1	Compassionate use of recombinant human IL-7-hyFc as a salvage treatment for
2	restoring lymphopenia in patients with recurrent glioblastoma
3	(Running title: Recombinant human IL-7-hyFc for Recurrent GBM)
4	
5	Stephen Ahn, M.D.Ph.D. ¹ , Jae-Sung Park, M.D. ¹ , Heewon Kim ² , Minkyu Heo ² , Young Chul
6	Sung ² , Sin-Soo Jeun, M.D. Ph.D ¹
7	¹ Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic
8	University of Korea, Seoul, South Korea
9	² Genexine, Inc., Seongnam-si, Gyeonggi-do, South Korea
10	
11	
12	
13	
14	
15	
16	
17	
18	Address correspondence to:
19	Sin-Soo Jeun, M.D. Ph.D.
20	Department of Neurosurgery, Seoul St. Mary's Hospital,
21	College of Medicine, The Catholic University of Korea
22	222 Banpodae-ro, Seocho-gu, Seoul, South Korea 06591
23	Tel.: +82-2-2258-7535, Fax: +82-2-2258-1853
24	E-mail: <u>ssjeun@catholic.ac.kr</u>
25	

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

1

Abstract

2 Purpose

3	Lymphopenia is frequently observed and is associated with poor prognosis in
4	glioblastoma (GBM) patients. Restoring lymphopenia in cancer patients has been suggested
5	as a novel immunotherapeutic strategy. As interleukin-7 (IL-7) is necessary for proliferation
6	of lymphocytes and to amplify the total lymphocyte count (TLC), IL-7 therapy has been tried
7	for various cancers, although the results are inconclusive. Here, we describe the clinical
8	results of recurrent GBM treated with long-acting engineered version of recombinant human
9	IL-7 (rhIL-7-hyFc).
10	Methods
10 11	Methods This prospective case series based on compassionate use was approved by the
10 11 12	Methods This prospective case series based on compassionate use was approved by the Ministry of Food and Drug Safety in South Korea. Patients with recurrent GBM were
10 11 12 13	Methods This prospective case series based on compassionate use was approved by the Ministry of Food and Drug Safety in South Korea. Patients with recurrent GBM were enrolled to Seoul St. Mary's Hospital. Primary outcomes were the safety profile and elevated
10 11 12 13 14	Methods This prospective case series based on compassionate use was approved by the Ministry of Food and Drug Safety in South Korea. Patients with recurrent GBM were enrolled to Seoul St. Mary's Hospital. Primary outcomes were the safety profile and elevated total lymphocyte count (TLC). Secondary outcomes were overall survival (OS) and
10 11 12 13 14 15	MethodsThis prospective case series based on compassionate use was approved by theMinistry of Food and Drug Safety in South Korea. Patients with recurrent GBM wereenrolled to Seoul St. Mary's Hospital. Primary outcomes were the safety profile and elevatedtotal lymphocyte count (TLC). Secondary outcomes were overall survival (OS) andprogression-free survival (PFS). The duration of median follow-up was 372.6 days (range)

17 **Results**

18 Among 18 patients enrolled, 10 received rhIL-7-hyFc with temozolomide, 5 received rhIL-7-hyFc with bevacizumab, 1 received rhIL-7-hyFc with PCV chemotherapy, and 2 19 received rhIL-7-hyFc alone. The mean TLC of enrolled patients after the first treatment with 20 21 rhIL-7-hyFc was significantly increased from 1,131 cells/mm³ (range 330-2,989) at baseline to 4,356 cells/mm³ (range 661-22,661). Similar increase was observed in 16 of 18 patients 22 (88.8%), only after the first treatment of rhIL-7-hyFc. TLCs of these patients were 23 24 maintained higher while rhIL-7-hyFc was repeatedly administered. Most common adverse events were injection sites reactions (64.7%) including urticaria and itching sensation, 25

- 1 however, there were no serious adverse events more than grade III. Median OS and PFS were
- 2 378 days (range 107-864 days) and 231 days (55-726 days), respectively.

3 Conclusion

- 4 Our study first reports that IL-7 immunotherapy can restore lymphopenia and
- 5 maintain TLC with various salvageable chemotherapies in recurrent GBM patients without
- 6 serious adverse toxicities. This outcome warrants further larger and randomized clinical trials
- 7 to validate the clinical benefits of rhIL-7-hyFc for GBM patients.
- 8

