-Hispanic whites (%) 72.3% 69.6% 0.098 

Height (cm) 173.0 [166.7, 180.0] 170.0 [162.6, 177.5] <0.001 

BMI 27.7 [24.5, 31.7] 29.3 [25.6, 33.9] <0.001 

Pack-years of smoking 40.5 [29.9, 57.0] 38.0 [25.7, 52.5] <0.001 

Current smoking (%) 56.1% 45.2% <0.001 

Total emphysema (%LAA-950) 2.7 [0.7, 7.2] 1.7 [0.5, 5.0] 0.003 

U/L ratio 0.38 [0.00, 0.91] 0.41 [0.00, 0.92] 0.43 

Airway wall thickening (%) 49.6 [44.3, 55.2] 50.1 [44.6, 56.3] 0.09 

Pi10 2.1 [1.8, 2.5] 2.2 [1.9, 2.6] 0.01 

Gas trapping (%) 15.9 [7.6, 30.3] 12.3 [5.5, 25.0] <0.001 

FEV1 (percent predicted) 86.4 [68.9, 99.7] 78.9 [60.9, 91.5] <0.001 

FEV1/FVC 0.71 [0.61, 0.79] 0.72 [0.62, 0.79] <0.001 

Pre/Post- bronchodilator FEV1 (% change) 
 

5.5 [1.8, 11.0] 2.8 [-1.4, 7.9] <0.001 

Pre/Post- bronchodilator FVC (% change) 
 

3.1 [-1.0, 8.8] 1.0 [-3.6, 6.7] 0.04 

MMRC dyspnea score 
0  
1  
2  
3  
4 

 
 

563 (50.1%) 
171 (15.2%) 
143 (12.7%) 
166 (14.8%) 

81 (7.2%) 

529 (47.1%) 
177 (15.7%) 
137 (12.2%) 
199 (17.7%) 
82 (7.3%) 

0.37 

SGRQ score 31.8 ± 25.9 29.3 ± 24.5 0.03 

Chronic bronchitis (%) 21.1% 16.4% 0.004 

Metabolic syndrome (%) 16.0% 20.3% 0.01 

Obesity (%) 35.1% 45.0% < 0.001 
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GOLD: 
PRISm  

0  
1  
2  
3  
4  

 
 75 (6.7%) 

546 (48.6%) 
138 (12.3%) 
272 (24.2%) 

90 (8.0%) 
3 (0.3%) 

 
194 (17.3%) 
468 (41.6%) 
65 (5.8%) 

221 (19.7%) 
138 (12.3%) 
38 (3.4%) 

<0.001 

5-year change in FEV1 (mL/year) -91.0 [-117.0, -77.0] 11.0 [0.0, 32.0] <0.001 

All values are from Visit 1.  

 

BMI: Body mass index; FEV1: Forced expiratory volume in 1 second; FVC: Forced vital capacity; MMRC: Modified Medical 

Research Council; SGRQ: St. George’s Respiratory Questionnaire; Exacerbation frequency: Percent of subjects reporting at least 

one COPD exacerbation in the previous year; Metabolic syndrome: 3 of 4: BMI�≥�30 (measured), diabetes mellitus, 

hypertension, and high cholesterol (all self-report); Obesity: BMI≥30; GOLD: Global Initiative for Chronic Obstructive Lung 

Disease; PRISm: Preserved Ratio Impaired Spirometry.  

 

Emphysema is defined as percent of CT low attenuation area below -950 Hounsfield units (HU) at end-inspiration using Thirona 

software (% LAA-950); U/L ratio: Ratio of %LAA-950 in upper lung third to %LAA-950 in lower lung third; Airway wall area 

percent is the percentage of the wall area compared with the total bronchial area for segmental airways; Pi10: Square root of the 

wall area of a hypothetical airway of 10-mm internal perimeter. “Change between Visit 1 and Visit 2 per year” variables are defined 

as (Value at Visit 2 - Value at Visit 1) / Time between Visit 1 and Visit 2 in years.  

 

Variables are expressed as mean and standard deviation for continuous normally distributed variables, median and interquartile 

range (25th to 75th percentile) for continuous non-normally distributed variables, and percentages for categorical variables. P-values 

are obtained using t-test for the continuous normally distributed variables, Wilcoxon rank sum test for the continuous non-normally 

distributed variables, and chi-square test for the proportions. P-values < 0.05 are bolded and italicized. 
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Table 2. Variables included in the prediction algorithms.  