9 Keywords

10 glioblastoma; recurrence; lymphopenia; rhIL-7-hyFc; immunotherapy

1

Introduction

2	Glioblastoma is the most common and devastating brain malignancy in adults ¹ .
3	Median overall survival (OS) is less than 2 years despite aggressive multimodal standard of
4	care including maximal safe resection and concomitant chemoradiation (CCRT) followed by
5	adjuvant chemotherapy with temozolomide ² . Tumor recurrence and progression occur in
6	almost all GBM patients, in whom available treatment options will be re-surgical resection;
7	re-irradiation; and chemotherapies such as temozolomide, bevacizumab, and PCV
8	[procarbazine, lomustine (CCNU), and vincristine]. However, the clinical benefit is
9	unsatisfactory ^{3 4} .
10	Lymphopenia, defined as decreased counts of circulating lymphocytes resulting from
11	mainly radiotherapy, is frequently observed in GBM patients and is recently established as a
12	novel biomarker associated with poor clinical outcomes ^{5 6 7 8 9} . Furthermore, restoring
13	lymphopenia is a novel therapeutic approach in various cancers including GBM ¹⁰ ¹¹ .
14	Interleukin-7 (IL-7), which is one of the common gamma-chain cytokines with IL-2 and IL-
15	15 and has critical roles in maintaining lymphocyte homeostasis, is suggested to restore
16	lymphopenia and improve clinical outcomes of cancer patients ¹² ¹³ . In this background, IL-7
17	cytokine therapy was tested to treat recurrent or refractory cancer patients in clinical studies,
18	but showed unclear efficacy of T cell regeneration and clinical benefits ^{14,15, 16, 17} .
19	In our compassionate use program, our study investigated clinical benefits from the
20	treatment of hybrid-Fc fused recombinant human IL-7 (rhIL-7-hyFc) in recurrent GBM
21	patients. We evaluated whether rhIL-7-hyFc therapy could restore lymphopenia and increase
22	total lymphocyte count (TLC) with salvageable chemotherapies for GBM patients. In
23	addition, we evaluated the safety profiles and survival outcomes of enrolled patients.

4

1

Patients and Methods

2 Ethical consideration

3	Patients with recurrent GBM received rhIL-7-hyFc on compassionate use basis,
4	approved and supervised by the Ministry of Food and Drug Safety in South Korea. The study
5	was conducted according to the Declaration of Helsinki and was approved by the institutional
6	review board in Seoul St. Mary's Hospital. It was registered in the National Institutes of
7	Health Clinical Trial Registry (NCT04289155). All patients signed on informed consent
8	forms prior to compassionate use of rhIL-7-hyFc.
9	Study population
10	Patients who were pathologically confirmed with recurrent GBM between March
11	2018 and December 2019 at Seoul St. Mary's Hospital were screened. Treatment with rhIL7-
12	hyFc was offered for patients older than 18 years with pathologically confirmed recurrent
13	GBM. Patients who had acute infection, autoimmune or hematologic disease at the time of
14	recurrence were excluded.
15	Clinical variables
16	Baseline characteristics of sex, date of birth, dates of surgeries, pathological findings,
17	prior treatments, and radiological findings were collected and summarized. Pathological
18	evaluation was performed by a neuropathologist following the 2016 WHO classification of
19	the central nervous system. Isocitrate dehydrogenase (IDH)1 or IDH2 mutation was assessed
20	by Sanger sequencing. Co-deletion of 1p19q was identified by fluorescent in situ
21	hybridization. [6]-Methylguanine-DNA methyltransferase (MGMT) gene methylation and
22	TERT promoter mutation status were evaluated by polymerase chain reaction (PCR). Loss of
23	ATRX was assessed using immunohistochemistry. Radiographic responses on magnetic

24 resonance imaging (MRI) were determined by two neuro-radiologists according to

5

Immunotherapy Response Assessment in Neuro-Oncology (iRANO) criteria. The duration of
 recurrence was defined as days from initial surgery to date of MRI showing recurrence.

3 Treatment protocols of rhIL-7-hyFc therapy

rhIL-7-hyFc was prepared and provided by Genexine, Inc. and detailed information
for rhIL-7-hyFc was previously reported ¹⁸. In brief, rhIL-7-hyFc is a recombinant human IL7 fused to the hybridizing IgD/IgG4 immunoglobulin domain to increase half-life of IL-7 *in vivo*. rhIL-7-hyFc was administered intramuscularly into the gluteus muscle and/or deltoid
muscle every 4 to 8 weeks. Patients were treated at various dose ranging from 60 µg/kg to
1,440 µg/kg while being monitored for toxicity.

10 Patients received salvageable systemic therapy with rhIL-7-hyFc treatment, if

11 satisfied with criteria. Systemic therapy regimen was determined by a treating clinician.

12 Temozolomide was used for most recurrent cases occurring > 6 months upon completion of

13 standard of care. Bevacizumab and chemotherapy with procarbazine, lomustine and

14 vincristine (PCV) were allowed depending on clinician's assessment. Dosing schedule of

15 rhIL-7-hyFc was determined in consideration of both the lympho-depletion effect of

16 cytotoxic chemotherapies and the recovery time of lymphocyte counts induced by rhIL-7-

17 hyFc. In combination treatment with temozolomide, patients were given rhIL-7-hyFc one

18 week after initiation of temozolomide. In combination treatment with bevacizumab, the

19 patients were given rhIL-7-hyFc within 3 days of bevacizumab. In combination therapy with

20 PCV chemotherapy, rhIL-7-hyFc was administered one week after completion of PCV.

21 Primary and secondary endpoints

Primary endpoints were safety events and restoration of total lymphocyte count.
Treatment-associated toxicity was evaluated at every visit using Common Terminology
Criteria for Adverse Events (CTCAE) version 5.0. Complete blood count including white
blood cells and composition of neutrophils and lymphocytes were calculated at the time of

1	blood sampling on the day of chemotherapy, day of administration of rhIL-7-hyFc, and 3
2	weeks after initial administration of rhIL-7-hyFc. Secondary endpoints were overall survival
3	(OS) and progression-free survival (PFS) after recurrence. OS was also defined as days from
4	the date of MRI showing recurrence before use of rhIL-7-hyFc to date of death. Patients alive
5	on February 28, 2021, were censored. The mean duration of follow-up was 372.6 days (range
6	98-864). To compare the OS of enrolled patients with historical patients; 123 patients with
7	recurrent GBM diagnosed and treated in this hospital between 2014 and 2017 were enrolled
8	into the historical cohort. The detailed characteristics of the historical cohort are described in
9	Supplementary Table 1. These patients were followed by routine magnetic resonance
10	imaging (MRI) every 8 or 12 weeks if they do not exhibit neurologic symptoms.
11	Statistical analysis
12	Continuous clinical variables such as TLC are expressed as mean value \pm standard
13	deviation. Swimmer plot and all figures were constructed using GraphPad Prism software
14	(Version 8.4.3). Kaplan–Meier survival was used to estimate median OS and PFS. Log-rank
15	test was used to compare OS between the treatment group and historical control. Statistical

16 analysis was estimated using R Statistical Software (Version 4.0.5).

1

3

Results

A total of 18 patients with pathologically confirmed recurrent GBM were included in

2 Characteristics and clinical follow-up of patients treated with rhIL-7-hyFc

4 the study. Clinical characteristics of sex; age; pathological findings; the presence of 5 leptomeningeal spread at enrollment; and history of treatment including surgery, 6 chemotherapy, and radiotherapy before enrollment are described in Table 1. Of 18 patients, 7 10 started rhIL-7-hyFc treatment with combination of temozolomide chemotherapy (2 8 patients switched to bevacizumab after progression), 5 received it with combination of 9 bevacizumab with or without irinotecan, 1 received it with PCV chemotherapy, and 2 received rhIL-7 treatment alone. Of these, 72% of patients (13 of 18) received rhIL-7-hyFc at 10 11 least twice, while 28% of patients (5 of 18) received it only one time. The initial dose was 60 12 µg/kg and increased to 1,440 µg/kg. Detailed information on rhIL-7-hyFc injection with 13 systemic therapy is described in Table 2, and clinical follow-up of the patients is illustrated in Figure 1. 14

15 TLC changes following treatment with rhIL-7-hyFc

The mean TLC of these patients before treatment with rhIL-7-hyFc was 1,131 (range 16 17 330-2,989) cells/mm³. After initial treatment with rhIL-7-hyFc, mean TLC increased to 4,356 (range 661-22,661) cells/mm³; a mean 3.40 (range 1.38-9.13)-fold increase. Increased TLC 18 19 was noted in 16 of 18 patients (94.4%) after the first treatment with rhIL-7-hyFc and it was 20 maintained following repeated treatment; only one patient (GBM 17) did not respond to rhIL-21 7-hyFc. Changes of TLC in all enrolled patients following injection of rhIL-7-hyFc are 22 described in Supplementary Table 2. The dose of rhIL-7-hyFc was categorized as low (60-23 240 μ g/kg), medium (480-720 μ g/kg), and high (960-1,440 μ g/kg),; TLC significantly increased in a dose-dependent manner for all patients but one patient (GBM17), as presented 24 25 in Figure 2.

1 Safety profile and survival outcomes

2	Most common adverse events related to rhIL-7-hyFc were injection site reactions
3	including urticaria, redness, and/or itching sensation at near injection sites (64.7%). Of these
4	patients, only one showed grade 3 urticaria and itching sensation. Other serious adverse
5	events (grade 3-4) observed include edema near injection site (13.2%), fatigue (2.9%), and
6	febrile sensation (2.9%) (Table 3).
7	Median OS and PFS of enrolled patients after recurrence were 378 days (range 107-
8	864 days) and 231 days (55-726 days), respectively (Figure 3). We also compared the median
9	OS of enrolled patients (treatment group) with that of historical patients with recurrent GBM
10	(historical group) treated in our institution. Median OS of the treatment 18 patients after
11	recurrence was significantly longer than that of 123 patients in the historical cohort (378
12	days, range 107-864 versus 169 days, range 33-1,067, p =0.003) (Figure 3.)
13	Of 18 total patients in treatment group, 15 (83.3%) survived more than 6 months and
14	9 (50.0%) survived more than 1 year after treatment with rhIL-7-hyFc. In addition, 9 patients
15	(50.0%) had stable disease for more than 6 months after co-treatment with rhIL-7-hyFc
16	injection and systemic therapy. Among them, 2 patients (GBM6 & 11) co-treated with
17	bevacizumab had partial response, and one patient (GBM9) co-treated with temozolomide
18	had stable disease for more than 2 years after treatment with rhIL-7-hyFc injection.
19	Representative radiographic findings from these patients are illustrated in Figure 4.
20	Discussion
21	We demonstrated that rhIL-7-hyFc can be safely added to conventional salvageable
22	systemic therapy such as temozolomide, bevacizumab, and PCV chemotherapy. There are
23	concerns whether rhIL-7-hyFc can restore lymphocyte count when used in combination with
24	cytotoxic chemotherapy, but our study showed that TLCs of patients who received co-
25	treatment of rhIL-7-hyFc with chemotherapy were dramatically increased from 1,131 (range