Demographics:  
 

• Age at study enrollment 
• Sex 
• Race 
• Body mass index (BMI) 
• Height 
• Pack-years of smoking 
• Current smoking 
• Age at smoking initiation  

 
Family history:  
 

• Family history of COPD, chronic bronchitis, or emphysema 
 

Functional measures:  
 

• Modified Medical Research Council (MMRC) dyspnea scale 
• St. George's Respiratory Questionnaire (SGRQ)  
• 6-minute walk distance 

 
COPD characteristics:  
 

• Chronic bronchitis (Chronic cough and phlegm for ≥ 3 months/year for at least 2 consecutive years) 
• Blue Bloater (Chronic bronchitis, BMI�>�25, Resting oxygen saturation <�90%) 
• Pink puffer (Emphysema�>�10%, BMI�≤�20, Resting oxygen saturation ≥�90%) 
• Number of COPD exacerbations over the prior year (Number of self-reported acute worsening of respiratory symptoms 

that required the use of antibiotics and/or systemic steroids in the previous year) 
• History of severe COPD exacerbation (Self-report of COPD exacerbation requiring an emergency department visit or 
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hospital admission) 
• Need for courses of systemic steroids 
• Poor exercise capacity (6-minute walk distance < 500 feet) 
• Hypoxemia (Resting oxygen saturation ≤ 88%) 
• Severe early-onset COPD (Age�<�55 years, FEV1�<�50% predicted) 

 
Comorbidities:  
 

• Diabetes mellitus (Self-report) 
• Hypertension (Self-report) 
• Dyslipidemia (Self-report) 
• Pneumothorax (Self-report) 
• Gastro-esophageal reflux disease (Self-report) 
• Osteoporosis (Self-report) 
• Coronary artery disease (Self-report of heart attack, coronary artery disease, angina, angioplasty, or coronary artery 

bypass graft) 
• Congestive heart failure (Self-report) 
• Peripheral vascular disease (Self-report) 
• Metabolic syndrome (3 of 4: BMI�≥�30 (measured), self-reported diabetes mellitus, hypertension, and high cholesterol) 
• Physician diagnosis of asthma before age 40 (Self-report) 
• Asthma/COPD overlap (Self-report) 
• Obstructive sleep apnea (Self-report) 

 
Spirometry:  
 

• Post-bronchodilator FEV1 
• Post-bronchodilator FVC 
• FEV1/FVC 
• Post-bronchodilator FEF25-75 
• Pre/Post- bronchodilator FEV1 (% change) 
• Pre/Post- bronchodilator FVC (% change) 
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• GOLD 
 

Radiology:  
 

• Total emphysema (%LAA-950) 
• Emphysema distribution (Upper over lower lung third %LAA-950 ratio) 
• Gas trapping (Percentage of low attenuation area less than -856HU at end-expiration) 
• CT-measured total lung volumes at end-inspiration 
• Airway wall thickness (Obtained along the center line of the lumen, in the middle third of the airway segment, for one 

segmental airway of each lung lobe) 
• Pi10 (Square root of the wall area of a hypothetical airway of 10-mm internal perimeter) 
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Table 3. Prediction performance of random forest in the cross-validation testing samples and temporal validation cohort.  

  
COPDGene Visit 1 / Visit 2 

testing samples 
 

COPDGene Visit 2 / Visit 3 
temporal validation cohort 

RMSE   
Follow-up FEV1 269.711 [259.252, 276.476] 236.742 

Change in FEV1 (mL/year) 46.913 [45.647, 48.795] 52.289 
R-squared    

Follow-up FEV1 0.896 [0.890, 0.903] 0.913 
Change in FEV1 (mL/year) 0.147 [0.126, 0.173] 0.104 

AUC   
Follow-up FEV1 0.974 [0.970, 0.979] 0.975 

Change in FEV1 (mL/year) 0.707 [0.688, 0.724] 0.704 
 
The derivation cohort (COPDGene Study Visit 1 and Visit 2) was randomly partitioned into training and testing samples using 10-fold cross 

validation. This procedure was repeated five times to account for the random variability of the partitioning procedure. This repeated resampling 

procedure created an ensemble of fifty models over which we averaged the predictions, and we then validated the performance of this model using 

data from COPDGene Visit 3 (temporal validation). To predict the outcome values at Year 10 (Visit 3), we entered the subjects’ 5-year (Visit 2) 

predictor data into the models trained in the derivation cohort. 

 

Variables are expressed as median and interquartile range (IQR) (25th to 75th percentile) when applicable. 

 

AUC: Area under the ROC curve for prediction of subjects in the top quartile of COPD progression; FEV1: Forced expiratory volume in one second; 

RMSE: Root mean square error.  
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