330-2,989) cells/mm³ at baseline to 4,356 (range 661-22,661) cells/mm³ after the first 1 2 treatment, a mean 3.40-fold increase (range 1.38-9.13). The increase in TLCs was dose-3 dependent. In addition, continuing rhIL-7-hyFc therapy facilitated recovery of lymphopenia 4 induced by concurrent chemotherapy and maintained TLCs throughout the treatment higher than the baseline. Mean OS after recurrence of rhIL-7-hyFc treated patients exceeded 1 year 5 6 (378 days); with 2 patients showing partial response and one patient showing stable disease for more than 2 years. Because of the small number of patients (n=18) and the potential 7 8 impact of salvageable systemic therapy, it is premature to draw any conclusion, therefore a 9 larger, randomized controlled trial is needed to validate the result. However, our study highlights that rhIL-7-hyFc cytokine therapy effectively and safely restored lymphocyte 10 11 count and ongoing treatment sustained elevated levels of TLC in spite of concurrent systemic 12 therapy with temozolomide, bevacizumab, or PCV chemotherapy in recurrent GBM patients. 13 Ample evidence suggests that lymphopenia is one of the poorest prognostic factors in various cancer types including GBM ^{5-8,10}. The standard care of GBM includes aggressive 14 15 concurrent chemoradiation followed by chemotherapy using temozolomide, which causes severe and prolonged lymphopenia in most GBM patients ^{11,19}. In this context, preventing or 16 restoring lymphopenia has been suggested as a novel immunotherapeutic strategy ^{5,9,10}. IL-7, 17 first discovered in the 1980s, is one of the critical cytokines to elicit T-cell responses to target 18 cancer cells ¹³. It promotes lymphocyte development in the thymus and maintains the 19 homeostasis of naive and memory T cells in the periphery ^{20,21}. Furthermore, IL-7 can repair 20 T cell injury in cancer patients and overcome immunosuppressive tumor microenvironment 21 ^{11,22}. Several preclinical studies have demonstrated the efficacy of IL-7 in various cancer 22 types with or without combined therapeutic agents ²³⁻²⁵. 23

Rosenberg et al. first reported that IL-7 cytokine therapy administered every 3 days
 for 8 sessions could increase CD4+ and CD8+ T cells in cancer patients ¹⁵. In another clinical

1 trial, recombinant human IL-7 injection every other day for 2 weeks for refractory cancer 2 patients increased CD3+, CD4+, and CD8+ lymphocytes in a dose-dependent manner ¹⁶. In 3 another randomized placebo-controlled phase IIa clinical study, patients with metastatic 4 breast cancer who received 3 injections of recombinant IL-7 for 3 weeks had increased CD4 T cell count compared to patients who received placebo¹⁴. Lastly, a recent clinical trial using 5 6 rh-IL-7 as adjuvant therapy every 2 weeks combined with dendritic cell vaccination or 7 autologous lymphocyte infusion showed significantly better OS in pediatric sarcoma patients compared to that of patients in a historical control cohort ¹⁷. Compared to previous clinical 8 9 studies multiple administered short-acting IL-7, our study showed that rhIL-7-hyFc could increase TLC drastically even after a single injection. In addition, we demonstrated that rhIL-10 7-hyFc therapy could be combined with conventional systemic therapy such as 11 12 temozolomide, bevacizumab, or PCV chemotherapy. Even for patients receiving lympho-13 depleting cytotoxic chemotherapy, TLC increased after rhIL-7-hyFc injection. Therefore, 14 combination of rhIL-7-hyFc with conventional systemic therapy such as temozolomide, 15 bevacizumab, or PCV chemotherapy can provide an opportunity for clinical benefit to the patients. To the best of our knowledge, our study is the first to report the clinical experience 16 17 of rhIL-7-hyFC therapy in GBM patients. Our preliminary clinical findings will facilitate the development as a novel combination immunotherapy strategy for various cancers including 18 19 GBM. Considering that lymphopenia is usually a result of concurrent chemoradiation, IL-7 20 administered during or after concurrent chemoradiation might be an alternative to restore or 21 prevent lymphopenia. In addition, increasing lymphocyte counts can augment anti-tumor 22 effect of immune checkpoint inhibitors for the typical immunotherapy non-responsive GBM.^{10,26}. 23

Our study had several limitations. First, the selection bias is imposed on the study as
compassionate use is designed without strict conditions of enrollment. Second, the various

11

- 1 time interval between the time of recurrence and the first injection of rhIL-7-hyFc could
- 2 complicate the interpretation of the study. Third, a few patients who recurred from primary
- 3 high-grade glioma were included, although all patients had pathologically confirmed GBM.
- 4 Last, our study did not include changes in immune subsets including various T cell
- 5 populations such as CD3, CD4, CD8 positive T cells, or regulatory T cells. Further
- 6 prospective studies including immune subsets from peripheral blood and/or tumor tissue are
- 7 highly desirable.

1	
_	

Conclusion

2	Our study first reports that IL-7 immunotherapy could restore lymphocyte count and
3	maintain elevated TLC when administered with systemic therapy in recurrent GBM patients
4	without serious adverse events. Combination of rhIL-7-hyFc with conventional systemic
5	therapy such as temozolomide, bevacizumab, or PCV chemotherapy can provide opportunity
6	of clinical benefit to the patients This outcome warrants further larger and randomized
7	clinical trials to validate the clinical benefits of rIhL-7-hyFc for GBM patients.

Patient Code	Age group	Sex	Secondary	Initial histology	Final histology	IDH1	IDH2	1p19q	MGMT status	TERT status	ATRX loss	Leptomeningeal spread at enrollment	Time from initial diagnosis to recurrence (daw)	Recurrence before rIL- I7	Treatments before rhIL7-hyFC
GBM1	36-40	М	Y	DA	GBM	Ν	Ν	Ν	Y	Ν	Ν	Y	(days) 1957	1	RT
GBM2	56-60	F	Ν	GBM	GBM	Ν	Ν	Ν	Y	UN	Ν	Ν	503	1	RT/TMZ
GBM3	71-75	М	Ν	GBM	GBM	Y	UN	Ν	Y	UN	UN	Ν	1213	1	RT/TMZ
GBM4	66-70	F	Y	AO	GBM	Ν	Ν	Ν	Ν	Y	Ν	Ν	1254	2	RT/TMZ, Surgery, reTMZ
GBM5	41-45	F	Y	DA	GBM	Ν	Ν	Ν	Ν	U	Ν	Ν	553	2	RT, PCV
GBM6	51-55	F	Ν	Ν	GBM	Ν	Ν	Ν	Ν	UN	UN	Ν	241	1	RT/TMZ
GBM7	21-25	М	Ν	Ν	GBM	Ν	Ν	Ν	Ν	UN	Y	Y	921	1	RT/TMZ
GBM8	61-65	М	Ν	Ν	GBM	Ν	Ν	Ν	Ν	Y	Ν	Ν	239	1	RT/TMZ
GBM9	66-70	F	Y	AA	GBM	N	Ν	Ν	Y	Y	Ν	Ν	132	1	RT, Surgery
GBM10	61-65	F	Y	AA	GBM	Ν	Ν	Ν	Y	Y	Ν	Ν	201	2	RT, TMZ, Surgery
GBM11	51-55	F	Ν	Ν	GBM	Ν	Ν	Ν	Y	Ν	Y	Ν	418	1	RT/TMZ
GBM12	56-60	М	Ν	Ν	GBM	Ν	Ν	Ν	Ν	Y	Ν	Ν	595	1	RT/TMZ
GBM13	71-75	F	Y	AA	GBM	Ν	Ν	Ν	Ν	Y	Ν	Ν	379	1	RT/TMZ, Surgery
GBM14	51-55	F	Ν	Ν	GBM	Ν	Ν	Ν	Ν	Y	Ν	Ν	180	1	RT
GBM15	26-30	М	Ν	Ν	GBM	N	Ν	Ν	Ν	UN	N	Ν	829	2	RT/TMZ, reRT, reTMZ
GBM16	61-65	F	Ν	Ν	GBM	Ν	Ν	Ν	Ν	Y	Ν	Ν	251	1	RT/TMZ
GBM17	46-50	М	Ν	Ν	GBM	Ν	Ν	Ν	Ν	Ν	Ν	Ν	649	1	RT/TMZ

Table 1. Clinical characteristics of patients with recurrent GBM

Final molecular markers

					CDM										RT,PCV,
GBM18	31-35	Μ	Y	DA	GDM	Y	Ν	Ν	Ν	Y	Y	Ν	2687	2	Surgery,
															TMZ
A A on onlo	atio actro	outomo:	AO anon	lectic oligod	androalioma. T	۲ A (iffuso ostr	ooutomo	· CDM	lighter	DOL TODT T	a radiatharany r	oTMZ ro tomo	alomida D'	radiotherany

AA, anaplastic astrocytoma; AO, anaplastic oligodendroglioma; DA, diffuse astrocytoma; GBM, glioblastoma; reRT, re-radiotherapy; reTMZ, re-temozolomide; RT, radiotherapy; TMZ, temozolomide. Age group

Table 2. Details of treatment with rhIL-7-hyFc and clinical follow-up of patients with recurrent GBM

Number	Dose (number of hosts)	Treatment
of shots		in addition to
		rhIL-7-hyFc
8	*60(5), 240(2), 480(1)	TMZ->Avastin
2	*120(2)	TMZ
4	120 (3), 240 (1)	TMZ
3	120	None
7	240(10), 480(4), 720	TMZ-> Avastin
1	(2)	
3	600(2), 720(1)	Avastin + irinotecan
3	480(2), 720(1)	TMZ
1	720	None
12	720	TMZ
6	720	TMZ
5	720	Avastin + irinotecan
3	720	TMZ
1	960	TMZ
1	1,200	Avastin
1	1,200	PCV
1	1,440	Avastin
3	1,200	TMZ
1	1,200	Avastin
every 4 v	week	
	Number of shots 8 2 4 3 7 3 3 1 12 6 5 3 1 12 6 5 3 1 1 1 1 3 1 every 4	Number of shotsDose (number of hosts)8 $*60(5), 240(2), 480(1)$ 2 $*120(2)$ 4 $120(3), 240(1)$ 3 120 7 $240(10), 480(4), 720$ 7 (2) 3 $600(2), 720(1)$ 3 $480(2), 720(1)$ 1 720 12 720 6 720 5 720 1 960 1 $1,200$ 1 $1,440$ 3 $1,200$ 1 $1,200$ 1 $1,200$ 1 $1,200$ 1 $1,200$ 1 $1,200$ 1 $1,200$

Table 3. Adverse events to treatment with rhIL-7-hyFc. 1 **Adverse events** Number of adverse events (≥ Grade III)

Urticaria, redness, and itching sensation	44 (1)	64.7% (1.47%)
at near injection site		
Edema near injection site	9 (0)	13.2%
Fatigue	2 (0)	2.94%
Febrile sensation	2 (0)	2.94%

2

3 Supplementary Table 1. Baseline characteristics of historical patients with recurrent GBM in our 4 institution

n (%)	N =123
Sex	
Female	55 (44.7)
Male	68 (55.3)
Mean age (years)	59.3 ± 13.2
> 65 years	49 (39.8)
Extent of resection	
Gross total resection	42 (34.1)
Subtotal resection	36 (29.3)
Partial resection	23 (18.7)
Biopsy	22 (17.9)
IDH mutation	
Yes	2 (1.6)
No	64 (52.0)
Unknown	57 (46.3)
1p19q co-deletion	
Yes	2 (1.6)
No	100 (81.3)

medRxiv preprint doi: https://doi.org/10.1101/2022.01.09.22268651; this version posted January 10, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in

	perpetuity. It is made available under a CC-BY-NC-	N
n (%)	N =123	
Unknown	21 (17.1)	
MGMT methylation		
Yes	47 (38.2)	
No	52 (42.3)	
Unknown	24 (19.5)	
Completion of CCRT		
and adjuvant chemotherapy	ý	
Yes	60 (48.8)	
No	63 (51.2)	

D 4.0 International license .

1	Supplem Patient	entary Cycle	Table 2. (Dose,	Changes of total ly WBC	mphocyte cou TLC	unts following trea WBC	atments. TLC	Fold
	Code	-	µg/kg	(lymphocyte %)	at	(lymphocyte %)	at maximum	change
				at minimum	minimum	at maximum		
	GBM1	1*	60	7260 (13.6%)	987	7680 (21.2)	1,628	1.65
		2*	60	6030 (22.9)	1381	5720 (29.0)	1659	1.20
		3*	60	5710 (27.8)	1587	4670 (29.3)	1368	0.86
		4*	60	5090 (26.5)	1349	5010 (34.3)	1718	1.27
		5*	60	4200 (22.1)	928	4150 (24.1)	1000	1.08
		6	240	4840 (25.4)	1229	6800 (19.1)	1299	1.00
		7	480	7770 (12.6)	979	9730 (16.2)	1576	1.61
		8	240	6250 (20.2)	1263	5450 (22.9)	1248	0.99
		9	600	3180 (27.5)	875	18900 (9.8)	1852	2.12
	GBM2	1*	120	4240 (15 3)	649	7920 (14.4)	1140	1 76
		1 2*	120	4880 (13.7)	669	5030 (6.8)	342	0.51
	GBM3	2 1	120	5290 (24 0)	1270	5520 (43.8)	2418	1 90
	ODINIS	$\frac{1}{2}$	120	4410 (33 3)	1469	6250 (35.5)	2219	1.50
		23	120	7030 (13 5)	949	5320 (22.0)	1170	1.31
		3 4	240	4740 (18.1)	858	4520 (25.2)	1139	1.23
	GBM4	1	120	3640 (19.2)	699	4640 (35.7)	1592	2.28
		2	120	4450 (36.6)	1692	N/A	N/A	N/A
		$\frac{2}{3}$	120	8320 (37.3)	3103	N/A	N/A	N/A
	GBM5	1	240	8550 (11.4)	975	9730 (19.5)	1897	1.95
		2	480	4880 (19.6)	941	3510 (55.5)	1948	2.07
		3	480	2610 (37.9)	989	1600 (49.4)	790	0.80
		4	480	2240 (40.2)	900	5410 (27.0)	1461	1.62
		5	480	5410 (22.5)	1217	5750 (26.6)	1530	1.26
		6	720	8000 (16.9)	1352	6080 (24.5)	1490	1.10
		7	720	3560 (20.5)	730	N/A	N/A	N/A
	GBM6	1	600	2590 (20.1)	521	4670 (59.1)	2760	5.30
		2	600	8770 (23.5)	2061	9770 (60.3)	5891	2.86
		3	600	8120 (47.8)	3881	11870 (43.5)	5163	1.33
	GBM7	1	480	2000 (16.5)	330	2790 (23.7)	661	2.00
		2	480	4980 (26.3)	1310	1130 (39.8)	450	0.34
		3	720	2470 (8.9)	220	1900 (13.8)	400	1.82
	GBM8	1	720	4990 (25.5)	1272	11530 (31.5)	3632	2.85
	GBM9	1	720	4690 (34.8)	1632	12310 (55.6)	6844	4.19
		2	720	6900 (47.4)	3271	11860 (53.0)	6286	1.92
		3	720	7810 (44.0)	3436	11140 (51.0)	5681	1.65
		4	720	8120 (40.6)	3297	9730 (45.1)	4388	1.33
		5	720	7180 (27.7)	1989	7900 (32.7)	2583	1.30
		6	720	5420 (33.4)	1810	5650 (37.9)	2141	1.18
		7	720	4640 (30.6)	1420	5800 (32.7)	1897	1.34
		8	720	4860 (24.1)	1171	5200 (26.8)	1394	1.19
		9	720	3140 (30.9)	970	6480 (21.1)	1367	1.41
		10	720	4660 (23.6)	1100	3590 (30.6)	1099	1.00
		11	720	3710 (22.1)	820	N/A	N/A	N/A
		12	720	4010 (20.0)	802	N/A	N/A	N/A
	GBM10	1	720	8490 (28.2)	2394	9340 (44.8)	4184	1.75
		2	720	9170 (20.7)	1898	4900 (48.4)	2372	1.25

medRxiv preprint doi: https://doi.org/10.1101/2022.01.09.22268651; this version posted January 10, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . 2038 3 720 7160 (41.8) 2993 5320 (38.3) 0.68 4 720 6260 (10.2) 639 3390 (33.6) 1139 1.78 4590 (19.8) 909 5 720 6650 (10.2) 1.34 678 738 13660 (5.4) 6 720 5430 (11.6) 630 1.17 GBM11 1 720 7140 (70.3) 5019 5.83 1850 (46.5) 860 7320 (68.4) 5007 2 720 2320 2.16 3510 (66.1) 5240 (59.2) 3 720 3690 (59.9) 2210 3102 1.40 8820 (54.6) 4816 4 720 4170 (54.9) 2289 2.10 5 8120 (53.6) 4352 720 7660 (52.0) 3983 1.09 3840 (42.4) 1628 6 720 4100 (50.5) 2071 0.79 GBM12 7227 13260 (54.5) 1 720 5920 (27.5) 4.44 1628 2 12740 (49.1) 6255 720 7850 (52.7) 4137 1.51 3 7000 (56.0) 3920 720 6920 (39.3) 2720 1.44 4 720 3751 11790 (53.1) 6260 8410 (44.6) 1.67 GBM13 720 689 12550 (16.8) 2108 3.06 1 4230 (16.3) GBM14 7600 (13.2) 1003 1 1,200 8130 (7.1) 577 1.74 GBM15 18800 (48.9) 9193 1 1,200 1007 9.13 8250 (12.2) GBM16 1389 7830 (48.1) 3766 2.71 1 1,440 6230 (22.3) GBM17 679 1 1,200 2530 (19.4) 2830 (24.0) 1.38 491 2 2880 (22.9) 660 1200 1.15 3380 (16.9) 571 3 590 2880 (20.5) 1200 1.13 3120 (16.7) 521 GBM18 26850 (84.4) 22661 1 1200 7.58 5860 (51.0) 2989

1 * Injected every 4 weeks

Figure legends

- 2 Figure 1. Swimmer plot of the clinical course of patients after enrollment.
- 3 Figure 2. Changes of total lymphocyte counts following treatment with rhIL-7-hyFc.
- 4 Figure 3. Kaplan-Meier survival curve for overall survival comparing the treatment group
- 5 with the historical group.

1

- 6 Figure 4. Representative clinical images of patients who showed partial response (GBM7 and
- 7 GBM11) or longer stable state (GBM9) after injection of rhIL-7-hyFc.
- 8 Supplementary Figure. Kaplan-Meier survival curve for (a) overall survival and (b)
- 9 progression-free survival of treatment group.

1

References

2 3	1.	Ostrom QT, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the
4 5 6	2.	United States in 2014–2018. <i>Neuro-oncology</i> . 2021;23(Supplement_3):iii1-iii105. Stupp R, Taillibert S, Kanner A, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in
7		patients with glioblastoma: a randomized clinical trial. Jama. 2017;318(23):2306-
8	_	2316.
9	3.	Wick W, Gorlia T, Bendszus M, et al. Lomustine and bevacizumab in progressive
10	4	glioblastoma. New England Journal of Medicine. 2017;377(20):1954-1963.
11	4.	Wen PY, Weller M, Lee EQ, et al. Glioblastoma in adults: a Society for Neuro-
12		Uncology (SNU) and European Society of Neuro-Oncology (EANU) consensus
13		review on current management and future directions. <i>Neuro-oncology</i> .
14 1 C	5	2020;22(6):10/5-1115. Koukourakia ML Giatromanalaki A. Lymphononia and intratumoral lymphoaytia
15	5.	balance in the are of cancer Immuno Padiotherany. Critical Pavious in
17		Oncolomy/Hamatolomy 2021:102226
10	6	Ahn S. Park L.S. Jang L et al. The association between total lymphocyte count after
10	0.	concomitant chemoradiation and overall survival in patients with newly diagnosed
20		glioblastoma Journal of Clinical Neuroscience 2020:71:21-25
20	7	By HK Kim N Yoon HI et al Clinical predictors of radiation-induced
21	7.	lymphonenia in patients receiving chemoradiation for glioblastoma: clinical
22		usefulness of intensity-modulated radiotherapy in the immuno-oncology era
23		Radiation Oncology 2019:14(1):1-10
25	8.	Kim WJ. Dho Y-S. Ock C-Y. et al. Clinical observation of lymphopenia in patients
26	0.	with newly diagnosed glioblastoma. <i>Journal of neuro-oncology</i> , 2019:143(2):321-
27		328.
28	9.	Byun HK, Chung SY, Kim K-J, Seong J. Role of Interleukin-7 in the Development of
29		and Recovery from Radiation-Induced Lymphopenia: A Post-hoc Analysis of a
30		Prospective Cohort. Cancer Research and Treatment: Official Journal of Korean
31		Cancer Association. 2021;53(4):962.
32	10.	Ménétrier-Caux C, Ray-Coquard I, Blay J-Y, Caux C. Lymphopenia in Cancer
33		Patients and its Effects on Response to Immunotherapy: an opportunity for
34		combination with Cytokines? Journal for immunotherapy of cancer. 2019;7(1):1-15.
35	11.	Velardi E, Tsai JJ, van den Brink MR. T cell regeneration after immunological injury.
36		Nature Reviews Immunology. 2021;21(5):277-291.
37	12.	Jacobs SR, Michalek RD, Rathmell JC. IL-7 is essential for homeostatic control of T
38		cell metabolism in vivo. The Journal of Immunology. 2010;184(7):3461-3469.
39	13.	Mackall CL, Fry TJ, Gress RE. Harnessing the biology of IL-7 for therapeutic
40		application. <i>Nature Reviews Immunology</i> . 2011;11(5):330-342.
41	14.	Tredan O, Ménétrier-Caux C, Ray-Coquard I, et al. ELYPSE-7: a randomized
42		placebo-controlled phase IIa trial with CYT107 exploring the restoration of CD4+
43		lymphocyte count in lymphopenic metastatic breast cancer patients. Annals of
44	1 -	<i>Oncology</i> . 2015;26(7):1353-1362.
45	15.	Rosenberg SA, Sportes C, Ahmadzadeh M, et al. IL-7 administration to humans leads
46		to expansion of CD8+ and CD4+ cells but a relative decrease of CD4+ T-regulatory
4/		cells. Journal of immunotherapy (Hagerstown, Md: 1997). 2006;29(3):313.

1 2	16.	Sportès C, Babb RR, Krumlauf MC, et al. Phase I study of recombinant human interleukin-7 administration in subjects with refractory malignancy. <i>Clinical Cancer</i>
3		Research. 2010;16(2):727-735.
4	17.	Merchant MS, Bernstein D, Amoako M, et al. Adjuvant immunotherapy to improve
5		outcome in high-risk pediatric sarcomas. Clinical Cancer Research.
6		2016;22(13):3182-3191.
7	18.	Lee SW, Choi D, Heo M, et al. hIL-7-hyFc, a long-acting IL-7, increased absolute
8		lymphocyte count in healthy subjects. Clinical and translational science.
9		2020;13(6):1161-1169.
10	19.	Grassberger C, Ellsworth SG, Wilks MQ, Keane FK, Loeffler JS. Assessing the
11		interactions between radiotherapy and antitumour immunity. Nature reviews Clinical
12		oncology. 2019;16(12):729-745.
13	20.	Gao J, Zhao L, Wan YY, Zhu B. Mechanism of action of IL-7 and its potential
14		applications and limitations in cancer immunotherapy. International journal of
15		molecular sciences. 2015;16(5):10267-10280.
16	21.	ElKassar N, Gress RE. An overview of IL-7 biology and its use in immunotherapy.
17		Journal of immunotoxicology. 2010;7(1):1-7.
18	22.	Pellegrini M, Calzascia T, Elford AR, et al. Adjuvant IL-7 antagonizes multiple
19		cellular and molecular inhibitory networks to enhance immunotherapies. Nature
20		<i>medicine</i> . 2009;15(5):528-536.
21	23.	Han F, Hu R, Su M, Yu Y, Yang H, Lai L. A human recombinant IL-7/HGF β hybrid
22		cytokine enhances antitumor immunity in mice. American journal of cancer research.
23		2017;7(8):1714.
24	24.	Choi YW, Kang MC, Seo YB, et al. Intravaginal administration of Fc-fused IL7
25		suppresses the cervicovaginal tumor by recruiting HPV DNA vaccine-induced CD8 T
26		cells. Clinical Cancer Research. 2016;22(23):5898-5908.
27	25.	Li B, VanRoey MJ, Jooss K. Recombinant IL-7 enhances the potency of GM-CSF-
28		secreting tumor cell immunotherapy. Clinical Immunology. 2007;123(2):155-165.
29	26.	Reardon DA, Brandes AA, Omuro A, et al. Effect of nivolumab vs bevacizumab in
30		patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical
31		trial. JAMA oncology. 2020;6(7):1003-1010.

Figure Legends

- Figure 1. Swimmer plot of clinical course of patients after enrollment.
- Figure 2. Changes of total lymphocyte counts following treatments of rhIL-7-hyFc.
- Figure 3. Kaplan-Meier survival curve for overall survival comparing the treatment group with the historical group
- Figure 4. Representative clinical images of patients who showed partial responses or longer stable diseases after injection of rhIL-7-hyFc.

Figure 1. Swimmer plot of clinical course of patients after enrollment. A total of 18 patients were assessed in this program. Each bar represents an individual patient's treatment history with subsequent treatment and the bar color indicating survival status. These included the following: rhIL-7-hyFc with temozolomide, n = 10; rhIL-7-hyFc with bevacizumab, n = 5; rhIL-7-hyFc with PCV chemotherapy, n = 1; rhIL-7-hyFc alone, n = 2).

0

100

200

300

400

Survival (Days)

500

600

700

800

900

Figure 2. Changes of total lymphocyte counts following treatments of rhIL-7-fyFc. Patients were treated with 120~240 ug/kg rhIL-7-hyFc (A), 480~720 ug/kg rhIL-7-hyFc (B) and 960~1440 ug/kg rhIL-7-hyFc (C). Symbol; rhIL-7-hyFc administration, Red line; TMZ treatment in addition to rhIL-7-hyFc, Green line; Avastin or Avastin+irinotecan treatment in addition to rhIL-7-hyFc, Purple line; PCV treatment in addition to rhIL-7-hyFc.

Number at risk

Figure 3. Kaplan-Meier survival curve for overall survival (a) and progression-free survival (b) of enrolled patients.

Figure 4. Representative clinical images of patients who showed partial responses or longer stable diseases after injection of rhIL-7-hyFc.

Numbers at risk

Figure Suppl. Kaplan-Meier survival curve for overall survival comparing the treatment group with the historical group. The P-value is derived by log-rank test.